2022年高考數(shù)學總復習 第八章 立體幾何練習 理
《2022年高考數(shù)學總復習 第八章 立體幾何練習 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學總復習 第八章 立體幾何練習 理(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學總復習 第八章 立體幾何練習 理 1.以下命題: ①以直角三角形的一邊為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐;②以直角梯形的一腰為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺;③圓柱、圓錐、圓臺的底面都是圓;④一個平面截圓錐,得到一個圓錐和一個圓臺. 其中正確命題的個數(shù)為( ) A.0個 B.1個 C.2個 D.3個 2.(xx年四川)一個幾何體的三視圖如圖X8-1-1,則該幾何體可以是( ) 圖X8-1-1 A.棱柱 B.棱臺 C.圓柱 D.圓臺 3.如圖X8-1-2,正方形O′A′B′C′的邊長為1 cm,它是水平放置的一個平面圖形的直觀圖,則原圖形的周長為(
2、 ) 圖X8-1-2 A.6 cm B.8 cm C.(2+4 )cm D.(2+2 )cm 4.(xx年廣東汕頭一模)一個錐體的主視圖和左視圖如下圖X8-1-3,下面選項中,不可能是該錐體的俯視圖的是( ) 圖X8-1-3 A B C D 5.如圖X8-1-4是長和寬分別相等的兩個矩形.給定下列三個命題:①存在三棱柱,其正視圖、俯視圖如圖X8-1-4;②存在四棱柱,其正視圖、俯視圖如圖X8-1-4;③存在圓柱,其正視圖、俯視圖如圖X8-1-4.其中真命題的個數(shù)是( ) 圖X8-1-4 A.3個 B.2個 C.
3、1個 D.0個 6.已知某一幾何體的正視圖與側(cè)視圖如圖X8-1-5,則在下列圖形中,可以是該幾何體的俯視圖的圖形為( ) 圖X8-1-5 A.①②③⑤ B.②③④⑤ C.①②④⑤ D.①②③④ 7.(xx年新課標Ⅱ)一個四面體的頂點在空間直角坐標系Oxyz中的坐標分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時,以xOz平面為投影面,則得到的正視圖可以為( ) A B C D 8.如圖X8-1-6,直三棱柱的正視圖面積為2a2,則側(cè)視圖的面積為____
4、____. 圖X8-1-6 9.如圖X8-1-7所示的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在圖X8-1-8中畫出. X8-1-7 (1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖; (2)按照給出的尺寸,求該多面體的體積. X8-1-8 10.如圖X8-1-9所示的為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2. (1)如圖X8-1-10所示的方框內(nèi)已給出了該幾何體的俯視圖,請在方框內(nèi)畫出該幾何體的正視圖和側(cè)視圖; (2)求四棱錐
5、B-CEPD的體積; (3)求證:BE∥平面PDA. X8-1-9 X8-1-10 第2講 空間幾何體的表面積和體積 1.(xx年福建)以邊長為1的正方形的一邊所在的直線為旋轉(zhuǎn)軸,將該正方形旋轉(zhuǎn)一周所得圓柱的側(cè)面積等于( ) A.2π B.π C.2 D.1 2.(xx年上海)若兩個球的表面積之比為1∶4,則這兩個球的體積之比為( ) A.1∶2 B.1∶4 C.1∶8 D.1∶16 3.(xx年廣東)某四棱臺的三視圖如圖X8-2-1
6、,則該四棱臺的體積是( ) 圖X8-2-1 A.4 B. C. D.6 4.(xx年新課標Ⅱ)如圖X8-2-2,網(wǎng)格紙上正方形小格的邊長為1(表示1 cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3 cm,高為6 cm的圓柱體毛坯切削得到,則切削的部分的體積與原來毛坯體積的比值為( ) A. B. C. D. 圖X8-2-2 圖X8-2-3 5.圓柱形容器內(nèi)盛有高度為8 cm的水,若放入三個相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如圖X8-2-3),則球的半徑是________cm.
7、 6.(xx年江蘇)設(shè)甲、乙兩個圓柱的底面面積分別為S1,S2,體積分別為V1,V2.若它們的側(cè)面面積相等,且=,則=________. 7.若一個圓錐的側(cè)面展開圖是面積為2π的半圓面,則該圓錐的體積為________. 8.(xx年江蘇)如圖X8-2-4,在三棱柱A1B1C1-ABC中,D,E,F(xiàn)分別是AB,AC,AA1的中點,設(shè)三棱錐F-ADE的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1∶V2=__________. 圖X8-2-4 9.如圖X8-2-5,設(shè)計一個正四棱錐形的冷水塔,高是1 m,底面的邊長是2 m. (1)求這個正四棱錐形冷水塔的容
8、積; (2)制造這個水塔的側(cè)面需要的鋼板的面積是多少? 圖X8-2-5 10.如圖X8-2-6,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點. (1)證明:平面BDC1⊥平面BDC; (2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比. 圖X8-2-6 第3講 點、直線、平面之間的位置關(guān)系 1.(xx年安徽)在下列命題中,不是公理的是( ) A.平行于同一個平面的兩個平面相互平行 B.過不在同一條直線上的三
9、點,有且只有一個平面 C.如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在此平面內(nèi) D.如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線 2.下列命題正確的是( ) A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行 B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行 C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行 D.若兩個平面都垂直于第三個平面,則這兩個平面平行 3.設(shè)A,B,C,D是空間四個不同的點,在下列命題中,不正確的是( ) A.若AC與BD共面,則AD與BC共面 B.若AC與BD是異
10、面直線,則AD與BC是異面直線 C.若AB=AC,DB=DC,則AD=BC D.若AB=AC,DB=DC,則AD⊥BC 4.(xx年廣東)若空間中有四條兩兩不同的直線l1,l2,l3,l4,滿足l1⊥l2,l2∥l3,l3⊥l4,則下列結(jié)論一定正確的是( ) A.l1⊥l4 B.l1∥l4 C.l1,l4既不平行也不垂直 D.l1,l4的位置關(guān)系不確定 5.如圖X8-3-1所示的是正方體的平面展開圖,在這個正方體中, ①BM與ED平行;②CN與BE是異面直線; ③CN與BM成60°;④CN與AF垂直. 以上四個命題中,正確命題的序號是( ) A.①②③ B.②④
11、 C.③ D.③④ 圖X8-3-1 圖X8-3-2 6.(xx年上海)在如圖X8-3-2所示的正方體ABCD-A1B1C1D1中,異面直線A1B與B1C所成角的大小為________. 7.(xx年廣東惠州一模)已知在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1,CC1的中點,那么異面直線AE與D1F所成角的余弦值為________. 8.(xx年安徽)如圖X8-3-3,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠BAD=60°.已知PB=PD=2,PA=. (1)證明:PC⊥BD; (2)若E為PA的中點,求三棱錐P
12、-BCE的體積. 圖X8-3-3 9.如圖X8-3-5所示的是一個正方體(如圖X8-3-4)的表面展開圖,MN和PQ是兩個面的對角線,請在正方體中將MN和PQ畫出來,并就這個正方體解答下列問題. (1)求MN和PQ所成角的大?。? (2)求三棱錐M-NPQ的體積與正方體的體積之比. 圖X8-3-4 圖X8-3-5 第4講 直線、平面平行的判定與性質(zhì) 1.已知直線l,m,n及平面α,下列命題中是假命題的是( ) A.若l∥m,m∥n,
13、則l∥n B.若l⊥α,n∥α,則l⊥n C.若l⊥m,m∥n,則l⊥n D.若l∥α,n∥α,則l∥n 2.已知m,n是兩條直線,α,β是兩個平面,給出下列命題:①若n⊥α,n⊥β,則α∥β;②若平面α上有不共線的三點到平面β的距離相等,則α∥β;③若n,m為異面直線,n?α,n∥β,m?β,m∥α,則α∥β.其中正確命題的個數(shù)是( ) A.3個 B.2個 C.1個 D.0個 3.如圖X8-4-1,已知l是過正方體ABCD-A1B1C1D1的頂點的平面AB1D1與下底面ABCD所在平面的交線,下列結(jié)論錯誤的是( ) A.D1B1∥l B.BD∥平面AD1B1 C.
14、l∥平面A1D1B1 D.l⊥B1C1 圖X8-4-1 圖X8-4-2 4.設(shè)m,n為兩條直線,α,β為兩個平面,則下列四個命題中,正確的是( ) A.若m?α,n?α,且m∥β,n∥β,則α∥β B.若m∥α,m∥n,則n∥α C.若m∥α,n∥α,則m∥n D.若m,n為兩條異面直線,且m∥α,n∥α,m∥β,n∥β,則α∥β 5.如圖X8-4-2,在正方體ABCD-A1B1C1D1中,AB=2,點E為AD的中點,點F在CD上.若EF∥平面AB1C,則線段EF的長度等于________. 6.正方體ABCD-A1B1C1D1的棱長為1 cm,過AC
15、作平行于對角線BD1的截面,則截面面積為________. 7.如圖X8-4-3(1),在透明塑料制成的長方體ABCD-A1B1C1D1容器內(nèi)灌進一些水,固定容器底面一邊BC于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個說法: ①水的部分始終呈棱柱狀; ②水面四邊形EFGH的面積不改變; ③棱A1D1始終與水面EFGH平行; ④當容器傾斜如圖X8-4-3(2)時,BE·BF是定值. 其中正確說法的序號是____________. 圖X8-4-3 8.(xx年廣東惠州一模)如圖X8-4-4,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,
16、D為AC的中點,AA1=AB=2. (1)求證:AB1∥平面BC1D; (2)若BC=3,求三棱錐D-BC1C的體積. 圖X8-4-4 9.(xx年安徽)如圖X8-4-5,四棱錐P-ABCD的底面是邊長為8的正方形,四條側(cè)棱長均為2.點G,E,F(xiàn),H分別是棱PB,AB,CD,PC上共面的四點,平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)證明:GH∥EF; (2)若EB=2,求四邊形GEFH的面積. 圖X8-4-5 第5講 直線、平面垂直的判定與性質(zhì)
17、 1.(xx年廣東)設(shè)l為直線,α,β是兩個不同的平面,下列命題中正確的是( ) A.若l∥α,l∥β,則α∥β B.若l⊥α,l⊥β,則α∥β C.若l⊥α,l∥β,則α∥β D.若α⊥β,l∥α,則l⊥β 2.如圖X8-5-1,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是( ) 圖X8-5-1 A.BD∥平面CB1D1 B.AC1⊥BD C.AC1⊥平面CB1D1 D.異面直線AD與CB1所成角 為60° 3.(xx年廣東深圳一模)已知直線a,b,平面α,β,且a⊥α,b?β,則“a⊥b”是“α∥β”的( ) A.充分不必要條件
18、 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 4.如圖X8-5-2,在長方體ABCD-A1B1C1D1中,AB=BC=2,A1D與BC1所成的角為,則BC1與平面BB1D1D所成角的正弦值為( ) A. B. C. D. 圖X8-5-2 圖X8-5-3 5.已知a,b,c是三條不同的直線,命題“a∥b,且a⊥c?b⊥c”是正確的,如果把a,b,c中的兩個或三個換成平面,在所得的命題中,真命題有( ) A.1個 B.2個 C.3個 D.4個 6.如圖X8-5-3,在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1
19、,則點A到平面A1BC的距離為( ) A. B. C. D. 7.已知正三棱錐P-ABC,點P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩互相垂直,則球心到截面ABC的距離為________. 8.(xx年遼寧)如圖X8-5-4,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F(xiàn),G分別為AC,DC,AD的中點. (1)求證:EF⊥平面BCG; (2)求三棱錐D-BCG的體積. 圖X8-5-4 9.(xx年北京)如圖X8-5-5,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,
20、AB⊥BC,AA1=AC=2,BC=1,點E,F(xiàn)分別為A1C1,BC的中點. (1)求證:平面ABE⊥平面B1BCC1; (2)求證:C1F∥平面ABE; (3)求三棱錐E-ABC的體積. 圖X8-5-5 第6講 空間坐標系與空間向量 1.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),則實數(shù)λ的值為( ) A.-2 B.- C. D.2 2.若向量a=(1,λ,2),b=(2,-1,2),且a與b的夾角余弦值為,則λ=( ) A.2 B.-2 C.
21、-2或 D.2或- 3.(由人教版選修2-1P105-例1改編)已知在平行六面體ABCD-A1B1C1D1中,以同一頂點為端點的三條棱長都等于1,且它們彼此的夾角都是60°,則此平行六面體的對角線AC1的長為( ) A. B.2 C. D. 4.已知在空間四邊形OABC中,點M在線段OA上,且OM=2MA,點N為BC的中點,設(shè)=a,=b,=c,則=( ) A.a+b-c B.-a+b+c C. a-b+c D. a+b-c 5.下列等式中,使點M與點A,B,C一定共面的是( ) A.=3-2- B.=++ C.+++=0 D.++=0
22、 6.已知空間四邊形ABCD的每條邊和對角線的長都等于1,點E,F(xiàn)分別是AB,AD的中點,則·=( ) A. B.- C. D.- 7.已知正方體ABCD-A1B1C1D1的棱長為a,=,點N為B1B的中點,則|MN|=( ) A.a B.a C.a D.a 8.已知三點A(1,0,0),B(3,1,1),C(2,0,1),則 (1)與的夾角等于________; (2)在方向上的投影等于________. 9.三棱錐O-ABC中,OB=OC,∠AOB=∠AOC=60°,則〈,〉的大小為__________. 10.(xx年新課標Ⅰ)如圖X8-6-1,在三棱
23、柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C. (1)證明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值. 圖X8-6-1 第7講 空間中角與距離的計算 1.已知向量m,n分別是直線l和平面α的方向向量和法向量,若cos〈m,n〉=-,則l與α所成的角為( ) A.30° B.60° C.120° D.150° 2.如圖X8-7-1,在棱長為1的正方體ABCD
24、-A1B1C1D1中,M,N分別為A1B1和BB1的中點,那么直線AM與CN所成角的余弦值等于( ) A. B. C. D. 圖X8-7-1 3.如圖X8-7-2,若正四棱柱ABCD-A1B1C1D1的底面邊長為1,AB1與底面ABCD所成角為60°,則A1C1到底面ABCD的距離為( ) 圖X8-7-2 A. B.1 C. D. 4.在三棱柱ABC-A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是( ) A.30° B.45° C.
25、60° D.90° 5.如圖X8-7-3,在正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成角的正切值是( ) A. B. C. D. 圖X8-7-3 6.已知在矩形ABCD中,AB=1,BC=,將矩形ABCD沿對角線AC折起,使平面ABC與ACD垂直,則B與D之間的距離為________. 7.已知點A(1,0,0),B(0,2,0),C(0,0,3),則平面ABC與平面xOy所成銳二面角的余弦值為________. 8.(xx年新課標Ⅰ)如圖X8-7-4,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°. 圖X
26、8-7-4 (1)證明:AB⊥A1C; (2)若平面ABC⊥平面AA1B1B,AB=CB=2,求直線A1C與平面BB1C1C所成角的正弦值. 9.(xx年江蘇)如圖X8-7-5,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,點D是BC的中點. (1)求異面直線A1B與C1D所成角的余弦值; (2)求平面ADC1與平面ABA1所成二面角的正弦值. 圖X8-7-5 第八章 立體幾何 第1講 空間幾何體的三視圖和直觀圖 1.B 2.D 3.B 4.C 5.A
27、 解析: ①可以是放倒的三棱柱,所以正確;容易判斷②正確;③可以是放倒的圓柱,所以也正確. 圖D85 6.D 7.A 解析:在空間直角坐標系中,先畫出四面體O-ABC的直觀圖(如圖D85),以xOz平面為投影面,則易得到正視圖.故選A. 8.a2 解析:由正視圖面積可求出直三棱柱的高為2a,底面的正三角形的高為a,故左視圖的面積為2a·a=a2. 9.解:(1)如圖D86. (2)所求多面體體積V=V長方體-V正三棱錐=4×4×6-××2=. 圖D86 10.(1)解:該組合體的正視圖和側(cè)視圖如圖D87. 圖D87 (2)解:∵PD⊥平面ABCD,PD?平面PD
28、CE, ∴平面PDCE⊥平面ABCD. ∵BC⊥CD,∴BC⊥平面PDCE. ∵S梯形PDCE=(PD+EC)·DC=×3×2=3, ∴四棱錐B-CEPD的體積為 VB-CEPD=S梯形PDCE·BC=×3×2=2. (3)證明:∵EC∥PD,PD?平面PDA,EC?平面PDA, ∴EC∥平面PDA.同理,BC∥平面PDA. ∵EC?平面EBC,BC?平面EBC,且EC∩BC=C, ∴平面EBC∥平面PDA. 又∵BE?平面EBC,∴BE∥平面PDA. 第2講 空間幾何體的表面積和體積 1.A 解析:由已知,得圓柱的底面半徑和高均為1,其側(cè)面積等于S=2π×1×1=
29、2π. 2.C 解析:因為球的表面積S=4πR2,兩個球的表面積之比為1∶4,則兩個球的半徑之比為1∶2.又因為球的體積V=πR3,則這兩個球的體積之比為1∶8. 3.B 解析:由三視圖可知,該四棱臺的上、下底面邊長分別為1和2的正方形,高為2,故V=×(12++22)×2=.故選B. 4.C 解析:由三視圖還原幾何體為小圓柱和大圓柱組成的簡單組合體.其中小圓柱底面半徑為2、高為4,大圓柱底面半徑為3、高為2,則其體積和為π×22×4+π×32×2=34π,而圓柱體毛坯體積為π×32×6=54π,故切削部分的體積為20π,從而切削的部分的體積與原來毛坯體積的比值為=. 5.4 解析:設(shè)
30、球的半徑為r,則由3V球+V水=V柱,可得3×·πr3+πr2×8=πr2×6r.解得r=4. 6. 解析:設(shè)甲、乙兩個圓柱的底面半徑和高分別為r1,r2,h1,h2,則2πr1h1=2πr2h2,=.又==,所以=.則==·=·==. 7.π 解析:因為半圓面的面積為πl(wèi)2=2π,所以l2=4,即l=2,即圓錐的母線l=2.底面圓的周長2πr=πl(wèi)=2π,所以圓錐的底面半徑r=1,所以圓錐的高h==.所以圓錐的體積為πr2h=π×1×=π. 8.1∶24 解析:V1=S△ADEh1=×S△ABC×h2=V2,所以V1∶V2=1∶24. 9.解:(1)V=S底h=×2×2×1=(m3)
31、. 答:這個正四棱錐形冷水塔的容積是 m3. (2)如圖D88,取底面邊長的中點E,連接SE. 圖D88 SE===(m), S側(cè)=4××2×=4 (m2). 答:制造這個水塔的側(cè)面需要4 m2的鋼板. 10.(1)證明:由題意知,BC⊥CC1,BC⊥AC,CC1∩AC=C, ∴BC⊥平面ACC1A1. 又DC1?平面ACC1A1,∴DC1⊥BC. ∵AC=AD,A1C1=A1D, ∴∠A1DC1=∠ADC=45°. ∴∠CDC1=90°,即DC1⊥DC. 又DC∩BC=C,∴DC1⊥平面BDC. 又DC1?平面BDC1,故平面BDC1⊥平面BDC. (2)
32、解:設(shè)棱錐B-DACC1的體積為V1,AC=1. 由題意,得V1=××1=. 又三棱柱ABC-A1B1C1的體積V=×1×1×2=1, ∴(V-V1)∶V1=1∶1. 故平面BDC1分此棱柱所得的兩部分體積的比為1∶1. 第3講 點、直線、平面之間的位置關(guān)系 1.A 2.C 3.C 4.D 解析:如圖D89,在正方體ABCD-A1B1C1D1中,取AA1為l2,BB1為l3,AD為l1.若AB為l4,則l1⊥l4;若BC為l4,則l1∥l4;若A1B1為l4,則l1與l4異面.因此l1,l4的位置關(guān)系不確定.故選D. 圖D89 圖
33、D90 5.D 6. 解析:∵A1D∥B1C,∴直線A1B與A1D所成的角即為異面直線A1B與B1C所成的角.又∵△A1DB為正三角形,∴∠DA1B=.故答案為. 7. 解析:如圖D90,連接AE,DF,D1F,則DF∥AE,所以DF與D1F所成的角即為異面直線AE,D1F所成的角,設(shè)正方體的邊長為2,則DF=D1F=,在△DD1F中,cos∠D1FD==. 8.解:(1)證明:如圖D91,連接AC交BD于點O,連接PO. ∵PB=PD,∴PO⊥BD. 又∵底面ABCD是菱形,∴BD⊥AC. 而AC∩PO=O,∴BD⊥平面PAC. ∴BD⊥PC,即PC⊥BD. (2)在△AB
34、D中,AB=AD=2,∠BAD=60°, 則BD=2,AC=2AO=2 . 又PO⊥BD,則PO==. AO2+PO2=6=AP2,∴PO⊥AC. 又PE=PA,則 S△PEC=S△PAC=×=. ∵BD⊥平面PAC,∴BO⊥平面PEC. ∴VP-BEC=VB-PEC=S△PEC·BO=××1=. 圖D91 圖D92 9.解:(1)如圖D92,連接NC,NQ,MC,MN與PQ是異面直線. 在正方體中,PQ∥NC,則∠MNC為MN與PQ所成的角. 因為MN=NC=MC,所以∠MNC=60°. 所以MN與PQ所成角的大小為60°.
35、 (2)設(shè)正方體棱長為a,則正方體的體積V=a3. 而三棱錐M-NPQ的體積與三棱錐N-PQM的體積相等,且NP⊥平面PQM, 所以VN-PQM=××MP×MQ×NP=a3. 所以三棱錐M-NPQ的體積與正方體的體積之比為1∶6. 第4講 直線、平面平行的判定與性質(zhì) 1.D 2.B 3.D 4.D 解析:選項A中的直線m,n可能不相交;選項B中直線n可能在平面α內(nèi);選項C中直線m,n的位置可能是平行、相交或異面. 5. 解析:因為EF∥平面AB1C,EF?平面ABCD,且平面AB1C與平面ABCD的交線為AC,所以EF∥AC.又點E為AD的中點,所以EF為△DAC的中位線,所以E
36、F=AC.因為AB=2,ABCD為正方形,所以AC=2 ,所以EF=. 圖D93 6. cm2 解析:如圖D93,截面ACE∥BD1,平面BDD1∩平面ACE=EF,其中F為AC與BD的交點,所以E為DD1的中點,易求S△ACE= cm2. 7.①③④ 解析:對于①,由于BC固定,所以在傾斜的過程中,始終有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC,故水的部分始終呈棱柱狀(四棱柱、三棱柱或五棱柱),且BC為棱柱的一條側(cè)棱,故①正確;對于②,當水是四棱柱或五棱柱時,水面面積與上下底面面積相等;當水是三棱柱時,則水面面積可能變大,也可能變小,故②不正確;③是正確的;④是正確的,
37、由水的體積的不變性可證得.綜上所述,正確命題的序號是①③④. 8.(1)證明:如圖D94,連接B1C,交BC1于點O,連接OD. ∵四邊形BCC1B1是平行四邊形, ∴點O為B1C的中點. ∵D為AC的中點, ∴OD為△ACB1的中位線. ∴OD∥AB1. ∵OD?平面BC1D,AB1?平面BC1D, ∴AB1∥平面BC1D. (2)解:∵三棱柱ABC-A1B1C1,∴側(cè)棱CC1∥AA1. 又∵AA1⊥底面ABC,∴側(cè)棱CC1⊥平面ABC. 故CC1為三棱錐C1-BCD的高,A1A=CC1=2. S△BCD=S△ABC=×=. ∴V=V=CC1·S△BCD=×2×=1
38、. 圖D94 圖D95 9.(1)證明:∵BC∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH,∴GH∥BC. 同理,EF∥BC.∴GH∥EF. (2)解:如圖D95,連接AC,BD交于點O,BD交EF于點K,連接OP,GK. ∵PA=PC,O是AC的中點, ∴PO⊥AC.同理,得PO⊥BD. 又BD∩AC=O,且AC,BD都在平面ABCD內(nèi), ∴PO⊥平面ABCD. 又∵平面GEFH⊥平面ABCD,且PO?平面GEFH, ∴PO∥平面GEFH. ∵平面PBD∩平面GEFH=GK, ∴PO∥GK.∴GK
39、⊥平面ABCD. 又EF?平面ABCD,∴GK⊥EF. ∴GK是梯形GEFH的高. 由AB=8,EB=2,得EB∶AB=KB∶DB=1∶4. 從而KB=DB=OB,即K是OB的中點. 又由PO∥GK,得GK=PO. ∴G是PB的中點,且GH=BC=4. 由已知,得OB==4 , PO===6. ∴GK=3. 故四邊形GEFH的面積S=·GK=×3=18. 第5講 直線、平面垂直的判定與性質(zhì) 1.B 2.D 3.B 解析:根據(jù)題意,分兩步來判斷:①當α∥β時,∵a⊥α,且α∥β,∴a⊥β,又∵b?β,∴a⊥b,則a⊥b是α∥β的必要條件;②若a⊥b,不一定有α∥β,當α
40、∩β=a時,又由a⊥α,則a⊥b,但此時α∥β不成立,即a⊥b不是α∥β的充分條件,則a⊥b是α∥β的必要不充分條件. 圖D96 4.B 解析:如圖D96,連接B1C,則B1C∥A1D,∵A1D與BC1所成的角為,∴B1C⊥BC1,∴長方體ABCD-A1B1C1D1為正方體.取B1D1的中點M,連接C1M,BM,∴C1M⊥平面BB1D1D,∴∠C1BM為BC1與平面BB1D1D所成的角.∵AB=BC=2,∴C1M=,BC1=2 , ∴sin∠C1BM==.故選B. 5.C 解析:若a,b,c換成平面α,β,γ,則“α∥β,且α⊥γ?β⊥γ”是真命題; 若a,b換成平面α,β,則“
41、α∥β,且c⊥α?c⊥β”是真命題; 若b,c換成平面β,γ,則“a∥β,且a⊥γ?β⊥γ”是真命題; 若a,c換成平面α,γ,則“b∥α,且α⊥γ?b⊥γ”是假命題. 6.B 解析:方法一:取BC中點E,連接AE,A1E, 過點A作AF⊥A1E,垂足為F. ∵A1A⊥平面ABC,∴A1A⊥BC. ∵AB=AC,∴AE⊥BC. ∴BC⊥平面AEA1.∴BC⊥AF. 又AF⊥A1E,∴AF⊥平面A1BC. ∴AF的長即為所求點A到平面A1BC的距離. ∵AA1=1,AE=,∴AF=. 方法二:V=S△ABC·AA1=××1=. 又∵A1B=A1C=, 在△A1BE中,A
42、1E==2, ∴S=×2×2=2. ∴V=×S·h=h. ∴h=.∴h=.∴點A到平面A1BC的距離為. 圖D97 7. 解析:因為在正三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,所以可以把該正三棱錐看作為一個正方體的一部分(如圖D97),此正方體內(nèi)接于球,正方體的對角線為球的直徑,球心為正方體對角線的中點.球心到截面ABC的距離為球的半徑減去正三棱錐P-ABC在平面ABC上的高.已知球的半徑為,所以正方體的棱長為2,可求得正三棱錐P-ABC在平面ABC上的高為,所以球心到截面ABC的距離為-=. 8.(1)證明:由AB=DB,BC=BC,∠ABC=∠DBC, 得△
43、ABC≌△DBC(SAS).∴AC=DC. 又G為AD的中點,∴CG⊥AD. ∵AB=BD,G為AD的中點,∴BG⊥AD. 又BG∩CG=G,∴AD⊥平面BCG. 又EF∥AD,故EF⊥平面BCG. 圖D98 (2)解:如圖D98,在平面ABC內(nèi),過點A作AO⊥BC,交CB的延長線于點O. ∵平面ABC⊥平面BCD, ∴AO⊥平面BDC. 又G為AD的中點, ∴G到平面BCD的距離h=AO. 在△AOB中, AO=AB·sin60°=.∴h=. ∴VD-BCG=VG-BCD=××h=. 9.(1)證明:在三棱柱ABC-A1B1C1中, BB1⊥底面ABC,∴B
44、B1⊥AB. 又∵AB⊥BC,且BB1∩BC=B,∴AB⊥平面B1BCC1. 又AB?平面ABE,∴平面ABE⊥平面B1BCC1. (2)證明:如圖D99,取AB中點為G,連接EG,F(xiàn)G. 圖D99 ∵E,F(xiàn)分別是A1C1,BC的中點, ∴FG∥AC,且FG=AC. ∵AC∥A1C1,且AC=A1C1, ∴FG∥EC1,且FG=EC1. ∴四邊形FGEC1為平行四邊形. ∴C1F∥EG. 又∵EG?平面ABE,C1F?平面ABE, ∴C1F∥平面ABE. (3)解:∵AA1=AC=2,BC=1,AB⊥BC, ∴AB==. ∴VE-ABC=S△ABC·AA1=×
45、××1×2=. 第6講 空間坐標系與空間向量 1.D 2.C 解析:cos〈a,b〉===. 解得λ=-2或. 3.D 解析:∵=++,∴||2=(++)2=||2+||2+||2+2·+2·+2·=1+1+1+2(cos60°+cos60°+cos60°)=6,∴||=. 4.D 5.D 解析:∵M,A,B,C四點共面?=x+y+z(x,y,z∈R),且x+y+z=1.∵++=0?=--,∴存在x=-1,y=-1,使=x+y,∴,,共面.∵M為公共點,∴M,A,B,C四點共面. 6.B 7.A 解析:=-=- =+- =+-. ∴||==a. 8.(1) (2)
46、解析:=(1,1,0),=(-1,0,-1), (1)cos〈,〉===-, ∴〈,〉=. (2)在方向上的投影===. 9.90° 解析:∵·=·(-)=·-·=||·||cos∠AOC-||·||·cos∠AOB=||·||cos60°-||·||cos60°=0. ∴⊥,∴〈,〉=90°. 圖D100 10.(1)證明:如圖D100,連接BC1,交B1C于點O,連接AO. 因為側(cè)面BB1C1C為菱形, 所以B1C⊥BC1,且O為B1C及BC1的中點. 又AB⊥B1C,所以B1C⊥平面ABO. 由于AO?平面ABO,故B1C⊥AO. 又B1O=CO,故AC=AB
47、1. (2)解:因為AC⊥AB1,且O為B1C的中點,所以AO=CO. 又因為AB=BC,所以△BOA≌△BOC(SSS). 故OA⊥OB,從而OA,OB,OB1兩兩垂直. 以O(shè)為坐標原點,OB的方向為x軸正方向,|OB|為單位長,建立如圖所示的空間直角坐標系Oxyz. 因為∠CBB1=60°,所以△CBB1為等邊三角形. 又OB=1,則OB1=,OA=. 故A,B(1,0,0),B1,C. =, ==, 1==. 設(shè)n=(x,y,z)是平面AA1B1的法向量,則 即 所以可取n=(1,,). 設(shè)m是平面A1B1C1的法向量, 則 同理可取m=(1,-,).
48、則cos〈n,m〉==. 所以結(jié)合圖形知,二面角A-A1B1-C1的余弦值為. 第7講 空間中角與距離的計算 1.A 解析:設(shè)l與α所成的角為θ,則sinθ=|cos〈m,n〉|=.∴θ=30°. 2.D 3.D 4.C 5.B 解析:BB1與平面ACD1所成角即DD1 與平面ACD1所成角,即∠DD1O,其正切值是= . 6. 解析:過B,D分別向AC作垂線,垂足分別為M,N.則可求得AM=,BM=,CN=,DN=,MN=1. ∵=++,∴||2=|(++)|2=||2+||2+||2+2(·+·+·)=2+12+2+2(0+0+0)=,∴||=. 7. 解析:=(-1,2,
49、0),=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z).由n·=0,n·=0知,令x=2,則y=1,z=. ∴平面ABC的一個法向量為n=. 又平面xOy的一個法向量為=(0,0,3). ∴所求二面角的余弦值cosθ===. 故平面ABC與平面xOy所成銳二面角的余弦值為. 8.(1)證明:如圖D101,取AB中點為E,連接CE,A1B,A1E. 圖D101 ∵AB=AA1,∠BAA1=60°, ∴△BAA1是正三角形.∴A1E⊥AB. ∵CA=CB,∴CE⊥AB. ∵CE∩A1E=E,∴AB⊥平面CEA1. ∴AB⊥A1C. (2)解:由(1)知,EC
50、⊥AB,EA1⊥AB. 又∵平面ABC⊥平面ABB1A1,平面ABC∩平面AA1B1B=AB, ∴EC⊥面AA1B1B.∴EC⊥EA1. ∴EA,EC,EA1兩兩相互垂直. 以E為坐標原點,,,的方向分別為x軸,y軸,z軸的正方向,||為單位長度,建立如圖D102所示的空間直角坐標系Exyz, 圖D102 由題設(shè)知,A(1,0,0),A1(0,,0),C(0,0,),B(-1,0,0), 則=(1,0,),==(-1,,0),=(0,-,). 設(shè)n=(x,y,z)是平面BB1C1C的法向量, 則即可取n=(,1,-1). ∴cos〈n,〉==-. ∴直線A1C與平面B
51、B1C1C所成角的正弦值為. 9.解:(1)如圖D103,以,,為單位正交基底建立空間直角坐標系A(chǔ)xyz, 圖D102 則A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4). ∴=(2,0,-4),=(1,-1,-4). ∴cos〈,〉===. ∴異面直線A1B與C1D所成角的余弦值為. (2)=(0,2,0)是平面ABA1的一個法向量. 設(shè)平面ADC1的法向量為m=(x,y,z), ∵=(1,1,0),=(0,2,4), 且m⊥,m⊥, ∴取z=1,得y=-2,x=2. ∴平面ADC1的法向量為m=(2,-2,1). 設(shè)平面ADC1與平面ABA1所成二面角為θ, ∴|cosθ|=|cos〈,m〉|===, 則sinθ=. ∴平面ADC1與平面ABA1所成二面角的正弦值為.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點美食推薦
- XX國有企業(yè)黨委書記個人述責述廉報告及2025年重點工作計劃
- 世界濕地日濕地的含義及價值
- 20XX年春節(jié)節(jié)后復工安全生產(chǎn)培訓人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點節(jié)后常見的八大危險
- 廈門城市旅游介紹廈門景點介紹廈門美食展示
- 節(jié)后開工第一課復工復產(chǎn)十注意節(jié)后復工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓
- 深圳城市旅游介紹景點推薦美食探索
- 節(jié)后復工安全生產(chǎn)培訓勿忘安全本心人人講安全個個會應(yīng)急
- 預防性維修管理
- 常見閥門類型及特點
- 設(shè)備預防性維修
- 2.乳化液泵工理論考試試題含答案