秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案

上傳人:xt****7 文檔編號(hào):105541521 上傳時(shí)間:2022-06-12 格式:DOC 頁(yè)數(shù):7 大?。?63.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年人教A版高中數(shù)學(xué) 選修2-1 3-1-1空間向量及其加減運(yùn)算 3-1-2空間向量的數(shù)乘運(yùn)算 教案 教學(xué)目標(biāo): ㈠知識(shí)目標(biāo):⒈空間向量;⒉相等的向量;⒊空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律; ㈡能力目標(biāo):⒈理解空間向量的概念,掌握其表示方法; ⒉會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律; ⒊能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題. ㈢德育目標(biāo):學(xué)會(huì)用發(fā)展的眼光看問(wèn)題,認(rèn)識(shí)到事物都是在不斷的發(fā)展、進(jìn)化的,會(huì)       用聯(lián)系的觀點(diǎn)看待事物. 教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律. 教學(xué)難點(diǎn):應(yīng)用向量解決立體幾何問(wèn)題. 教學(xué)方法:討論

2、式. 教學(xué)過(guò)程: Ⅰ.復(fù)習(xí)引入 [師]在必修四第二章《平面向量》中,我們學(xué)習(xí)了有關(guān)平面向量的一些知識(shí),什么叫做向量?向量是怎樣表示的呢? [生]既有大小又有方向的量叫向量.向量的表示方法有:   ?、儆糜邢蚓€(xiàn)段表示;    ②用字母a、b等表示;   ?、塾糜邢蚓€(xiàn)段的起點(diǎn)與終點(diǎn)字母:. [師]數(shù)學(xué)上所說(shuō)的向量是自由向量,也就是說(shuō)在保持向量的方向、大小的前提下可以將向量進(jìn)行平移,由此我們可以得出向量相等的概念,請(qǐng)同學(xué)們回憶一下. [生]長(zhǎng)度相等且方向相同的向量叫相等向量. [師]學(xué)習(xí)了向量的有關(guān)概念以后,我們學(xué)習(xí)了向量的加減以及數(shù)乘向量運(yùn)算: ⒈向量的加法:

3、 ⒉向量的減法: ⒊實(shí)數(shù)與向量的積:     實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作λa,其長(zhǎng)度和方向規(guī)定如下:      (1)|λa|=|λ||a|      (2)當(dāng)λ>0時(shí),λa與a同向;        當(dāng)λ<0時(shí),λa與a反向;        當(dāng)λ=0時(shí),λa=0. [師]關(guān)于向量的以上幾種運(yùn)算,請(qǐng)同學(xué)們回憶一下,有哪些運(yùn)算律呢? [生]向量加法和數(shù)乘向量滿(mǎn)足以下運(yùn)算律      加法交換律:a+b=b+a      加法結(jié)合律:(a+b)+c=a+(b+c)      數(shù)乘分配律:λ(a+b)=λa+λb [師]今天我們將在必修四第二章平面向量的基礎(chǔ)上,

4、類(lèi)比地引入空間向量的概念、表示方法、相同或向等關(guān)系、空間向量的加法、減法、數(shù)乘以及這三種運(yùn)算的運(yùn)算率,并進(jìn)行一些簡(jiǎn)單的應(yīng)用.請(qǐng)同學(xué)們閱讀課本 Ⅱ.新課講授 [師]如同平面向量的概念,我們把空間中具有大小和方向的量叫做向量.例如空間的一個(gè)平移就是一個(gè)向量.那么我們?cè)鯓颖硎究臻g向量呢?相等的向量又是怎樣表示的呢? [生]與平面向量一樣,空間向量也用有向線(xiàn)段表示,并且同向且等長(zhǎng)的有向線(xiàn)段表示同一向量或相等的向量. [師]由以上知識(shí)可知,向量在空間中是可以平移的.空間任意兩個(gè)向量都可以用同一平面內(nèi)的兩條有向線(xiàn)段表示.因此我們說(shuō)空間任意兩個(gè)向量是共面的. [師]空間向量的加法、減法、數(shù)乘向量各

5、是怎樣定義的呢? [生]空間向量的加法、減法、數(shù)乘向量的定義與平面向量的運(yùn)算一樣: =a+b, (指向被減向量), λa    [師]空間向量的加法與數(shù)乘向量有哪些運(yùn)算律呢?請(qǐng)大家驗(yàn)證這些運(yùn)算律. [生]空間向量加法與數(shù)乘向量有如下運(yùn)算律:    ?、偶臃ń粨Q律:a + b = b + a;    ?、萍臃ńY(jié)合律:(a + b) + c =a + (b + c);(課件驗(yàn)證)    ?、菙?shù)乘分配律:λ(a + b) =λa +λb. [師]空間向量加法的運(yùn)算律要注意以下幾點(diǎn): ⑴首尾相接的若干向量之和,等于由起始向量的起點(diǎn)指向末尾向量的終點(diǎn)的向量.即: 因此,求

6、空間若干向量之和時(shí),可通過(guò)平移使它們轉(zhuǎn)化為首尾相接的向量. ⑵首尾相接的若干向量若構(gòu)成一個(gè)封閉圖形,則它們的和為零向量.即: . ⑶兩個(gè)向量相加的平行四邊形法則在空間仍然成立. 因此,求始點(diǎn)相同的兩個(gè)向量之和時(shí),可以考慮用平行四邊形法則. 例1已知平行六面體(如圖),化簡(jiǎn)下列向量表達(dá)式,并標(biāo)出化簡(jiǎn)結(jié)果的向量:      說(shuō)明:平行四邊形ABCD平移向量 a 到A’B’C’D’的軌跡所形成的幾何體,叫做平行六面體.記作ABCD—A’B’C’D’. 平行六面體的六個(gè)面都是平行四邊形,每個(gè)面的邊叫做平行六面體的棱. 說(shuō)明:由第2小題可知,始點(diǎn)相同且不在同一個(gè)平面內(nèi)的三個(gè)

7、向量之和,等于以這三個(gè)向量為棱的平行六面體的以公共始點(diǎn)為始點(diǎn)的對(duì)角線(xiàn)所表示的向量,這是平面向量加法的平行四邊形法則向空間的推廣. 例2、如圖中,已知點(diǎn)O是平行六面體ABCD-A1B1C1D1體對(duì)角線(xiàn)的交點(diǎn),點(diǎn)P是任意一點(diǎn),則. 分析:   將要證明等式的左邊分解成兩部分:與,第一組向量和中各向量的終點(diǎn)構(gòu)成平行四邊形ABCD,第二組向量和中的各向量的終點(diǎn)構(gòu)成平行四邊形A1B1C1D1,于是我們就想到了應(yīng)該先證明:      將以上所述結(jié)合起來(lái)就產(chǎn)生了本例的證明思路. 解答:   設(shè)E,E1分別是平行六面體的面ABCD與A1B1C1D1的中心,于是有       3. 1.

8、2空間向量的數(shù)乘運(yùn)算 教學(xué)目標(biāo):1.理解共線(xiàn)向量定理和共面向量定理及它們的推論; 2.掌握空間直線(xiàn)、空間平面的向量參數(shù)方程和線(xiàn)段中點(diǎn)的向量公式. 教學(xué)重、難點(diǎn):共線(xiàn)、共面定理及其應(yīng)用. 教學(xué)過(guò)程: (一)復(fù)習(xí):空間向量的概念及表示; (二)新課講解: 1.共線(xiàn)(平行)向量: 如果表示空間向量的有向線(xiàn)段所在的直線(xiàn)互相平行或重合,則這些向量叫做共線(xiàn)向量或平行向量。讀作:平行于,記作:. 2.共線(xiàn)向量定理: 對(duì)空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù),使(唯一). 推論:如果為經(jīng)過(guò)已知點(diǎn),且平行于已知向量的直線(xiàn),那么對(duì)任一點(diǎn),點(diǎn)在直線(xiàn)上的充要條件是存在實(shí)數(shù),滿(mǎn)足等式①,其中向量叫做

9、直線(xiàn)的方向向量。在上取,則①式可化為或② 當(dāng)時(shí),點(diǎn)是線(xiàn)段的中點(diǎn),此時(shí)③ ①和②都叫空間直線(xiàn)的向量參數(shù)方程,③是線(xiàn)段的中點(diǎn)公式. 3.向量與平面平行: 已知平面和向量,作,如果直線(xiàn)平行于或在內(nèi),那么我們說(shuō)向量平行于平面,記作:. 通常我們把平行于同一平面的向量,叫做共面向量. 說(shuō)明:空間任意的兩向量都是共面的. 4.共面向量定理: 如果兩個(gè)向量不共線(xiàn),與向量共面的充要條件是存在實(shí)數(shù)使. 推論:空間一點(diǎn)位于平面內(nèi)的充分必要條件是存在有序?qū)崝?shù)對(duì),使或?qū)臻g任一點(diǎn),有① 上面①式叫做平面的向量表達(dá)式. (三)例題分析: 例1.已知三點(diǎn)不共線(xiàn),對(duì)平面外任一點(diǎn),滿(mǎn)足

10、條件, 試判斷:點(diǎn)與是否一定共面? 解:由題意:, ∴, ∴,即, 所以,點(diǎn)與共面. 【練習(xí)】:對(duì)空間任一點(diǎn)和不共線(xiàn)的三點(diǎn),問(wèn)滿(mǎn)足向量式 (其中)的四點(diǎn)是否共面? 解:∵, ∴, ∴,∴點(diǎn)與點(diǎn)共面. 例2.已知,從平面外一點(diǎn)引向量 , (1)求證:四點(diǎn)共面; (2)平面平面. 解:(1)∵四邊形是平行四邊形,∴, ∵, ∴共面; (2)∵,又∵, ∴ 所以,平面平面. 課堂練習(xí): 課堂小結(jié):1.共線(xiàn)向量定理和共面向量定理及其推論; 2.空間直線(xiàn)、平面的向量參數(shù)方程和線(xiàn)段中點(diǎn)向量公式. 作業(yè): 1.已知兩個(gè)非零向量不共線(xiàn),如果,,, 求證:共面. 2.已知,,若,求實(shí)數(shù)的值。 3.如圖,分別為正方體的棱的中點(diǎn), 求證:(1)四點(diǎn)共面;(2)平面平面. 4.已知分別是空間四邊形邊的中點(diǎn), (1)用向量法證明:四點(diǎn)共面; (2)用向量法證明:平面.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!