(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4
《(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專版)2017-2018學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.1 任意角學(xué)案 新人教A版必修4(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1.1.1 任 意 角 預(yù)習(xí)課本P2~5,思考并完成以下問(wèn)題 (1)角是如何定義的?角的概念推廣后,分類的標(biāo)準(zhǔn)是什么? (2)象限角的含義是什么?判斷角所在的象限時(shí),要注意哪些問(wèn)題?
2、 (3)終邊相同的角一定相等嗎?如何表示終邊相同的角? 1.任意角 (1)角的概念
3、: 角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形. (2)角的表示:如圖,OA是角α的始邊,OB是角α的終邊,O是角的頂點(diǎn).角α可記為“角α”或“∠α”或簡(jiǎn)記為“α”. (3)角的分類: 名稱 定義 圖示 正角 按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 負(fù)角 按順時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角 一條射線沒(méi)有作任何旋轉(zhuǎn)形成的角 [點(diǎn)睛] 對(duì)角的概念的理解的關(guān)鍵是抓住“旋轉(zhuǎn)”二字:①要明確旋轉(zhuǎn)的方向;②要明確旋轉(zhuǎn)量的大小;③要明確射線未作任何旋轉(zhuǎn)時(shí)的位置. 2.象限角 把角放在平面直角坐標(biāo)系中,使角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合
4、,那么,角的終邊在第幾象限,就說(shuō)這個(gè)角是第幾象限角;如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限. [點(diǎn)睛] 象限角的條件是:角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合. 3.終邊相同的角 所有與角α終邊相同的角,連同角α在內(nèi),可構(gòu)成一個(gè)集合S={β|β=α+k·360°,k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整數(shù)個(gè)周角的和. [點(diǎn)睛] 對(duì)終邊相同的角的理解 (1)終邊相同的角不一定相等,但相等的角終邊一定相同; (2)k∈Z,即k為整數(shù)這一條件不可少; (3)終邊相同的角的表示不唯一. 1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的
5、打“×”) (1)-30°是第四象限角.( ) (2)鈍角是第二象限的角.( ) (3)終邊相同的角一定相等.( ) 答案:(1)√ (2)√ (3)× 2.與45°角終邊相同的角是( ) A.-45° B.225° C.395° D.-315° 答案:D 3.下列說(shuō)法正確的是( ) A.銳角是第一象限角 B.第二象限角是鈍角 C.第一象限角是銳角 D.第四象限角是負(fù)角 答案:A 4.將35°角的終邊按順時(shí)針?lè)较蛐D(zhuǎn)60°所得的角度數(shù)為________,將35°角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn)一周后的角度數(shù)________. 答案:-25°
6、395° 任意角的概念 [典例] 下列命題正確的是( ) A.終邊與始邊重合的角是零角 B.終邊和始邊都相同的兩個(gè)角一定相等 C.在90°≤β<180°范圍內(nèi)的角β不一定是鈍角 D.小于90°的角是銳角 [解析] 終邊與始邊重合的角還可能是360°,720°,…,故A錯(cuò);終邊和始邊都相同的兩個(gè)角可能相差360°的整數(shù)倍,如30°與-330°,故B錯(cuò);由于在90°≤β<180°范圍內(nèi)的角β包含90°角,所以不一定是鈍角,C正確;小于90°的角可以是0°,也可以是負(fù)角,故D錯(cuò)誤. [答案] C 理解與角的概念有關(guān)問(wèn)題的關(guān)鍵 關(guān)鍵在于正確理解象限角與銳角、直角、
7、鈍角、平角、周角等的概念,弄清角的始邊與終邊及旋轉(zhuǎn)方向與大?。硗庑枰莆张袛嘟Y(jié)論正確與否的技巧,判斷結(jié)論正確需要證明,而判斷結(jié)論不正確只需舉一個(gè)反例即可. [活學(xué)活用] 如圖,射線OA繞端點(diǎn)O旋轉(zhuǎn)90°到射線OB的位置,接著再旋轉(zhuǎn)-30°到OC的位置,則∠AOC的度數(shù)為________. 解析:∠AOC=∠AOB+∠BOC=90°+(-30°)=60°. 答案:60° 終邊相同角的表示 [典例] 寫出與75°角終邊相同的角β的集合,并求在360°≤β<1 080°范圍內(nèi)與75°角終邊相同的角. [解] 與75°角終邊相同的角的集合為 S={β|β=k·360°
8、+75°,k∈Z}. 當(dāng)360°≤β<1 080°時(shí),即360°≤k·360°+75°<1 080°, 解得≤k<2.又k∈Z,所以k=1或k=2. 當(dāng)k=1時(shí),β=435°;當(dāng)k=2時(shí),β=795°. 綜上所述,與75°角終邊相同且在360°≤β<1 080°范圍內(nèi)的角為435°角和795°角. 1.終邊落在直線上的角的集合的步驟 (1)寫出在0°~360°范圍內(nèi)相應(yīng)的角; (2)由終邊相同的角的表示方法寫出角的集合; (3)根據(jù)條件能合并一定合并,使結(jié)果簡(jiǎn)潔. 2.終邊相同角常用的三個(gè)結(jié)論 (1)終邊相同的角之間相差360°的整數(shù)倍. (2)終邊在同一直線上的角之
9、間相差180°的整數(shù)倍. (3)終邊在相互垂直的兩直線上的角之間相差90°的整數(shù)倍. [活學(xué)活用] 分別寫出終邊在下列各圖所示的直線上的角的集合. 解:(1)在0°~360°范圍內(nèi),終邊在直線y=0上的角有兩個(gè),即0°和180°,因此,所有與0°角終邊相同的角構(gòu)成集合S1={β|β=0°+k·360°,k∈Z},而所有與180°角終邊相同的角構(gòu)成集合S2={β|β=180°+k·360°,k∈Z},于是,終邊在直線y=0上的角的集合為S=S1∪S2={β|β=k·180°,k∈Z}. (2)由圖形易知,在0°~360°范圍內(nèi),終邊在直線y=-x上的角有兩個(gè),即135°和315°,
10、因此,終邊在直線y=-x上的角的集合為S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360,k∈Z}={β|β=135°+k·180°,k∈Z}. 象限角的判斷 [典例] 已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊落在x軸的非負(fù)半軸上,作出下列各角,并指出它們是第幾象限角. (1)-75°;(2)855°;(3)-510°. [解] 作出各角,其對(duì)應(yīng)的終邊如圖所示: (1)由圖①可知:-75°是第四象限角. (2)由圖②可知:855°是第二象限角. (3)由圖③可知:-510°是第三象限角. 象限角的判定方法 (1)根據(jù)圖象判定.依據(jù)是終邊相同的角
11、的概念,因?yàn)?°~360°之間的角的終邊與坐標(biāo)系中過(guò)原點(diǎn)的射線可建立一一對(duì)應(yīng)的關(guān)系. (2)將角轉(zhuǎn)化到0°~360°范圍內(nèi).在直角坐標(biāo)平面內(nèi),在0°~360°范圍內(nèi)沒(méi)有兩個(gè)角終邊是相同的. [活學(xué)活用] 若α是第四象限角,則180°-α一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:選C ∵α與-α的終邊關(guān)于x軸對(duì)稱,且α是第四象限角,∴-α是第一象限角. 而180°-α可看成-α按逆時(shí)針旋轉(zhuǎn)180°得到, ∴180°-α是第三象限角. 角,nα(n∈N*)所在象限的確定 [典例] 已知α是第二象限角,求角所在的象限. [解
12、] 法一:∵α是第二象限角,
∴k·360°+90°<α 13、]在本例條件下,求角2α的終邊的位置.
解:∵α是第二象限角,
∴k·360°+90°<α 14、nα的范圍,再直接轉(zhuǎn)化為終邊相同的角即可.注意不要漏掉nα的終邊在坐標(biāo)軸上的情況.
(2)已知角α終邊所在的象限,確定終邊所在的象限,分類討論法要對(duì)k的取值分以下幾種情況進(jìn)行討論:k被n整除;k被n除余1;k被n除余2,…,k被n除余n-1.然后方可下結(jié)論.幾何法依據(jù)數(shù)形結(jié)合思想,簡(jiǎn)單直觀.
層級(jí)一 學(xué)業(yè)水平達(dá)標(biāo)
1.-215°是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
解析:選B 由于-215°=-360°+145°,而145°是第二象限角,則-215°也是第二象限角.
2.下面各組角中,終邊相同的是( )
A.390°,6 15、90° B.-330°,750°
C.480°,-420° D.3 000°,-840°
解析:選B ∵-330°=-360°+30°,750°=720°+30°,
∴-330°與750°終邊相同.
3.若α=k·180°+45°,k∈Z,則α所在的象限是( )
A.第一、三象限 B.第一、二象限
C.第二、四象限 D.第三、四象限
解析:選A 由題意知α=k·180°+45°,k∈Z,
當(dāng)k=2n+1,n∈Z,
α=2n·180°+180°+45°
=n·360°+225°,在第三象限,
當(dāng)k=2n,n∈Z,
α=2n·180°+45°
=n·360°+4 16、5°,在第一象限.
∴α是第一或第三象限的角.
4.終邊在第二象限的角的集合可以表示為( )
A.{α|90°<α<180°}
B.{α|90°+k·180°<α<180°+k·180°,k∈Z}
C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}
D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}
解析:選D 終邊在第二象限的角的集合可表示為{α|90°+k·360°<α<180°+k·360°,k∈Z},而選項(xiàng)D是從順時(shí)針?lè)较騺?lái)看的,故選項(xiàng)D正確.
5.將-885°化為α+k·360°(0°≤α<360°,k∈Z)的形式是( 17、 )
A.-165°+(-2)×360° B.195°+(-3)×360°
C.195°+(-2)×360° D.165°+(-3)×360°
解析:選B?。?85°=195°+(-3)×360°,0°≤195°<360°,故選B.
6.在下列說(shuō)法中:
①時(shí)鐘經(jīng)過(guò)兩個(gè)小時(shí),時(shí)針轉(zhuǎn)過(guò)的角是60°;
②鈍角一定大于銳角;
③射線OA繞端點(diǎn)O按逆時(shí)針旋轉(zhuǎn)一周所成的角是0°;
④-2 000°是第二象限角.
其中錯(cuò)誤說(shuō)法的序號(hào)為______(錯(cuò)誤說(shuō)法的序號(hào)都寫上).
解析:①時(shí)鐘經(jīng)過(guò)兩個(gè)小時(shí),時(shí)針按順時(shí)針?lè)较蛐D(zhuǎn)60°,因而轉(zhuǎn)過(guò)的角為-60°,所以①不正確.
②鈍角α的取值 18、范圍為90°<α<180°,銳角θ的取值范圍為0°<θ<90°,因此鈍角一定大于銳角,所以②正確.
③射線OA按逆時(shí)針旋轉(zhuǎn)一周所成的角是360°,所以③不正確.
④-2 000°=-6×360°+160°與160°終邊相同,是第二象限角,所以④正確.
答案:①③
7.α滿足180°<α<360°,5α與α有相同的始邊,且又有相同的終邊,那么α=________.
解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.
又∵180°<α<360°,∴α=270°.
答案:270°
8.若角α=2 016°,則與角α具有相同終邊的最小正角為________,最大負(fù)角為__ 19、______.
解析:∵2 016°=5×360°+216°,∴與角α終邊相同的角的集合為{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大負(fù)角是-144°.
答案:216°?。?44°
9.在0°~360°范圍內(nèi),找出與下列各角終邊相同的角,并指出它們是第幾象限角:
(1)549°;(2)-60°;(3)-503°36′.
解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角為第三象限角,且在0°~360°范圍內(nèi),與189°角有相同的終邊.
(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角 20、為第四象限角,且在0°~360°范圍內(nèi),與300°角有相同的終邊.
(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范圍內(nèi),與216°24′角有相同的終邊.
10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列問(wèn)題:
(1)集合M中大于-360°且小于360°的角是哪幾個(gè)?
(2)寫出集合M中的第二象限角β的一般表達(dá)式.
解:(1)令-360°<30°+k·90°<360°,則- 21、且小于360°的角共有8個(gè),分別是-330°,-240°,-150°,-60°,30°,120°,210°,300°.
(2)集合M中的第二象限角與120°角的終邊相同,
∴β=120°+k·360°,k∈Z.
層級(jí)二 應(yīng)試能力達(dá)標(biāo)
1.給出下列四個(gè)結(jié)論:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正確的個(gè)數(shù)為( )
A.1 B.2
C.3 D.4
解析:選D?、伲?5°是第四象限角;
②180°<185°<270°是第三象限角;
③475°=360°+115°,而90°<115°<180°,所以 22、475°是第二象限角;
④-350°=-360°+10°是第一象限角,
所以四個(gè)結(jié)論都是正確的.
2.若角2α與240°角的終邊相同,則α=( )
A.120°+k·360°,k∈Z
B.120°+k·180°,k∈Z
C.240°+k·360°,k∈Z
D.240°+k·180°,k∈Z
解析:選B 角2α與240°角的終邊相同,則2α=240°+k·360°,k∈Z,則α=120°+k·180°,k∈Z.選B.
3.若α與β終邊相同,則α-β的終邊落在( )
A.x軸的非負(fù)半軸上
B.x軸的非正半軸上
C.y軸的非負(fù)半軸上
D.y軸的非正半軸上
解析:選A 23、∵α=β+k·360°,k∈Z,
∴α-β=k·360°,k∈Z,
∴其終邊在x軸的非負(fù)半軸上.
4.設(shè)集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},則集合M與N的關(guān)系是( )
A.M∩N=? B.MN
C.NM D.M=N
解析:選C 對(duì)于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};對(duì)于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+ 24、1表示所有的奇數(shù),而n表示所有的整數(shù),∴NM,故選C.
5.從13:00到14:00,時(shí)針轉(zhuǎn)過(guò)的角為________,分針轉(zhuǎn)過(guò)的角為________.
解析:經(jīng)過(guò)一小時(shí),時(shí)針順時(shí)針旋轉(zhuǎn)30°,分針順時(shí)針旋轉(zhuǎn)360°,結(jié)合負(fù)角的定義可知時(shí)針轉(zhuǎn)過(guò)的角為-30°,分針轉(zhuǎn)過(guò)的角為-360°.
答案:-30° -360°
6.已知角2α的終邊在x軸的上方,那么α是第______象限角.
解析:由題意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性進(jìn)行討論.當(dāng)k=2n(n∈Z)時(shí),n·360°<α<90°+n·360°( 25、n∈Z),∴α在第一象限;當(dāng)k=2n+1(n∈Z)時(shí),180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.
答案:一或三
7.試寫出終邊在直線y=-x上的角的集合S,并把S中適合不等式-180°≤α<180°的元素α寫出來(lái).
解:終邊在直線y=-x上的角的集合
S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中適合不等式-180°≤α<180°的元素α為-60°,120°.
8.如圖,分別寫出適合下列條件的角的集合:
(1)終邊落在射線OB上;
(2)終邊落在直線OA上;
(3)終邊落在陰影區(qū)域內(nèi)(含邊界).
解:(1)終邊落在射線OB上的角的集合為S1={α|α=60°+k·360°,k∈Z}.
(2)終邊落在直線OA上的角的集合為
S2={α|α=30°+k·180°,k∈Z}.
(3)終邊落在陰影區(qū)域內(nèi)(含邊界)的角的集合為
S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.
10
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂(lè)度寒假充實(shí)促成長(zhǎng)
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制