秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角..

上傳人:e****s 文檔編號:154120453 上傳時間:2022-09-20 格式:DOC 頁數(shù):7 大?。?11.50KB
收藏 版權(quán)申訴 舉報 下載
新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角.._第1頁
第1頁 / 共7頁
新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角.._第2頁
第2頁 / 共7頁
新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角.._第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

16 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角..》由會員分享,可在線閱讀,更多相關(guān)《新課標(biāo)九年級數(shù)學(xué)競賽輔導(dǎo)講座 第十九講 轉(zhuǎn)化靈活的圓中角..(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第十九講 轉(zhuǎn)化靈活的圓中角 角是幾何圖形中最重要的元素,證明兩直線位置關(guān)系、運用全等三角形法、相似三角形法都要涉及角,而圓的特征,賦予角極強的活性,使得角能靈活地互相轉(zhuǎn)化. 根據(jù)圓心角與圓周角的倍半關(guān)系,可實現(xiàn)圓心角與圓周角的轉(zhuǎn)化;由同弧或等弧所對的圓周角相等,可將圓周角在大小不變的情況下,改變頂點在圓上的位置進行探索;由圓內(nèi)接四邊形的對角互補和外角等于內(nèi)對角,可將與圓有關(guān)的角互相聯(lián)系起來. 熟悉以下基本圖形、基本結(jié)論. 注:根據(jù)頂點、角的兩邊與圓的位置關(guān)系,我們定義了圓心角與圓周角,類似地,當(dāng)角的頂點在圓外或圓內(nèi),我們可以定義圓外角與圓內(nèi)角,這兩類角分別與

2、它們的所夾弧度數(shù)有怎樣的關(guān)系?讀者可自行作一番探討. 【例題求解】 【例1】 如圖,直線AB與⊙O相交于A,B再點,點O在AB上,點C在⊙O上,且∠AOC=40°,點E是直線AB上一個動點(與點O不重合),直線EC交⊙O于另一點D,則使DE=DO的點正共有 個. 思路點撥 在直線AB上使DE=DO的動點E與⊙O有怎樣的位置關(guān)系? 分點E在AB上(E在⊙O內(nèi))、在BA或AB的延長線上(E點在⊙O外)三種情況考慮,通過角度的計算,確定E點位置、存在的個數(shù). 注: 弧是聯(lián)系與圓有關(guān)的角的中介,“由

3、弧到角,由角看弧”是促使與圓有關(guān)的角相互轉(zhuǎn)化的基本方法. 【例2】 如圖,已知△ABC為等腰直角三形,D為斜邊BC的中點,經(jīng)過點A、D的⊙O與邊AB、AC、BC分別相交于點E、F、M,對于如下五個結(jié)論:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BF×BA;⑤四邊形AEMF為矩形.其中正確結(jié)論的個數(shù)是( ) A.2個 B.3個 C.4個 D.5個 思路點撥 充分運用與圓有關(guān)的角,尋找特殊三角形、特殊四邊形、相似三角形,逐一

4、驗證. 注:多重選擇單選化是近年出現(xiàn)的一種新題型,解這類問題,需把條件重組與整合,挖掘隱合條件,作深入的探究,方能作出小正確的選擇. 【例3】 如圖,已知四邊形ABCD外接⊙O的半徑為5,對角線AC與BD的交點為E,且AB2=AE×AC,BD=8,求△ABD的面積. 思路點撥 由條件出發(fā),利用相似三角形、圓中角可推得A為弧BD中點,這是解本例的關(guān)鍵. 【例4】 如圖,已知AB是⊙O的直徑,C是⊙O上的一點,連結(jié)AC,過點C作直線CD⊥AB于D(AD

5、D交于點G. (1)求證:AC2=AG×AF; (2)若點E是AD(點A除外)上任意一點,上述結(jié)論是否仍然成立?若成立.請畫出圖形并給予證明;若不成立,請說明理由. 思路點撥 (1)作出圓中常用輔助線證明△ACG∽△AFC; (2)判斷上述結(jié)論在E點運動的情況下是否成立,依題意準(zhǔn)確畫出圖形是關(guān)鍵. 注:構(gòu)造直徑上90°的圓周角,是解與圓相關(guān)問題的常用輔助線,這樣就為勾股定理的運用、相似三角形的判定創(chuàng)造了條件. 【例5】 如圖,圓內(nèi)接六邊形ABCDEF滿足AB=CD=EF,且對角線AD、BE、CF相交

6、于一點Q,設(shè)AD與CF的交點為P. 求證:(1);(2). 思路點撥 解本例的關(guān)鍵在于運用與圓相關(guān)的角,能發(fā)現(xiàn)多對相似三角形. (1) 證明△QDE∽△ACF;(2)易證,通過其他三角形相似并結(jié)合(1)把非常規(guī)問題的證明轉(zhuǎn)化為常規(guī)問題的證明. 注:有些幾何問題雖然表面與圓無關(guān),但是若能發(fā)現(xiàn)隱含的圓,尤其是能發(fā)現(xiàn)共圓的四點,就能運用圓的豐富性質(zhì)為解題服務(wù),確定四點共圓的主要方法有: (1)利用圓的定義判定; (2)利用圓內(nèi)接四邊形性質(zhì)的逆命題判定

7、. 學(xué)歷訓(xùn)練 1.一條弦把圓分成2:3兩部分,那么這條弦所對的圓周角的度數(shù)為 . 2.如圖,AB是⊙O的直徑,C、D、E都是⊙O上的一點,則∠1+∠2= . 3.如圖,AB是⊙O的直徑,弦CD⊥AB,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長為 . 4.如圖,已知△ABC內(nèi)接于⊙O,AB+AC=12,AD⊥BC于D,AD=3,設(shè)⊙O的半徑為,

8、AB的長為,用的代數(shù)式表示,= . 5.如圖,ABCD是⊙O的內(nèi)接四邊形,延長BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于( ) A.120° B.136° C.144° D.150° 6.如圖,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,則∠BOC等于( ) A.20° B.30° C.40° D.50° 7.如圖,BC為半圓O的直徑,A、D為半圓O上兩點,AB=,BC=2,則∠D的度數(shù)為( ) A.60° B. 120° C. 135°

9、D.150° ⌒ ⌒ 8.如圖,⊙O的直徑AB垂直于弦CD,點P是弧AC上一點(點P不與A、C兩點重合),連結(jié)PC、PD、PA、AD,點E在AP的延長線上,PD與AB交于點F.給出下列四個結(jié)論:①CH2=AH×BH;②AD=AC;③AD2=DF×DP;④ ∠EPC=∠APD,其中正確的個數(shù)是( ) A.1 B.2 C.3 D.4 9.如圖,已知B正是△ABC的外接圓O的直徑,CD是△ABC的高. (1)求證:AC·BC=BE·CD; (2) 已知CD=6,AD=3,BD=8,求⊙O的直徑B

10、E的長. 10.如圖,已知AD是△ABC外角∠EAC的平分線,交BC的延長線于點D,延長DA交△ABC的外接圓于點F,連結(jié)FB,F(xiàn)C. (1)求證:FB=FC; (2)求證:FB2=FAFD; (3)若AB是△ABC的外接圓的直徑,∠EAC=120°,BC=6cm,求AD的長. 11.如圖,B、C是線段AD的兩個三等分點,P是以BC為直徑的圓周上的任意一點(B、C點除外),則tan∠APB·tan∠CPD= .

11、 12.如圖,在圓內(nèi)接四邊形ABCD中,AB=AD,∠BAD=60°,AC=,則四邊形ABCD的面積為 . 13.如圖,圓內(nèi)接四邊形ABCD中,∠A=60°,∠B=90°,AD=3,CD=2,則BC= . ⌒ 14.如圖,AB是半圓的直徑,D是AC的中點,∠B=40°,則∠A等于( ) A.60° B.50° C.80° D.70°

12、 15.如圖,已知ABCD是一個以AD為直徑的圓內(nèi)接四邊形,AB=5,PC=4,分別延長AB和DC,它們相交于P,若∠APD=60°,則⊙O的面積為( ) A.25π B.16π C.15π D.13π 16.如圖,AD是Rt△ABC的斜邊BC上的高,AB=AC,過A、D兩點的圓與AB、AC分別相交于點E、F,

13、弦EF與AD相交于點G,則圖中與△GDE相似的三角形的個數(shù)為( ) A.5 B.4 C.3 D.2 17.如圖,已知四邊形ABCD外接圓⊙O的半徑為2,對角線AC與BD的交點為E,AE=EC,AB=AE,且BD=,求四邊形ABCD的面積. 18.如圖,已知ABCD為⊙O的內(nèi)接四邊形,E是BD上的一點,且有∠BAE=∠DAC. 求證:(1)△ABE∽△ACD;(2)ABDC+AD·B C=AC·BD. 19.如圖,已知P是⊙O直徑AB延長線上的一點,直線PCD交⊙O于C、D兩點,弦DF⊥AB于

14、點H,CF交AB于點E. (1)求證:PA·PB=PO·PE;(2)若DE⊥CF,∠P=15°,⊙O的半徑為2,求弦CF的長. ⌒ 20.如圖,△ABC內(nèi)接于⊙O,BC=4,S△ABC=,∠B為銳角,且關(guān)于的方程有兩個相等的實數(shù)根,D是劣弧AC上任一點(點D不與點A、C重合),DE平分∠ADC,交⊙O于點E,交AC于點F. (1)求∠B的度數(shù); (2)求CE的長; (3)求證:DA、DC的長是方程的兩個實數(shù)根. 參考答案

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!