《高考數(shù)學(xué)新一輪總復(fù)習(xí) 4.1.2 直線與圓的位置關(guān)系考點(diǎn)突破課件 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)新一輪總復(fù)習(xí) 4.1.2 直線與圓的位置關(guān)系考點(diǎn)突破課件 理(36頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第第2課時(shí)直線與圓的位置關(guān)系課時(shí)直線與圓的位置關(guān)系 (一一)考綱點(diǎn)擊考綱點(diǎn)擊1理理解圓的性質(zhì)與圓有關(guān)的定理解圓的性質(zhì)與圓有關(guān)的定理2會(huì)證明圓冪定理,并會(huì)應(yīng)用會(huì)證明圓冪定理,并會(huì)應(yīng)用3掌握四點(diǎn)共圓的判定方法,并會(huì)應(yīng)用掌握四點(diǎn)共圓的判定方法,并會(huì)應(yīng)用 (二二)命題趨勢(shì)命題趨勢(shì)高高考對(duì)本節(jié)內(nèi)容主要考查圓周角定理、圓的切線的判考對(duì)本節(jié)內(nèi)容主要考查圓周角定理、圓的切線的判定定理與性質(zhì)定理,以及圓內(nèi)接四邊形的性質(zhì);考查形式定定理與性質(zhì)定理,以及圓內(nèi)接四邊形的性質(zhì);考查形式是以圓的切割線為主線,考查圓的切割線定理的應(yīng)用,以是以圓的切割線為主線,考查圓的切割線定理的應(yīng)用,以圓與三角形相結(jié)合,考查圓與三角形的性
2、質(zhì)及運(yùn)算能力,圓與三角形相結(jié)合,考查圓與三角形的性質(zhì)及運(yùn)算能力,難度中等難度中等1圓周角定理、弦切角定理圓周角定理、弦切角定理(1)圓圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的的圓心角的 .一半 (2)圓圓心角定理:圓心角的度數(shù)等于心角定理:圓心角的度數(shù)等于. 推論推論1:同弧或等弧所對(duì)的圓周角:同弧或等弧所對(duì)的圓周角;同圓或等;同圓或等圓中,相等的圓周角所對(duì)的弧也圓中,相等的圓周角所對(duì)的弧也. 推論推論2:半圓:半圓(或直徑或直徑)所對(duì)的圓周角是所對(duì)的圓周角是 ;90的圓周角的圓周角所對(duì)的弦是所對(duì)的弦是 . (3)弦切角定理弦切角定理 弦
3、切角等于它所夾的弧所對(duì)的弦切角等于它所夾的弧所對(duì)的 .它所對(duì)弧的度數(shù)相等相等直角直徑圓周角 對(duì)點(diǎn)演練對(duì)點(diǎn)演練 如如圖,圖,CD是是 O的直徑,的直徑,AE切圓切圓O于點(diǎn)于點(diǎn)B,連接,連接DB,若,若D20,則,則DBE的大小為的大小為 () A20B40 C60 D70 解析:解析:如圖,連接如圖,連接BC,則,則CBD90, BCD90D902070 由弦切角定理知由弦切角定理知DBEBCD70 答案:答案:D 2圓內(nèi)接四邊形的性質(zhì)與判定定理圓內(nèi)接四邊形的性質(zhì)與判定定理(1)性性質(zhì)定理質(zhì)定理定理定理1:圓內(nèi)接四邊形的對(duì)角:圓內(nèi)接四邊形的對(duì)角 定理定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的:圓內(nèi)
4、接四邊形的外角等于它的內(nèi)角的(2)判定定理判定定理判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)么這個(gè)四邊形的四個(gè)頂點(diǎn) 推論:如果四邊形的一個(gè)外角等于它的內(nèi)角推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn) 互補(bǔ)對(duì)角共圓共圓3圓的切線的性質(zhì)及判定定理圓的切線的性質(zhì)及判定定理(1)性性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的 推論推論1:經(jīng)過圓心且垂直于切線的直線必過:經(jīng)過圓心且垂直于切線的直線必過 推論推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必過:經(jīng)過切點(diǎn)且垂直于切線的直
5、線必過 (2)判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線圓的直線圓的 半徑切點(diǎn)圓心切線 對(duì)點(diǎn)演練對(duì)點(diǎn)演練 (2014太原模擬太原模擬)如如圖,圖, O是是ABC的內(nèi)切圓,切點(diǎn)分別的內(nèi)切圓,切點(diǎn)分別是是D、E、F,已知,已知A100,C30,則,則DFE的的度數(shù)是度數(shù)是_ 解析:解析:由題意,由題意,ADAF,A100,ADFAFD40; 同理同理CECF,C30,CFECEF75, DFE180AFDCFE180407565. 答案:答案:654與圓有關(guān)的比例線段與圓有關(guān)的比例線段(1)相相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成交弦定理:圓內(nèi)的
6、兩條相交弦,被交點(diǎn)分成的兩條的兩條線段長的線段長的 相等相等(2)割線定理:從圓外一點(diǎn)引圓的兩條割線,這一割線定理:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的條割線與圓的交點(diǎn)的兩條線段長的 相相等等(3)切割線定理:從圓外一點(diǎn)引圓的切線和割線,切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的 (4)切線長定理:從圓外一點(diǎn)引圓的兩條切線,它切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切們的切線長相等,圓心和這一點(diǎn)的連線平分兩線長相等,圓心和這一點(diǎn)的連線平分兩條切線的條切線的 積積比例中項(xiàng)夾角對(duì)點(diǎn)
7、演練對(duì)點(diǎn)演練(1)(教材習(xí)題改編教材習(xí)題改編)如如圖所示,在圖所示,在ABC中,中,C90,AB10,AC6,以,以AC為直為直徑的圓與斜邊交于點(diǎn)徑的圓與斜邊交于點(diǎn)P,則,則BP的長為的長為_(2)(教材習(xí)題改編教材習(xí)題改編)如如圖,圖, O中弦中弦AB、CD相交于點(diǎn)相交于點(diǎn)F,AB10,AF2,若,若CF DF1 4,則,則CF的長為的長為_解析:解析:AB10,AF2,BF8,由,由CFDF14,得,得DF4CF,AFBFCFDF,284CF2,CF2.答案:答案:21與圓有關(guān)的輔助線的五種作法:與圓有關(guān)的輔助線的五種作法:(1)有弦,作弦心距有弦,作弦心距(2)有直徑,作直徑所對(duì)的圓周角
8、有直徑,作直徑所對(duì)的圓周角(3)有切點(diǎn),作過切點(diǎn)的半徑有切點(diǎn),作過切點(diǎn)的半徑(4)兩圓相交,作公共弦兩圓相交,作公共弦(5)兩圓相切,作公切線兩圓相切,作公切線2圓冪定理與圓周角、弦切角聯(lián)合應(yīng)用時(shí),要注意找相圓冪定理與圓周角、弦切角聯(lián)合應(yīng)用時(shí),要注意找相等的角,找相似三角形,從而得出線段的比,由于圓冪等的角,找相似三角形,從而得出線段的比,由于圓冪定理涉及圓中線段的數(shù)量計(jì)算,所以應(yīng)注意代數(shù)法在解定理涉及圓中線段的數(shù)量計(jì)算,所以應(yīng)注意代數(shù)法在解題中的應(yīng)用題中的應(yīng)用 【歸納提升歸納提升】1.圓周角定理及其推論與弦切角定理及其圓周角定理及其推論與弦切角定理及其推論多用于推出角的關(guān)系,從而證明三角形全
9、等或相似,推論多用于推出角的關(guān)系,從而證明三角形全等或相似,可求線段或角的大小可求線段或角的大小 2涉及圓的切線問題時(shí)要注意弦切角的轉(zhuǎn)化;關(guān)于圓周涉及圓的切線問題時(shí)要注意弦切角的轉(zhuǎn)化;關(guān)于圓周上的點(diǎn),常作直徑上的點(diǎn),常作直徑(或半徑或半徑)或向弦或向弦(弧弧)兩端作圓周角或弦兩端作圓周角或弦切角切角針對(duì)訓(xùn)練針對(duì)訓(xùn)練1(2013天津天津)如如圖,在圓內(nèi)接梯形圖,在圓內(nèi)接梯形ABCD中,中,ABDC.過點(diǎn)過點(diǎn)A作圓的切線與作圓的切線與CB的延長線交于點(diǎn)的延長線交于點(diǎn)E.若若ABAD5,BE4,則弦,則弦BD的長為的長為_題型二四點(diǎn)共圓問題題型二四點(diǎn)共圓問題 (2013課標(biāo)全國課標(biāo)全國)如如圖,圖,
10、CD為為ABC外接圓的切外接圓的切線,線,AB的延長線交直線的延長線交直線CD于點(diǎn)于點(diǎn)D,E,F(xiàn)分別為弦分別為弦AB與弦與弦AC上的點(diǎn),且上的點(diǎn),且BCAEDCAF,B,E,F(xiàn),C四點(diǎn)共四點(diǎn)共圓圓(1)證明:證明:CA是是ABC外接圓的直徑;外接圓的直徑;(2)若若DBBEEA,求過,求過B,E,F(xiàn),C四點(diǎn)的圓的面積四點(diǎn)的圓的面積與與ABC外接圓面積的比值外接圓面積的比值 【歸納提升歸納提升】判斷四點(diǎn)共圓的步驟判斷四點(diǎn)共圓的步驟 (1)觀察幾何圖形,找到一定點(diǎn)、一對(duì)對(duì)角或一外角與其內(nèi)觀察幾何圖形,找到一定點(diǎn)、一對(duì)對(duì)角或一外角與其內(nèi)對(duì)角;對(duì)角; (2)判斷四點(diǎn)與這一定點(diǎn)的關(guān)系;判斷四點(diǎn)與這一定點(diǎn)
11、的關(guān)系; (3)判斷四邊形的一對(duì)對(duì)角的和是否為判斷四邊形的一對(duì)對(duì)角的和是否為180; (4)判斷四邊形一外角與其內(nèi)對(duì)角是否相等;判斷四邊形一外角與其內(nèi)對(duì)角是否相等; (5)下結(jié)論下結(jié)論 針對(duì)訓(xùn)練針對(duì)訓(xùn)練2(2014鄭州模擬鄭州模擬)如如圖,銳角三角形圖,銳角三角形ABC的內(nèi)心為的內(nèi)心為I,過點(diǎn)過點(diǎn)A作直線作直線BI的垂線,垂足為的垂線,垂足為H,點(diǎn),點(diǎn)E為內(nèi)切圓為內(nèi)切圓I與邊與邊CA的切點(diǎn)的切點(diǎn)(1)求證:四點(diǎn)求證:四點(diǎn)A,I,H,E共圓;共圓;(2)若若C50,求,求IEH的度數(shù)的度數(shù) 解:解:(1)證明:證明:由圓由圓I與邊與邊AC相切于點(diǎn)相切于點(diǎn)E. 得得IEAE, 結(jié)合結(jié)合IHAH,得
12、,得AEIAHI90. 所以,四點(diǎn)所以,四點(diǎn)A,I,H,E共圓共圓 (2)IEH25.題型三相交弦、切割線定理的應(yīng)用題型三相交弦、切割線定理的應(yīng)用 (2013天津天津)如如圖,圖,ABC為圓的內(nèi)接三角形,為圓的內(nèi)接三角形,BD為圓的弦,且為圓的弦,且BDAC.過點(diǎn)過點(diǎn)A作圓的切線與作圓的切線與DB的延長的延長線交于點(diǎn)線交于點(diǎn)E,AD與與BC交于點(diǎn)交于點(diǎn)F.若若ABAC,AE6,BD5,則線段,則線段CF的長為的長為_ 【歸納提升歸納提升】解決與圓有關(guān)的成比例線段問題的兩種思解決與圓有關(guān)的成比例線段問題的兩種思路路 (1)直接應(yīng)用相交弦、切割線定理及推論直接應(yīng)用相交弦、切割線定理及推論 (2)當(dāng)比例式當(dāng)比例式(等積式等積式)中的線段分別在兩個(gè)三角形中時(shí),可中的線段分別在兩個(gè)三角形中時(shí),可轉(zhuǎn)化為證明三角形相似,一般思路為轉(zhuǎn)化為證明三角形相似,一般思路為“相似三角形相似三角形比例比例式式等積式等積式”在證明中有時(shí)還要借助中間比來代換,要在證明中有時(shí)還要借助中間比來代換,要靈活把握靈活把握