《新編高考數(shù)學一輪復習學案訓練課件: 第7章 立體幾何 第1節(jié) 簡單幾何體的結(jié)構(gòu)及其三視圖和直觀圖學案 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學一輪復習學案訓練課件: 第7章 立體幾何 第1節(jié) 簡單幾何體的結(jié)構(gòu)及其三視圖和直觀圖學案 理 北師大版(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第一節(jié) 簡單幾何體的結(jié)構(gòu)及其三視圖和直觀圖
[考綱傳真] (教師用書獨具)1.認識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu).2.能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述三視圖所表示的立體模型,會用斜二測畫法畫出它們的直觀圖.3.會用平行投影方法畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.
(對應(yīng)學生用書第106頁)
[基礎(chǔ)知識填充]
1.簡單幾何體的結(jié)構(gòu)特征
(1)多面體
①棱柱:兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,這
2、些面圍成的幾何體叫作棱柱.
②棱錐:有一個面是多邊形,其余各面是一個公共頂點的三角形,這些面圍成的幾何體叫作棱錐.
③棱臺:用一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分叫作棱臺.
(2)旋轉(zhuǎn)體
①圓錐可以由直角三角形繞其任一直角邊旋轉(zhuǎn)得到.
②圓臺可以由直角梯形繞直角腰或等腰梯形繞上下底中點連線旋轉(zhuǎn)得到,也可由平行于圓錐底面的平面截圓錐得到.
③球可以由半圓或圓繞直徑旋轉(zhuǎn)得到的.
2.三視圖
(1)三視圖的名稱
幾何體的三視圖包括主視圖、左視圖、俯視圖.
(2)三視圖的畫法
①畫三視圖時,重疊的線只畫一條,擋住的線要畫成虛線.
②三視圖的主視圖、左視圖、俯
3、視圖分別是從幾何體的正前方、正左方、正上方觀察幾何體得到的正投影圖.
③觀察簡單組合體是由哪幾個簡單幾何體組成的,并注意它們的組成方式,特別是它們的交線位置.
3.直觀圖
簡單幾何體的直觀圖常用斜二測畫法來畫,其規(guī)則是:
(1)在已知圖形中建立直角坐標系,xOy.畫直觀圖時,它們分別對應(yīng)x′軸和y′軸,兩軸交于點O′,使∠x′O′y′=45°,它們確定的平面表示水平平面;
(2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成平行于x′軸和y′軸的線段;
(3)已知圖形中平行于x軸的線段,在直觀圖中保持原長度不變;平行于y軸的線段,長度為原來的.
[基本能力自測]
1.(思
4、考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”)
(1)有兩個面平行,其余各面都是平行四邊形的幾何體是棱柱.( )
(2)有一個面是多邊形,其余各面都是三角形的幾何體是棱錐.( )
(3)菱形的直觀圖仍是菱形.( )
(4)正方體、球、圓錐各自的三視圖中,三視圖均相同.( )
[答案] (1)× (2)× (3)× (4)×
2.某簡單幾何體的主視圖是三角形,則該幾何體不可能是( )
A.圓柱 B.圓錐
C.四面體 D.三棱柱
A [由三視圖知識知圓錐、四面體、三棱柱(放倒看)都能使其主視圖為三角形,而圓柱的主視圖不可能為三角形.]
3.(
5、教材改編)如圖7-1-1,長方體ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′,則剩下的幾何體是( )
圖7-1-1
A.棱臺
B.四棱柱
C.五棱柱
D.簡單組合體
C [由幾何體的結(jié)構(gòu)特征,剩下的幾何體為五棱柱.]
4.(20xx·北京高考)某四棱錐的三視圖如圖7-1-2所示,則該四棱錐的最長棱的長度為( )
圖7-1-2
A.3 B.2 C.2 D.2
B [在正方體中還原該四棱錐,如圖所示,
可知SD為該四棱錐的最長棱.
由三視圖可知正方體的棱長為2,
故SD==2.
故選B.]
5.以邊長為1的正方形的一邊
6、所在直線為旋轉(zhuǎn)軸,將該正方形旋轉(zhuǎn)一周所得圓柱的側(cè)面積等于________.
2π [由題意得圓柱的底面半徑r=1,母線l=1,
所以圓柱的側(cè)面積S=2πrl=2π.]
(對應(yīng)學生用書第107頁)
簡單幾何體的結(jié)構(gòu)特征
(1)以下命題:
①以直角三角形的一邊所在直線為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐;
②以直角梯形的一腰所在直線為軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺;
③圓柱、圓錐、圓臺的底面都是圓面;
④一個平面截圓錐,得到一個圓錐和一個圓臺.
其中正確命題的個數(shù)為( )
A.0 B.1 C.2 D.3
(2)給出下列四個命題:
①有兩
7、個側(cè)面是矩形的立體圖形是直棱柱;
②側(cè)面都是等腰三角形的棱錐是正棱錐;
③側(cè)面都是矩形的直四棱柱是長方體;
④底面為正多邊形,且有相鄰兩個側(cè)面與底面垂直的棱柱是正棱柱.
其中不正確的命題為________.
【導學號:79140219】
(1)B (2)①②③ [(1)由圓錐、圓臺、圓柱的定義可知①②錯誤,③正確.對于命題④,只有平行于圓錐底面的平面截圓錐,才能得到一個圓錐和一個圓臺,④不正確.
(2)對于①,平行六面體的兩個相對側(cè)面也可能是矩形,故①錯;對于②,對等腰三角形的腰是否為側(cè)棱未作說明(如圖),故②錯;對于③,若底面不是矩形,則③錯;④由線面垂直的判定,可知側(cè)棱垂直
8、于底面,故④正確.
綜上,命題①②③不正確.
]
[規(guī)律方法] 簡單幾何體概念辨析題的常用方法
(1)定義法:緊扣定義,由已知構(gòu)建幾何模型,在條件不變的情況下,變換模型中的線面關(guān)系或增加線、面等基本元素,根據(jù)定義進行判定.
(2)反例法:通過反例對結(jié)構(gòu)特征進行辨析,即要說明一個結(jié)論是錯誤的,只是舉出一個反例即可.
[跟蹤訓練] 給出下列命題:
①棱柱的側(cè)棱都相等,側(cè)面都是全等的平行四邊形;
②在四棱柱中,若兩個過相對側(cè)棱的截面都垂直于底面,則該四棱柱為直四棱柱;
③存在每個面都是直角三角形的四面體;
④棱臺的側(cè)棱延長后交于一點.
其中正確命題的序號是________.
9、
②③④ [①不正確,根據(jù)棱柱的定義,棱柱的各個側(cè)面都是平行四邊形,但不一定全等;②正確,因為兩個過相對側(cè)棱的截面的交線平行于側(cè)棱,又垂直于底面;③正確,如圖,正方體ABCD-A1B1C1D1中的三棱錐C1-ABC,四個面都是直角三角形;④正確,由棱臺的概念可知.]
簡單幾何體的三視圖
◎角度1 由簡單幾何體的直觀圖判斷三視圖
(20xx·東北四市聯(lián)考)如圖7-1-3,在正方體ABCD-A1B1C1D1中,P是線段CD的中點,則三棱錐P-A1B1A的左視圖為( )
圖7-1-3
D [如圖,
畫出原正方體的左視圖,顯然對于三棱錐P-A1B1A,B(C)點
10、均消失了,其余各點均在,從而其左視圖為D.]
◎角度2 已知三視圖判定幾何體
(20xx·全國卷Ⅰ)某多面體的三視圖如圖7-1-4所示,其中主視圖和左視圖都由正方形和等腰直角三角形組成,正方形的邊長為2,俯視圖為等腰直角三角形.該多面體的各個面中有若干個是梯形,這些梯形的面積之和為( )
圖7-1-4
A.10 B.12
C.14 D.16
B [觀察三視圖可知該多面體是由直三棱柱和三棱錐組合而成的,且直三棱柱的底面是直角邊長為2的等腰直角三角形,側(cè)棱長為2.三棱錐的底面是直角邊長為2的等腰直角三角形,高為2,如圖所示.
因此該多面體各個面中有2個梯形,且這兩個梯形全
11、等,梯形的上底長為2,下底長為4,高為2,故這些梯形的面積之和為2××(2+4)×2=12.故選B.]
[規(guī)律方法] 1.已知幾何體,識別三視圖的技巧
已知幾何體畫三視圖時,可先找出各個頂點在投影面上的投影,然后再確定線在投影面上的實虛.
2.已知三視圖,判斷幾何體的技巧
(1)對柱、錐、臺、球的三視圖要熟悉.
(2)明確三視圖的形成原理,并能結(jié)合空間想象將三視圖還原為直觀圖.
(3)遵循“長對正、高平齊、寬相等”的原則.
易錯警示:對于簡單組合體或切割體的三視圖,應(yīng)注意它們的交線的位置,區(qū)分好實線和虛線的不同.
[跟蹤訓練] (1)(20xx·福州質(zhì)檢)如圖7-1-5,網(wǎng)格
12、紙上小正方形的邊長為1,粗線畫的是某幾何體的三視圖,則此幾何體各面中直角三角形的個數(shù)是( )
圖7-1-5
A.2 B.3
C.4 D.5
(2)(20xx·北京東城區(qū)綜合練習(二)) 日晷是中國古代利用日影測得時刻的一種計時工具,又稱“日規(guī)”.通常由銅制的指針和石制的圓盤組成,銅制的指針叫作“晷針”,垂直地穿過圓盤中心,石制的圓盤叫作“晷面”,它放在石臺上,其原理就是利用太陽的投影方向來測定并劃分時刻.利用日晷計時的方法是人類在天文計時領(lǐng)域的重大發(fā)明,這項發(fā)明被人類沿用達幾千年之久.下圖7-1-6是一位游客在故宮中拍到的一個日晷照片,假設(shè)相機鏡頭正對的方向為主視方向,則根據(jù)圖片
13、判斷此日晷的左視圖可能為( )
圖7-1-6
(1)C (2)D [由三視圖可得該幾何體是如圖所示的四棱錐P-ABCD,由圖易知四個側(cè)面都是直角三角形,故選C.
(2)因為相機鏡頭正對的方向為主視方向,所以左視圖中圓盤為橢圓,指針上半部分為實線,下半部分為虛線,可能是D,故選D.]
簡單幾何體的直觀圖
已知正三角形ABC的邊長為a,那么△ABC的平面直觀圖△A′B′C′的面積為( )
A.a2 B.a2 C.a2 D.a2
D [如圖(1)(2)所示的實際圖形和直觀圖,
由(2)可
14、知,A′B′=AB=a,O′C′=OC=a,
在圖(2)中作C′D′⊥A′B′于D′,
則C′D′=O′C′=a,
所以S△A′B′C′=A′B′·C′D′=×a×a=a2.]
[規(guī)律方法] 1.斜二測畫法原圖與直觀圖中的“三變”與“三不變”
“三變”
“三不變”
2.按照斜二測畫法得到的平面圖形的直觀圖,其面積與原圖形的面積的關(guān)系:S直觀圖=S原圖形.
[跟蹤訓練] (20xx·邯鄲三次聯(lián)考)有一塊多邊形的菜地,它的水平放置的平面圖形的斜二測直觀圖是直角梯形(如圖7-1-7所示),∠ABC=45°,AB=AD=1,DC⊥BC,則這塊菜地的面積為________.
【導學號:79140220】
圖7-1-7
2+ [如圖(1),在直觀圖中,過點A作AE⊥BC,垂足為E.
(1) (2)
在Rt△ABE中,AB=1,∠ABE=45°,∴BE=.
又四邊形AECD為矩形,AD=EC=1,
∴BC=BE+EC=+1.
由此還原為原圖形如圖(2)所示,是直角梯形A′B′C′D′.
在梯形A′B′C′D′中,A′D′=1,B′C′=+1,A′B′=2,
∴這塊菜地的面積S=(A′D′+B′C′)·A′B′=××2=2+.]