《2020年高考數(shù)學(xué)一輪復(fù)習(xí) 考點(diǎn)題型 課下層級(jí)訓(xùn)練14 函數(shù)模型及其應(yīng)用(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020年高考數(shù)學(xué)一輪復(fù)習(xí) 考點(diǎn)題型 課下層級(jí)訓(xùn)練14 函數(shù)模型及其應(yīng)用(含解析)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課下層級(jí)訓(xùn)練(十四) 函數(shù)模型及其應(yīng)用
[A級(jí) 基礎(chǔ)強(qiáng)化訓(xùn)練]
1.用長(zhǎng)度為24米的材料圍成一矩形場(chǎng)地,中間加兩道隔墻,要使矩形的面積最大,則隔墻的長(zhǎng)度為( )
A.3米 B.4米
C.6米 D.12米
【答案】A [設(shè)隔墻的長(zhǎng)為x(0<x<6)米,矩形的面積為y平方米,則y=x×=2x(6-x)=-2(x-3)2+18,所以當(dāng)x=3時(shí),y取得最大值.]
2.下表是函數(shù)值y隨自變量x變化的一組數(shù)據(jù),它最可能的函數(shù)模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A.一次函數(shù)模型 B.冪函
2、數(shù)模型
C.指數(shù)函數(shù)模型 D.對(duì)數(shù)函數(shù)模型
【答案】A [根據(jù)已知數(shù)據(jù)可知,自變量每增加1函數(shù)值增加2,因此函數(shù)值的增量是均勻的,故為一次函數(shù)模型.]
3.(2019·寧夏銀川月考)國(guó)家規(guī)定個(gè)人稿費(fèi)納稅辦法為:不超過(guò)800元的不納稅;超過(guò)800元而不超過(guò)4 000元的按超過(guò)部分的14%納稅;超過(guò)4 000元的按全稿酬的11%納稅.若某人共納稅420元,則這個(gè)人的稿費(fèi)為( )
A.3 000元 B.3 800元
C.3 818元 D.5 600元
【答案】B [由題意可建立納稅額y關(guān)于稿費(fèi)x的函數(shù)解析式為y=
顯然由0.14(x-800)=420,可得x=3 800.]
3、4.(2019·福建三明聯(lián)考)用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超過(guò)1%,則至少要洗的次數(shù)是(參考數(shù)據(jù)lg 2≈0.3 010)( )
A.3 B.4
C.5 D.6
【答案】B [設(shè)至少要洗x次,則x≤,∴x≥≈3.322,因此需4次.]
5.(2019·廣西柳州聯(lián)考)設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車(chē)以勻速?gòu)募椎氐揭业赜昧?0分鐘,在乙地休息10分鐘后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0分鐘,則小王從出發(fā)到返回原地所經(jīng)過(guò)的路程y和其所用的時(shí)間x的函數(shù)圖象為( )
【答案】D [y為“小王從出發(fā)到返回原地所經(jīng)過(guò)的路程”而不是位移,故排除
4、A,C.又因?yàn)樾⊥踉谝业匦菹?0分鐘,故排除B.]
6.(2019·河北唐山聯(lián)考)“好酒也怕巷子深”,許多著名品牌是通過(guò)廣告宣傳進(jìn)入消費(fèi)者視線的.已知某品牌商品靠廣告銷(xiāo)售的收入R與廣告費(fèi)A之間滿足關(guān)系R=a(a為常數(shù)),廣告效應(yīng)為D=a-A.那么精明的商人為了取得最大廣告效應(yīng),投入的廣告費(fèi)應(yīng)為 ________.(用常數(shù)a表示)
【答案】a2 [令t=(t≥0),則A=t2,∴D=at-t2=-2+a2,∴當(dāng)t=a,即A=a2時(shí),D取得最大值.]
7.(2019·湖北八校聯(lián)考)某人根據(jù)經(jīng)驗(yàn)繪制了2018年春節(jié)前后,從12月21日至1月8日自己種植的西紅柿的銷(xiāo)售量y(千克)隨時(shí)間x(天)變
5、化的函數(shù)圖象,如圖所示,則此人在12月26日大約賣(mài)出了西紅柿________千克.
【答案】 [前10天滿足一次函數(shù)關(guān)系,設(shè)為y=kx+b,將點(diǎn)(1,10)和點(diǎn)(10,30)代入函數(shù)解析式得解得k=,b=,所以y=x+,則當(dāng)x=6時(shí),y=.]
8.(2019·云南昆明月考)A,B兩城相距100 km,在兩城之間距A城x(km)處建一核電站給A,B兩城供電,為保證城市安全,核電站距城市距離不得小于10 km.已知供電費(fèi)用等于供電距離(km)的平方與供電量(億度)之積的0.25倍,若A城供電量為每月20億度,B城供電量為每月10億度.
(1)求x的取值范圍;
(2)把月供電總費(fèi)用y表示
6、成x的函數(shù);
(3)核電站建在距A城多遠(yuǎn),才能使供電總費(fèi)用y最少?
【答案】解 (1)由題意知x的取值范圍為[10,90].
(2)y=5x2+(100-x)2(10≤x≤90).
(3)因?yàn)閥=5x2+(100-x)2
=x2-500x+25 000
=(x-)2+,
所以當(dāng)x=時(shí),ymin=.
故核電站建在距A城 km處,能使供電總費(fèi)用y最少.
9.已知某物體的溫度θ(單位:攝氏度)隨時(shí)間t(單位:分鐘)的變化規(guī)律:θ=m·2t+21-t(t≥0,并且m>0).
(1)如果m=2,求經(jīng)過(guò)多長(zhǎng)時(shí)間,物體的溫度為5攝氏度;
(2)若物體的溫度總不低于2攝氏度,求m的取值范
7、圍.
【答案】解 (1)若m=2,則θ=2·2t+21-t=2,
當(dāng)θ=5時(shí),2t+=,
令2t=x≥1,則x+=,
即2x2-5x+2=0,解得x=2或x=(舍去),
此時(shí)t=1.所以經(jīng)過(guò)1分鐘,物體的溫度為5攝氏度.
(2)物體的溫度總不低于2攝氏度,即θ≥2恒成立.
亦m·2t+ ≥2恒成立,亦即m≥2恒成立.
令=x,則0
8、等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)若該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎樣分配資金能使投資獲得最大收益?其最大收益是多少萬(wàn)元?
【答案】解 (1)設(shè)兩類(lèi)產(chǎn)品的收益與投資的函數(shù)分別為f(x)=k1x,g(x)=k2.
由已知得f(1)==k1,g(1)==k2,
所以f(x)=x(x≥0),g(x)=(x≥0).
(2)設(shè)投資債券產(chǎn)品為x萬(wàn)元,則投資股票類(lèi)產(chǎn)品為(20-x)萬(wàn)元.依題意得y=f(x)+g(20-x)=+(0≤x≤20).
令
9、t=(0≤t≤2),
則y=+t=-(t-2)2+3,
所以當(dāng)t=2,即x=16時(shí),收益最大,ymax=3萬(wàn)元.
11.某店銷(xiāo)售進(jìn)價(jià)為2元/件的產(chǎn)品A,該店產(chǎn)品A每日的銷(xiāo)售量y(單位:千件)與銷(xiāo)售價(jià)格x(單位:元/件)滿足關(guān)系式y(tǒng)=+4(x-6)2,其中2
10、得的利潤(rùn)
f(x)=(x-2)=10+4(x-6)2(x-2)
=4x3-56x2+240x-278(20,函數(shù)f(x)單調(diào)遞增;在上,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
所以x=是函數(shù)f(x)在(2,6)內(nèi)的極大值點(diǎn),也是最大值點(diǎn),所以當(dāng)x=≈3.3時(shí),函數(shù)f(x)取得最大值.
故當(dāng)銷(xiāo)售價(jià)格為3.3元/件時(shí),利潤(rùn)最大.
12.(2019·上海普陀區(qū)一模)某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效
11、率和降低物流成本,已知購(gòu)買(mǎi)x臺(tái)機(jī)器人的總成本p(x)=x2+x+150萬(wàn)元.
(1)若使每臺(tái)機(jī)器人的平均成本最低,問(wèn)應(yīng)買(mǎi)多少臺(tái)?
(2)現(xiàn)按(1)中的數(shù)量購(gòu)買(mǎi)機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀(如圖),
經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量q(m)=(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問(wèn)引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾?
【答案】解 (1)由總成本p(x)=x2+x+150萬(wàn)元,可得每臺(tái)機(jī)器人的平均成本y===x++1≥2+1=2.
當(dāng)且僅當(dāng)x=,即x=300時(shí),上式等號(hào)成立.
∴若使每臺(tái)機(jī)器人的平均成本最低,應(yīng)買(mǎi)300臺(tái).
(2)引進(jìn)機(jī)器人后,每臺(tái)機(jī)器人的日平均分揀量q(m)=
當(dāng)1≤m≤30時(shí),300臺(tái)機(jī)器人的日平均分揀量為160m(60-m)=-160m2+9 600m,
∴當(dāng)m=30時(shí),日平均分揀量有最大值144 000.
當(dāng)m>30時(shí),日平均分揀量為480×300=144 000.
∴300臺(tái)機(jī)器人的日平均分揀量的最大值為144 000件.若傳統(tǒng)人工分揀144000件,則需要人數(shù)為=120人.
∴日平均分揀量達(dá)最大值時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少=75%.
6