《2022高考數(shù)學大一輪復習 第十章 計數(shù)原理、概率、隨機變量及其分布 第八節(jié) 兩點分布、超幾何分布、正態(tài)分布檢測 理 新人教A版》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學大一輪復習 第十章 計數(shù)原理、概率、隨機變量及其分布 第八節(jié) 兩點分布、超幾何分布、正態(tài)分布檢測 理 新人教A版(8頁珍藏版)》請在裝配圖網上搜索。
1、2022高考數(shù)學大一輪復習 第十章 計數(shù)原理、概率、隨機變量及其分布 第八節(jié) 兩點分布、超幾何分布、正態(tài)分布檢測 理 新人教A版
1.(2018·河南正陽模擬)已知隨機變量X服從正態(tài)分布N(3,1),且P(X≥4)=0.158 7,則P(2<X<4)=( )
A.0.682 6 B.0.341 3
C.0.460 3 D.0.920 7
解析:選A.∵隨機變量X服從正態(tài)分布N(3,1),∴正態(tài)曲線的對稱軸是直線x=3,∵P(X≥4)=0.158 7,∴P(2<X<4)=1-2P(X≥4)=1-0.317 4=0.682 6.故選A.
2.(2018·廣西兩校聯(lián)考
2、)甲、乙兩類水果的質量(單位:kg)分別服從正態(tài)分布N(μ1,σ),N(μ2,σ),其正態(tài)分布密度曲線如圖所示,則下列說法錯誤的是( )
A.甲類水果的平均質量為0.4 kg
B.甲類水果的質量分布比乙類水果的質量分布更集中于平均值左右
C.甲類水果的平均質量比乙類水果的平均質量小
D.σ2=1.99
解析:選D.由題中圖象可知甲的正態(tài)曲線關于直線x=0.4對稱,乙的正態(tài)曲線關于直線x=0.8對稱,所以μ1=0.4,μ2=0.8,故A正確,C正確.由圖可知甲類水果的質量分布比乙類水果的質量分布更集中于平均值左右,故B正確.因為乙的正態(tài)曲線的峰值為1.99,即=1.99,所以σ2≠1
3、.99,故D錯誤,于是選D.
3.(2018·孝感模擬)已知袋中有3個白球,2個紅球,現(xiàn)從中隨機取出3個球,其中取出1個白球計1分,取出1個紅球計2分,記X為取出3個球的總分值,則E(X)=( )
A. B.
C.4 D.
解析:選B.由題意知,X的所有可能取值為3,4,5,且P(X=3)==,P(X=4)==,P(X=5)==,所以E(X)=3×+4×+5×=.
4.甲、乙、丙三位同學上課后獨立完成5道自我檢測題,甲的及格概率為,乙的及格概率為,丙的及格概率為,則三人中至少有一人及格的概率為( )
A. B.
C. D.
解析:選D.設“甲及格”為事件A,“乙及格
4、”為事件B,“丙及格”為事件C,則P(A)=,P(B)=,P(C)=,∴P()=,P()=,P()=,則P( )=P()P()P()=××=,∴三人中至少有一人及格的概率P=1-P( )=.故選D.
5.已知隨機變量X,Y滿足X+Y=8,若X~B(10,0.6),則E(Y),D(Y)分別是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
解析:選B.∵隨機變量X,Y滿足X+Y=8,X~B(10,0.6),∴E(X)=10×0.6=6,D(X)=10×0.6×0.4=2.4,則E(Y)=E(8-X)=8-E(X)=8-6=2,D(Y)=D(8-X)=D(X
5、)=2.4.故選B.
6.如圖是總體的正態(tài)曲線,下列說法正確的是( )
A.組距越大,頻率分布直方圖的形狀越接近于它
B.樣本容量越小,頻率分布直方圖的形狀越接近于它
C.陰影部分的面積代表總體在(a,b)內取值的百分比
D.陰影部分的平均高度代表總體在(a,b)內取值的百分比
解析:選C.總體的正態(tài)曲線與頻率分布直方圖的形狀關系如下:當樣本容量越大,組距越小時,頻率分布直方圖的形狀越接近總體的正態(tài)曲線,故A,B不正確.在總體的正態(tài)曲線中,陰影部分的面積代表總體在(a,b)內取值的百分比,故選C.
7.設隨機變量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=,則P(η≥2
6、)的值為( )
A. B.
C. D.
解析:選C.∵ξ~B(2,p),P(ξ≥1)=,∴P(ξ≥1)=1-P(ξ<1)=1-Cp0(1-p)2=,∴p=,∴P(η≥2)=1-P(η=0)-P(η=1)=1-C×0×3-C×1×2=1--=,故選C.
8.已知服從正態(tài)分布N(μ,σ2)的隨機變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)內取值的概率分別為0.683,0.955和0.997.某校為高一年級1 000名新生每人定制一套校服,經統(tǒng)計,學生的身高(單位:cm)服從正態(tài)分布N(165,52),則適合身高在155~175 cm范圍內學生的校服大約
7、要定制( )
A.683套 B.955套
C.972套 D.997套
解析:選B.設學生的身高為隨機變量ξ,則P(155<ξ<175)=P(165-5×2<ξ<165+5×2)=P(μ-2σ<ξ<μ+2σ)=0.955.因此適合身高在155~175 cm范圍內學生的校服大約要定制1 000×0.955=955(套).故選B.
9.2018年1月某校高三年級1 600名學生參加了教育局組織的期末統(tǒng)考,已知數(shù)學考試成績X~N(100,σ2)(試卷滿分為150分).統(tǒng)計結果顯示數(shù)學考試成績在80分到120分之間的人數(shù)約為總人數(shù)的,則此次統(tǒng)考中成績不低于120分的學生人數(shù)約為( )
8、A.80 B.100
C.120 D.200
解析:選D.∵X~N(100,σ2),∴其正態(tài)曲線關于直線X=100對稱,又成績在80分到120分之間的人數(shù)約為總人數(shù)的,由對稱性知成績不低于120分的學生人數(shù)約為總人數(shù)的×=,∴此次考試成績不低于120分的學生人數(shù)約為×1 600=200.故選D.
10.經檢測,有一批產品的合格率為,現(xiàn)從這批產品中任取5件,記其中合格產品的件數(shù)為ξ,則P(ξ=k)取得最大值時,k的值為( )
A.5 B.4
C.3 D.2
解析:選B.根據(jù)題意得,P(ξ=k)=Ck5-k,k=0,1,2,3,4,5,則P(ξ=0)=C0×5=,P(ξ=1)
9、=C1×4=,P(ξ=2)=C2×3=,P(ξ=3)=C3×2=,P(ξ=4)=C4×1=,P(ξ=5)=C5×0=,故當k=4時,P(ξ=k)最大.
B級 能力提升練
11.(2018·福建福州質檢)從某技術公司開發(fā)的某種產品中隨機抽取200件,測量這些產品的一項質量指標值(記為Z),由測量結果得如下頻率分布直方圖:
(1)公司規(guī)定:當Z≥95時,產品為正品;當Z<95時,產品為次品.公司每生產一件這種產品,若是正品,則盈利90元;若是次品,則虧損30元.記ξ為生產一件這種產品的利潤,求隨機變量ξ的分布列和數(shù)學期望;
(2)由頻率分布直方圖可以認為,Z服從正態(tài)分布N(μ,σ2),
10、其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表).
①利用該正態(tài)分布,求P(87.8<Z<112.2);
②某客戶從該公司購買了500件這種產品,記X表示這500件產品中該項質量指標值位于區(qū)間(87.8,112.2)內的產品件數(shù),利用①的結果,求E(X).
附:≈12.2.
若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 7,P(μ-2σ<Z<μ+2σ)=0.954 5.
解:(1)由頻率估計概率,
產品為正品的概率為(0.033+0.024+0.008+0.002)×10=0.67,
所以隨機變量ξ的分布列為
ξ
90
11、-30
P
0.67
0.33
所以E(ξ)=90×0.67+(-30)×0.33=50.4.
(2)由頻率分布直方圖知,抽取產品的該項質量指標值的樣本平均數(shù)和樣本方差s2分別為
=70×0.02+80×0.09+90×0.22+100×0.33+110×0.24+120×0.08+130×0.02=100,
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+02×0.33+102×0.24+202×0.08+302×0.02=150.
①因為Z~N(100,150),
從而P(87.8<Z<112.2)=P(100-12.2<Z<100+12.2
12、)=0.682 7.
②由①知,一件產品中該項質量指標值位于區(qū)間(87.8,112.2)內的概率為0.682 7,
依題意知X~B(500,0.682 7),
所以E(X)=500×0.682 7=341.35.
12.(2018·廣西南寧測試)某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份其中5天的日銷售量y(單位:千克)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:
x
2
5
8
9
11
y
12
10
8
8
7
(1)求出y與x的回歸方程=x+;
(2)判斷y與x之間是正相關還是負相關,若該地1月份某天的最低氣溫為6 ℃,請用所求回歸
13、方程預測該店當日的銷售量;
(3)設該地1月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2,求P(3.8<X<13.4).
附:①回歸方程=x+中,=,=- .
②≈3.2,≈1.8.若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.682 7,P(μ-2σ<X<μ+2σ)=0.954 5.
解:(1)=i==7,=i==9,
iyi-5 =2×12+5×10+8×8+9×8+11×7-5×7×9=-28,
-52=22+52+82+92+112-5×72=50,
∴==-0.56.
∴=- =9-(-0.56)×7=12.92.
∴所求
14、的回歸方程是=-0.56x+12.92.
(2)由=-0.56<0知,y與x之間是負相關,
將x=6代入回歸方程可預測該店當日的銷售量=-0.56×6+12.92=9.56(千克).
(3)由(1)知μ==7,由σ2=s2=[(2-7)2+(5-7)2+(8-7)2+(9-7)2+(11-7)2]=10,得σ≈3.2.
從而P(3.8<X<13.4)=P(μ-σ<X<μ+2σ)=P(μ-σ<X<μ)+P(μ<X<μ+2σ)=P(μ-σ<X<μ+σ)+P(μ-2σ<X<μ+2σ)=0.818 6.
13.某班級準備從甲、乙兩人中選一人參加某項比賽,已知在一個學期的10次考試中,甲、乙兩
15、人的成績(單位:分)的莖葉圖如圖所示.
(1)你認為選派誰參賽更合適?并說明理由.
(2)若從甲、乙兩人10次的成績中各隨機抽取1次,設抽到的2次成績中,90分以上的次數(shù)為X,求隨機變量X的分布列和數(shù)學期望.
解:(1)根據(jù)莖葉圖可知,甲的平均成績
甲=
=89.4,
乙的平均成績
乙==89,
甲的平均成績略大于乙的平均成績.
又甲的成績的方差s=[(79-89.4)2+(85-89.4)2+(86-89.4)2+(88-89.4)2+(88-89.4)2+(88-89.4)2+(94-89.4)2+(95-89.4)2+(95-89.4)2+(96-89.4)2]=2
16、7.24,
乙的成績的方差s=[(74-89)2+(78-89)2+(85-89)2+(86-89)2+(88-89)2+(92-89)2+(93-89)2+(97-89)2+(98-89)2+(99-89)2]=64.2,
故甲的成績的方差小于乙的成績的方差,
因此選派甲參賽更合適.
(2)隨機變量X的所有可能取值為0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
隨機變量X的分布列為
X
0
1
2
P
數(shù)學期望E(X)=0×+1×+2×=.
14.近日,某市舉行了教師選拔考試(既有筆試又有面試),該市教育局對參加該次考試的
17、50名教師的筆試成績(單位:分)進行分組,得到的頻率分布表如下:
組號
分組
頻數(shù)
頻率
第一組
[50,60)
5
0.1
第二組
[60,70)
15
0.3
第三組
[70,80)
x
z
第四組
[80,90)
10
0.2
第五組
[90,100]
y
0.1
合計
50
1.0
(1)求頻率分布表中x,y,z的值,并補充頻率分布直方圖;
(2)估計參加考試的這50名教師的筆試成績的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若該市教育局決定在分數(shù)較高的第三、四、五組中任意抽取2名教師進入面試,設ξ為抽到的第五組教師的人數(shù),求ξ的分布列及數(shù)學期望.
解:(1)由頻率分布表可得,
解得
補全的頻率分布直方圖如下:
(2)估計參加考試的這50名教師的筆試成績的平均數(shù)為
(55×0.01+65×0.03+75×0.03+85×0.02+95×0.01)×10=74.
(3)由(1)可知,第三、四、五組的教師的人數(shù)分別為15,10,5.
隨機變量ξ的所有可能取值為0,1,2.
P(ξ=0)==,
P(ξ=1)==,
P(ξ=2)==.
所以ξ的分布列為
ξ
0
1
2
P
所以E(ξ)=0×+1×+2×=.