7、區(qū)間為(1,).,,題型三含參數(shù)函數(shù)的單調(diào)性,例4若函數(shù)f(x)kxln x在區(qū)間(1,)上單調(diào)遞增,則k的取值范圍是__________.,1,),即k的取值范圍為1,).,反思感悟(1)討論含有參數(shù)的函數(shù)的單調(diào)性,通常歸結(jié)為求含參數(shù)不等式的解集的問(wèn)題,而對(duì)含有參數(shù)的不等式要針對(duì)具體情況進(jìn)行討論,但始終注意定義域?qū)握{(diào)性的影響以及分類(lèi)討論的標(biāo)準(zhǔn). (2)利用導(dǎo)數(shù)法解決取值范圍問(wèn)題的兩個(gè)基本思路 將問(wèn)題轉(zhuǎn)化為不等式在某區(qū)間上的恒成立問(wèn)題,即f(x)0(或f(x)0)恒成立,利用分離參數(shù)或函數(shù)性質(zhì)求解參數(shù)范圍,然后檢驗(yàn)參數(shù)取“”時(shí)是否滿(mǎn)足題意. 先令f(x)0(或f(x)<0),求出參數(shù)的取值范
8、圍后,再驗(yàn)證參數(shù)取“”時(shí)f(x)是否滿(mǎn)足題意. (3)恒成立問(wèn)題的重要思路 mf(x)恒成立mf(x)max. mf(x)恒成立mf(x)min.,跟蹤訓(xùn)練4已知函數(shù)f(x)x2 (x0,常數(shù)aR).若函數(shù)f(x)在x2,)上單調(diào)遞增,求a的取值范圍.,要使f(x)在2,)上單調(diào)遞增,則f(x)0在x2,)時(shí)恒成立,,x20,2x3a0,a2x3在x2,)上恒成立, a(2x3)min.設(shè)y2x3, y2x3在2,)上單調(diào)遞增, (2x3)min16,a16.,a的取值范圍是(,16.,,核心素養(yǎng)之?dāng)?shù)學(xué)運(yùn)算,HEXINSUYANGZHISHUXUEYUNSUAN,含有參數(shù)函數(shù)單調(diào)性的討論,典例
9、討論函數(shù)f(x)(a1)ln xax21的單調(diào)性.,解f(x)的定義域?yàn)?0,),,當(dāng)a1時(shí),f(x)0,故f(x)在(0,)上單調(diào)遞增; 當(dāng)a0時(shí),f(x)<0,故f(x)在(0,)上單調(diào)遞減;,綜上所述,當(dāng)a1時(shí),f(x)在(0,)上單調(diào)遞增; 當(dāng)a0時(shí),f(x)在(0,)上單調(diào)遞減;,素養(yǎng)評(píng)析(1)討論含有參數(shù)的函數(shù)的單調(diào)性,通常歸結(jié)為求含參不等式的解集問(wèn)題,而對(duì)含有參數(shù)的不等式要針對(duì)具體情況進(jìn)行討論,但要始終注意定義域及分類(lèi)討論的標(biāo)準(zhǔn). (2)將函數(shù)單調(diào)性問(wèn)題轉(zhuǎn)化為求解一元二次不等式問(wèn)題,明確了運(yùn)算方向,而分類(lèi)與整合思想能優(yōu)化數(shù)學(xué)運(yùn)算過(guò)程,對(duì)數(shù)學(xué)運(yùn)算素養(yǎng)有較大的提高.,3,達(dá)標(biāo)檢測(cè),P
10、ART THREE,,1.函數(shù)f(x)xln x在(0,6)上是 A.增函數(shù) B.減函數(shù),1,2,3,4,5,,函數(shù)在(0,6)上單調(diào)遞增.,,2.函數(shù)yf(x)的圖象如圖所示,則導(dǎo)函數(shù)yf(x)的圖象可能是,1,2,3,4,5,,,,,,解析函數(shù)f(x)在(,0),(0,)上都是減函數(shù), 當(dāng)x0時(shí),f(x)<0; 當(dāng)x<0時(shí),f(x)<0.故選D.,1,2,3,4,5,,,3.函數(shù)f(x)ln xax(a0)的單調(diào)遞增區(qū)間為,1,2,3,4,5,解析f(x)的定義域?yàn)閤|x0,且a0,,,,1,2,3,4,5,4.若函數(shù)f(x)x32x2mx1在(,)內(nèi)單調(diào)遞增,則m的取值范圍是,解析函數(shù)f
11、(x)x32x2mx1在(,)內(nèi)單調(diào)遞增, f(x)3x24xm0在R上恒成立,,,,1,2,3,4,5,5.求函數(shù)f(x)(xk)ex的單調(diào)區(qū)間.,解f(x)ex(xk)ex(xk1)ex, 當(dāng)xk1時(shí),f(x)0, f(x)的單調(diào)遞減區(qū)間為(,k1), 單調(diào)遞增區(qū)間為(k1,).,,課堂小結(jié),KETANGXIAOJIE,1.導(dǎo)數(shù)的符號(hào)反映了函數(shù)在某個(gè)區(qū)間上的單調(diào)性,導(dǎo)數(shù)絕對(duì)值的大小反映了函數(shù)在某個(gè)區(qū)間或某點(diǎn)附近變化的快慢程度. 2.利用導(dǎo)數(shù)求函數(shù)f(x)的單調(diào)區(qū)間的一般步驟 (1)確定函數(shù)f(x)的定義域. (2)求導(dǎo)數(shù)f(x). (3)在函數(shù)f(x)的定義域內(nèi)解不等式f(x)0和f(x)<0. (4)根據(jù)(3)的結(jié)果確定函數(shù)f(x)的單調(diào)區(qū)間.,