秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

NGW行星輪減速器設計

上傳人:仙*** 文檔編號:87400285 上傳時間:2022-05-09 格式:DOC 頁數(shù):61 大?。?.17MB
收藏 版權申訴 舉報 下載
NGW行星輪減速器設計_第1頁
第1頁 / 共61頁
NGW行星輪減速器設計_第2頁
第2頁 / 共61頁
NGW行星輪減速器設計_第3頁
第3頁 / 共61頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《NGW行星輪減速器設計》由會員分享,可在線閱讀,更多相關《NGW行星輪減速器設計(61頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、word NGW行星減速器的設計 摘 要 本文完成了對一級行星齒輪減速器的結(jié)構設計。該減速器具有較小的傳動比,而且,它具有結(jié)構緊湊、傳動效率高、外廓尺寸小和重量輕、承載能力大、運動平穩(wěn)、抗沖擊和震動的能力較強、噪聲低的特點,適用于化工、輕工業(yè)以與機器人等領域。這些功用對于現(xiàn)代機械傳動的開展有著較重要的意義。 首先簡要介紹了課題的背景以與齒輪減速器的研究現(xiàn)狀和開展趨勢,然后比擬了各種傳動結(jié)構,從而確定了傳動的根本類型。論文主體局部是對傳動機構主要構件包括太陽輪、行星輪、齒圈與行星架的設計計算,通過所給的輸入功率、傳動比、輸入轉(zhuǎn)速以與工況系數(shù)確定齒輪減速器的大致結(jié)構之后,對其進展了

2、整體結(jié)構的設計計算和主要零部件的強度校核計算。其中該減速器的設計與其他減速器的結(jié)構設計相比有三大特點:其一,為了使三個行星輪的載荷均勻分配,采用了齒式浮動機構,即太陽輪與高速軸通過齒式聯(lián)軸器將二者連接在一起,從而實現(xiàn)了太陽輪的浮動;其二,該減速器的箱體采用的是法蘭式箱體,上下箱體分別鑄造而成;其三,齒圈與箱體采用別離式,通過螺栓和圓錐銷將其與上下箱體固定在一起。最后對整個設計過程進展了總結(jié),根本上完成了對該減速器的整體結(jié)構設計。 關鍵詞:行星齒輪,傳動機構,結(jié)構設計,校核計算 The design of NGW planetary gear reducer ABSTRACT

3、 This pleted a single-stage planetary gear reducer design. The gear has a smaller transmission ratio, and it has a pact, high transmission efficiency, outline, small size and light weight, carrying capacity, smooth motion, shock and vibration resistant and low noise characteristics, Used in chemic

4、al, light industry and robotics fields. The function of the development of modern mechanical transmission has a more important significance. First paper introduces the background and the subject of gear reducer situation and development trend, and then pared various transmission structures, which d

5、etermine the basic type of transmission. Thesis is the main part of the main ponents of drive mechanism including the sun wheel, planet gear, ring gear and planet carrier in the design calculation, given by the input power, gear ratio, input speed and the condition factor to determine the approximat

6、e structure after the gear reducer And to carry out the design and calculation of the overall structure and main ponents of the strength check calculation. One of the other gear reducer design and pared the structural design of the three major characteristics: First, the three planetary gear to make

7、 the load evenly, using a gear-type floating body, the sun gear and high-speed shaft through the gear together Coupling the two together to achieve a floating sun gear; Second, the box uses a reducer flange box, upper and lower box were cast; Third, the ring gear and Box with separate, through bolts

8、 and tapered pins will be fixed together with the upper and lower box. Finally, a summary of the entire design process is basically plete the overall design of the reducer. KEY WORDS: planetary gear,driving machanism,structural design,checking calculation 55 / 61 目 錄 前 言1 第1章 傳動方案確實定6

9、1.1 設計任務6 1.1.1 齒輪傳動的特點6 1.1.2 齒輪傳動的兩大類型7 7 1.2.1 行星機構的類型與特點7 1.2.2 確定行星齒輪傳動類型10 第2章 齒輪的設計計算12 2.1 配齒計算12 2.1.1 確定各齒輪的齒數(shù)12 2.1.2 初算中心距和模數(shù)13 2.2 幾何尺寸計算15 2.3 裝配條件驗算17 2.3.1 鄰接條件17 2.3.2 同心條件18 2.3.2 安裝條件18 2.4 齒輪強度校核19 2.4.1 a-c傳動強度校核19 2.4.1 c-b傳動強度校核24 第3章 軸的設計計算29 3.1 行星軸設計29 3

10、.2 轉(zhuǎn)軸的設計31 3.2.1 輸入軸設計31 3.2.2 輸出軸設計32 第4章 行星架和箱體的設計35 4.1 行星架的設計35 4.1.1 行星架結(jié)構方案35 4.1.2 行星架制造精度37 4.2 箱體的設計39 結(jié) 論42 辭43 參考文獻44 附 錄45 外文資料翻譯49 主要代號 代號 意 義 單 位 代號 意 義 單 位 a b C d e H HB HRC X

11、 中心距、標準中心距 角度變位齒輪的中心距 切齒中心距 齒寬 頂隙 頂隙系數(shù) 直徑、分獨圓直徑 插刀齒的分度圓直徑 齒頂圓直徑 基圓直徑 齒根圓直徑 節(jié)圓直徑 齒槽寬 作用力 法向力 徑向力 切向力 齒向公差 摩擦系數(shù) 基節(jié)極限偏差 齒距極限偏差 高度 布氏硬度 洛氏硬度 齒頂高 齒頂高系數(shù) 齒根高 傳動比 齒數(shù) 變位系數(shù) 轉(zhuǎn)臂 變位系數(shù)和 系數(shù) 齒形系數(shù) 彎曲強度計算時的壽命系數(shù) 應力修正系數(shù) mm mm mm mm mm mm mm mm mm mm mm mm N N N

12、 N mm mm mm m N y 角的漸開線函數(shù) 系數(shù)、載荷系數(shù) 使用系數(shù) 行星輪間載荷分布不均勻系數(shù) 齒間載荷分布系數(shù) 齒向載荷分布系數(shù) 動載系數(shù) 長度 彎矩 模數(shù) 指數(shù) 應力循環(huán)次數(shù) 轉(zhuǎn)速 行星輪數(shù)目 功率 半徑、分度圓半徑 節(jié)圓半徑 齒頂圓半徑 基圓半徑 齒根圓半徑 轉(zhuǎn)矩 重合度 效率 計算齒根彎曲應力 許用齒根彎曲應力 系數(shù)

13、彎曲強度計算時的尺寸系數(shù) 彎曲強度計算時的螺旋角系數(shù) 彎曲強度計算時的重合度系數(shù) 中心距變動系數(shù) 壓力角、齒形角 齒頂壓力角 mm mm r/min kW mm mm mm mm mm rad rad 前 言 本課題通過對行星齒輪減速器的結(jié)構設計,初步計算出各零件的設計尺寸和裝配尺寸,并對涉與結(jié)果進展參數(shù)化分析,為行星齒輪減速器產(chǎn)品的開發(fā)和性能評價實現(xiàn)行星齒輪減速器規(guī)模化生產(chǎn)提供了參考和理論依據(jù)。通過本設計,要能弄懂該減速器的傳動原理,達到對所

14、學知識的復習與鞏固,從而在以后的工作中能解決類似的問題。 齒輪是使用量大面廣的傳動元件。目前世器上齒輪最大傳遞功率已達6500kW,最大線速度達210m/s(在實驗室中達300m/s);齒輪最大重量達200t,最大直徑達 (組合式),最大模數(shù)m達50mm。我國自行設計的高速齒輪(增)減速器的功率已達44000kW,齒輪圓周速度達150m/s以上。 由齒輪、軸、軸承與箱體組成的齒輪減速器,用于原動機和工作機或執(zhí)行機構之間,起匹配轉(zhuǎn)速和傳遞轉(zhuǎn)矩的作用,在現(xiàn)代機械中應用極為廣泛。 20世紀末的20多年,世界齒輪技術有了很大的開展。產(chǎn)品開展的總趨勢是小型化、高速化、低噪聲、高可靠度。技

15、術開展中最引人注目的是硬齒面技術、功率分支技術和模塊化設計技術。 硬齒面技術到20世紀80年代時在國外日趨成熟。采用優(yōu)質(zhì)合金鋼鍛件滲碳淬火磨齒的硬齒面齒輪,精度不低于IS01328一1975的6級,綜合承載能力為中硬齒面調(diào)質(zhì)齒輪的4倍,為軟齒而齒輪的5一6倍。一個中等規(guī)格的硬齒面齒輪減速器的重量僅為軟齒面齒輪減速器的1/3左右。 功率分支技術主要指行星與大功率齒輪箱的功率雙分與多分支裝置,如中心傳動的水泥磨主減速器,其核心技術是均載。 模塊化設計技術對通用和標準減速器旨在追求高性能和滿足用戶多樣化大覆蓋面需求的同時,盡可能減少零部件與毛坯的品種規(guī)格,以便于組織生產(chǎn),使零部件生產(chǎn)形成批量,

16、降低本錢,取得規(guī)模效益。 其他技術的開展還表現(xiàn)在理論研究(如強度計算、修形技術、現(xiàn)代設計方法的應用,新齒形、新結(jié)構的應用等)更完善、更接近實際;普遍采用各種優(yōu)質(zhì)合金鋼鍛件;材料和熱處理質(zhì)量控制水平的提高;結(jié)構設計更合理;加工精度普遍提高到ISO的4一6級;軸承質(zhì)量和壽命的提高;潤滑油質(zhì)量的提高;加工裝備和檢測手段的提高等方面。 這些技術的應用和日趨成熟,使齒輪產(chǎn)品的性能價格比大大提.高,產(chǎn)品越來越完美。如非常粗略地估計一下,輸出IOONm轉(zhuǎn)矩的齒輪裝置,如果在1950年時重10kg,到80年代就可做到僅約lkg。 20世紀70年代至90年代初,我國的高速齒輪技術經(jīng)歷了測繪仿制、技術引進(

17、技術攻關)到獨立設計制造3個階段?,F(xiàn)在我國的設計制造能力根本上可滿足國生產(chǎn)需要,設計制造的最高參數(shù):最大功率44MW,最高線速度168m/s,最高轉(zhuǎn)速67000r/min。 我國的低速重載齒輪技術,特別是硬齒面齒輪技術也經(jīng)歷了測繪仿制等階段,從無到有逐步開展起來。除了摸索掌握制造技術外,在20世紀80年代末至90年代初推廣硬齒面技術過程中,我們還作了解決“斷軸〞、“選用〞等一系列有意義的工作。在20世紀70-80年代一直認為是國重載齒輪兩大難題的“水泥磨減速器〞和“軋鋼機械減速器〞,可以說已完全解決。 20世紀80年代至90年代初,我國相繼制訂了一批減速器標準,如ZBJ19004一88《圓

18、柱齒輪減速器》、ZBJ19026一90《運輸機械用減速器》和YB/T050一93《冶金設備用YNK齒輪減速器》等幾個硬齒面減速器標準,我國有自己知識產(chǎn)權的標準,如YB/T079 - 95《三環(huán)減速器》。按這些標準生產(chǎn)的許多產(chǎn)品的主要技術指標均可達到或接近國外同類產(chǎn)品的水平,其中YNK減速器較完整地吸取了德國FLENDER公司同類產(chǎn)品的特點,并結(jié)合國情作了許多改良與創(chuàng)新。 〔1〕 漸開線行星齒輪效率的研究 行星齒輪傳動的效率作為評價器傳動性能優(yōu)劣的重要指標之一,國外有許多學者對此進展了系統(tǒng)的研究?,F(xiàn)在,計算行星齒輪傳動效率的方法很多,國外學者提出了許多有關行星齒輪傳動效率的計算方法,在設計計

19、算中,較常用的計算方有3種:嚙合功率法、力偏移法、和傳動比法〔克萊依涅斯法〕,其中以嚙合功率法的用途最為廣泛,此方法用來計算普通的2K2H和3K型行星齒輪的效率十分方便。 〔2〕 漸開線行星齒輪均載分析的研究現(xiàn)狀 行星齒輪傳動具有結(jié)構緊湊、質(zhì)量小、體積小、承載能力大等優(yōu)點。這些都是由于在其結(jié)構上采用了多個行星輪的傳動方式,充分利用了同心軸齒輪之間的空間,使用了多個行星輪來分擔載荷,形成功率流,并合理的采用了嚙合傳動,從而使其具備了上述的許多優(yōu)點。但是,這只是最理想的情況,而在實際應用中,由于加工誤差和裝配誤差的存在,使得在傳動過程中各個行星輪上的載荷分配不均勻,造成載荷有集中在一個行星輪上

20、的現(xiàn)象,這樣,行星齒輪的優(yōu)越性就得不到發(fā)揮,甚至不如普通的外傳動結(jié)構。所以,為了更好的發(fā)揮行星齒輪的優(yōu)越性,均載的問題就成了一個十分重要的課題。在結(jié)構方面,起初人們只努力地提高齒輪的加工精度,從而使得行星齒輪的制造和裝配變得比擬困難。后來通過時間采取了對行星齒輪的根本構件徑向不加限制的專門措施和其它可自動調(diào)位的方法,即采用各種機械式地均載機構,以達到各行星輪間的載荷分布均勻的目的。典型的幾種均載機構有根本構件浮動的均載機構、杠桿聯(lián)動均載機構和采用彈性件的均載機構。 隨著我國市場經(jīng)濟的推進,“九五〞期間,齒輪行業(yè)的專業(yè)化生產(chǎn)水平有了明顯提高,如一汽、二汽等大型企業(yè)集團的齒輪變速箱廠、車轎廠

21、,通過企業(yè)改組、改制,改為相對獨立的專業(yè)廠,參與市場競爭;隨著軍工轉(zhuǎn)民用,農(nóng)機齒輪企業(yè)轉(zhuǎn)加工非農(nóng)用齒輪產(chǎn)品,調(diào)整了企業(yè)產(chǎn)品結(jié)構;私有企業(yè)的堀起,中外合資企業(yè)的涌現(xiàn),齒輪行業(yè)的整體結(jié)構得到優(yōu)化,行業(yè)實力增強,技術進步加快。 近十幾年來,計算機技術、信息技術、自動化技術在機械制造中的廣泛應用,改變了制造業(yè)的傳統(tǒng)觀念和生產(chǎn)組織方式。一些先進的齒輪生產(chǎn)企業(yè)已經(jīng)采用精益生產(chǎn)、敏捷制造、智能制造等先進技術。形成了高精度、高效率的智能化齒輪生產(chǎn)線和計算機網(wǎng)絡化管理。 適應市場要求的新產(chǎn)品開發(fā),關鍵工藝技術的創(chuàng)新競爭,產(chǎn)品質(zhì)量競爭以與員工技術素質(zhì)與創(chuàng)新精神,是2l世紀企業(yè)競爭的焦點。在2l世紀成套機械裝備

22、中,齒輪仍然是機械傳動的根本部件。由于計算機技術與數(shù)控技術的開展,使得機械加工精度、加工效率太為提高,從而推動了機械傳動產(chǎn)品多樣化,整機配套的模塊化、標準化,以與造型設計藝術化,使產(chǎn)品更加精致、美觀。 C機床和工藝技術的開展,推動了機械傳動結(jié)構的飛速開展。在傳動系統(tǒng)設計中的電子控制、液壓傳動,齒輪、帶鏈的混合傳動,將成為變速箱設計中優(yōu)化傳動組合的方向。在傳動設計中的學科交叉,將成為新型傳動產(chǎn)品開展的重要趨勢。 工業(yè)通用變速箱是指為各行業(yè)成套裝備與生產(chǎn)線配套的大功率和中小功率變速箱。國的變速箱將繼續(xù)淘汰軟齒面,向硬齒面(50~60HRC)、高精度(4~5級)、高可靠度軟啟動、運行監(jiān)控、運行狀

23、態(tài)記錄、低噪聲、高的功率與體積比和高的功率與重量比的方向開展。中小功率變速箱為適應機電一體化成套裝備自動控制、自動調(diào)速、多種控制與通訊功能的接口需要,產(chǎn)品的結(jié)構與外型在相應改變。矢量變頻代替直流伺服驅(qū)動,已成為近年中小功率變速箱產(chǎn)品(如擺輪針輪傳動、諧波齒輪傳動等)追求的目標。 隨著我國航天、航空、機械、電子、能源與核工業(yè)等方面的快速開展和工業(yè)機器人等在各工業(yè)部門的應用,我國在諧波傳動技術應用方面已取得顯著成績。同時,隨著國家高新技術與信息產(chǎn)業(yè)的開展,對諧波傳動技術產(chǎn)品的需求將會更加突出。 總之,當今世界各國減速器與齒輪技術開展總趨勢是向六高、二低、二化方面開展。六高即高承載能力、高

24、齒面硬度、高精度、高速度、高可靠性和高傳動效率;二低即低噪聲、低本錢;二化即標準化、多樣化。 減速器和齒輪的設計與制造技術的開展,在一定程度上標志著一個國家的工業(yè)水平,因此,開拓和開展減速器和齒輪技術在我國有廣闊的前景。 的根本容: 〔1〕選擇傳動方案。傳動方案確實定包括傳動比確實定和傳動類型確實定。 〔2〕設計計算與校核。傳動結(jié)構的設計計算,都大致包括:選擇傳動方案、傳動零件齒輪的設計計算與校核、軸的設計計算與校核、軸承的選型與壽命計算、鍵的選擇與強度計算、箱體的設計、潤滑與密封的選擇等。 在對行星齒輪減速器的結(jié)構進展深入分析的根底上,依據(jù)給定的減速器設計的主要參數(shù),通過CAD

25、繪圖軟件建立行星齒輪減速器各零件的二維平面圖,繪制出減速器的總裝圖對其進展分析。 第1章 傳動方案確實定 1.1 設計任務 設計一個行星齒輪傳動減速器。 原始條件和數(shù)據(jù): 傳動比i=5.5,功率p=120kw,輸入轉(zhuǎn)速N=1000 rpm,中等沖擊。使用壽命10年。且要求該齒輪傳動結(jié)構緊湊、外廓尺寸較小。 1.1.1 齒輪傳動的特點 齒輪傳動與其它傳動比擬,具有瞬時傳動比恒定、工作可靠、壽命長、效率高、可實現(xiàn)平行軸任意兩相交軸和交織軸之間的傳動,適應的圓周速度和傳動功率圍大,但齒輪傳動的制造本錢高,低精度齒輪傳動時噪聲和振動較大,不適宜于兩軸間距離較大的傳動。

26、 齒輪傳動是以主動輪的輪齒依次推動從動輪來進展工作的,是是現(xiàn)代機械中應用十分廣泛的一種傳動形式。齒輪傳動可按一對齒輪軸線的相對位置來劃分,也可以按工作條件的不同來劃分。 隨著行星傳動技術的迅速開展,目前,高速漸開線行星齒輪傳動裝置所傳遞的功率已達到20000kW,輸出轉(zhuǎn)矩已達到4500kN。據(jù)有關資料介紹,人們認為目前行星齒輪傳動技術的開展方向如下。 〔1〕 標準化、多品種 目前世界上已有50多個漸開線行星齒輪傳動系列設計;而且還演化出多種型式的行星減速器、差速器和行星變速器等多品種的產(chǎn)品。 〔2〕 硬齒面、高精度 行星傳動機構中的齒輪廣泛采用滲碳和氮化等化學熱處理。齒輪制造精度一般均

27、在6級以上。顯然,采用硬齒面、高精度有利于進一步提高承載能力,使齒輪尺寸變得更小。 〔3〕 高轉(zhuǎn)速、大功率 行星齒輪傳動機構在高速傳動中,如在高速汽輪中已獲得日益廣泛的應用,其傳動功率也越來越大。 〔4〕 大規(guī)格、大轉(zhuǎn)矩 在中低速、重載傳動中,傳遞大轉(zhuǎn)矩的大規(guī)格的行星齒輪傳動已有了較大的開展。 1.1.2 齒輪傳動的兩大類型 輪系可由各種類型的齒輪副組成。由錐齒輪、螺旋齒輪和蝸桿渦輪組成的輪系,稱為空間輪系;而由圓柱齒輪組成的輪系,稱為平面輪系。 根據(jù)齒輪系運轉(zhuǎn)時各齒輪的幾何軸線相對位置是否變動,齒輪傳動分為兩大類型。 〔1〕普通齒輪傳動〔定軸輪系〕 當齒輪系運轉(zhuǎn)時,如果組成

28、該齒輪系的所有齒輪的幾何位置都是固定不變的,如此稱為普通齒輪傳動〔或稱定軸輪系〕。在普通齒輪傳動中,如果各齒輪副的軸線均相互平行,如此稱為平行軸齒輪傳動;如果齒輪系中含有一個相交軸齒輪副或一個相錯軸齒輪副,如此稱為不平行軸齒輪傳動〔空間齒輪傳動〕。 〔2〕行星齒輪傳動〔行星輪系〕 當齒輪系運轉(zhuǎn)時,如果組成該齒輪系的齒輪中至少有一個齒輪的幾何軸線位置不固定,而繞著其他齒輪的幾何軸線旋轉(zhuǎn),即在該齒輪系中,至少具有一個作行星運動的齒輪,如此稱該齒輪傳動為行星齒輪傳動,即行星輪系。 行星機構的類型選擇 1.2.1 行星機構的類型與特點 行星齒輪傳動與普通齒輪傳動相比擬,它具有許多獨特

29、的優(yōu)點。行星齒輪傳動的主要特點如下: 〔1〕體積小,質(zhì)量小,結(jié)構緊湊,承載能力大。一般,行星齒輪傳動的外廓尺寸和質(zhì)量約為普通齒輪傳動的〔即在承受一樣的載荷條件下〕。 〔2〕傳動效率高。在傳動類型選擇恰當、結(jié)構布置合理的情況下,其效率值可達0.97~0,99。 〔3〕傳動比擬大??梢詫崿F(xiàn)運動的合成與分解。只要適當選擇行星齒輪傳動的類型與配齒方案,便可以用少數(shù)幾個齒輪而獲得很大的傳動比。在僅作為傳遞運動的行星齒輪傳動中,其傳動比可達到幾千。應該指出,行星齒輪傳動在其傳動比很大時,仍然可保持結(jié)構緊湊、質(zhì)量小、體積小等許多優(yōu)點。 〔4〕運動平穩(wěn)、抗沖擊和振動的能力較強。由于采用了數(shù)個結(jié)構一樣的

30、行星輪,均勻地分布于中心輪的周圍,從而可使行星輪與轉(zhuǎn)臂的慣性力相互平衡。同時,也使參與嚙合的齒數(shù)增多,故行星齒輪傳動的運動平穩(wěn),抵抗沖擊和振動的能力較強,工作較可靠。 最常見的行星齒輪傳動機構是NGW型行星傳動機構。行星齒輪傳動的型式可按兩種方式劃分:按齒輪嚙合方式不同分有NGW、NW、NN、WW、NGWN和N等類型。按根本結(jié)構的組成情況不同有2Z-X、3Z、Z-X-V、Z-X等類型。 行星齒輪傳動最顯著的特點是:在傳遞動力時它可進展功率分流;同時,其輸入軸與輸出軸具有同軸性,即輸入軸與輸出軸均設置在同一主軸線上。所以,行星齒輪傳動現(xiàn)已被人們用來代替普通齒輪傳動,而作為各種機械傳動系統(tǒng)的中

31、的減速器、增速器和變速裝置。尤其是對于那些要求體積小、質(zhì)量小、結(jié)構緊湊和傳動效率高的航空發(fā)動機、起重運輸、石油化工和兵器等的齒輪傳動裝置以與需要變速器的汽車和坦克等車輛的齒輪傳動裝置,行星齒輪傳動已得到了越來越廣泛的應用,表1-1列出了常用行星齒輪傳動的型式與特點: 表1-1常用行星齒輪傳動的傳動類型與其特點 傳動 形式 簡圖 性能參數(shù) 特點 傳動比 效率 最大功率/kW NGW〔2Z-X 負號機構〕 =1.13~13.7推薦2.8~9 不限 效率高,體積小,重量輕,結(jié)構簡單,制造方便,傳遞公路圍大,軸向尺寸小,可用于各個工作條

32、件,在機械傳動中應用最廣。單級傳動比圍較小,耳機和三級傳動均廣泛應用 NW〔2Z-X負號機構〕 =1~50推薦7~21 效率高,徑向尺寸比NGW型小,傳動比圍較NGW型大,可用于各種工作條件。但雙聯(lián)行星齒輪制造、安裝較復雜,故||7時不宜采用 NN〔2Z-X負號機構〕 推薦值: =8~30 40 傳動比打,效率較低,適用于短期工作傳動。當行星架X從動時,傳動比||大于某一值后,機構將發(fā)生自鎖 WW〔2Z-X負號機構〕 =1.2~數(shù)千 ||=1.2~5時,效率可達0.9~0.7,>5以后.隨||增加徒降 20 傳動比圍大,但外形尺寸與

33、重量較大,效率很低,制造困難,一般不用與動力傳動。運動精度低也不用于分度機構。當行星架X從動時,||從某一數(shù)值起會發(fā)生自鎖。常用作差速器;其傳動比取值為 NGW〔Ⅰ〕型〔3Z〕 小功率傳動500;推薦:=20~100 增加而下降 短期工作120,長期工作10 結(jié)構緊湊,體積小,傳動比圍大,但效率低于NGW型,工藝性差,適用于中小功率功率或短期工作。假如中心輪A輸出,當||大于某一數(shù)值時會發(fā)生自鎖 NGWN〔Ⅱ〕型〔3Z〕 =60~500推薦:=64~300 增加而下降 短期工作120,長期工作10 結(jié)構更緊湊,制造,安裝比上列Ⅰ型

34、傳動方便。由于采用單齒圈行星輪,需角度變?yōu)椴拍軡M足同心條件。效率較低,宜用于短期工作。傳動自鎖情況同上 1.2.2 確定行星齒輪傳動類型 根據(jù)設計要求:連續(xù)運轉(zhuǎn)、傳動比小、結(jié)構緊湊和外廓尺寸較小。根據(jù)表1-1中傳動類型的工作特點可知,2Z-X(A)型效率高,體積小,機構簡單,制造方便。適用于任何工況下的大小功率的傳動,且廣泛地應用于動力與輔助傳動中,工作制度不限。本設計選用2Z-X(A)型行星傳動較合理,其傳動簡圖如圖1-1所示。 圖1-1減速器設計方案〔單級NGW—2Z-X(A)型行星齒輪傳動〕 擬定的設計方案如如下圖: 圖2-2 減速器整體裝配圖 第

35、2章 齒輪的設計計算 2.1 配齒計算 2.1.1 確定各齒輪的齒數(shù) 據(jù)2Z-X(A)型行星傳動的傳動比值和按其配齒計算〔見參考文獻[1]〕公式〔3-27〕~公式〔3-33〕可求得齒輪b和行星輪c的齒數(shù)和。現(xiàn)考慮到行星齒輪傳動的外廓尺寸較小,應當選擇中心輪a的齒數(shù)=17和行星輪=3. 根據(jù)齒輪 =76.5 對齒輪齒數(shù)進展圓整,同時考慮到安裝條件,取,此時實際的p值與給定的p值稍有變化,但是必須控制在其傳動比誤差的圍。 實際傳動比為 = 其傳動比誤差 =2.67% 由于外

36、嚙合采用角度變位的傳動,行星輪c的齒數(shù)應按如下公式計算,即 因為為偶數(shù),故取齒數(shù)修正量為。此時,通過角變位后,既不增大該行星傳動的徑向尺寸,又可以改善a-c嚙合齒輪副的傳動性能。故 = 在考慮到安裝條件為 〔整數(shù)〕 2.1.2 初算中心距和模數(shù) 1. 齒輪材料、熱處理工藝與制造工藝的選定 太陽輪和行星輪材料為20GrMnTi,外表滲碳淬火處理,外表硬度為57~ 61HRC。 試驗齒輪齒面接觸疲勞極限=1591Mpa。 試驗齒輪齒根彎曲疲勞極限太陽輪=485Mpa。 行星輪=4850.7Mpa=339.5Mpa (對稱載荷)。齒形為漸開線直齒。最終加工為磨齒,精

37、度為6級。 齒圈材料為38GrMoAlA,淡化處理,外表硬度為973HV。 試驗齒輪的接觸疲勞極限=1282Mpa 驗齒輪的彎曲疲勞極限=370MPa 齒形的終加工為插齒,精度為7級。 2. 減速器的名義輸出轉(zhuǎn)速 由 = 得 == 3. 載荷不均衡系數(shù) 采用太陽輪浮動的均載機構,取。 4. 齒輪模數(shù)和中心距a 首先計算太陽輪分度圓直徑: 式中:一齒數(shù)比為 一使用系數(shù)為1.25; 一算式系數(shù)為768; 一綜合系數(shù)為2; 一太陽輪單個齒傳遞的轉(zhuǎn)矩。 = =376 其中 —高速級行星齒輪傳動效率,取 —齒寬系數(shù)暫取 =1450Mpa 代入

38、 模數(shù) m= 取 m=5 如此 取 齒寬 取 2.2 幾何尺寸計算 1. 計算變位系數(shù) (1) a-c傳動 嚙合角 因 所以 = 變位系數(shù)和 =〔17+30〕 圖2-1選擇變位系數(shù)線圖 中心距變動系數(shù)y y==1 齒頂降低系數(shù) 分配邊位系數(shù): 根據(jù)線圖法,通過查找線圖2-1 中心距變動系數(shù)y y==1 齒頂降低系數(shù) 分配邊位系數(shù): 根據(jù)線圖法,

39、通過查找線圖2-1 得到邊位系數(shù) 如此 (2) c-b傳動 由于嚙合的兩個齒輪采用的是高度變位齒輪,所以有 從而 且 2. 幾何尺寸計算結(jié)果 對于單級的2Z-X(A)型的行星齒輪傳動按公式進展幾何尺寸的計算,各齒輪副的計算結(jié)果如下表: 表3-1各齒輪副的幾何尺寸的計算結(jié)果 項目 計算公式 a-c齒輪副 b-c齒輪副 分度圓直徑 基圓直徑 齒頂圓直徑 外嚙合 嚙合 齒根圓

40、直徑 外嚙合 嚙合 注:齒頂高系數(shù):太陽輪、行星輪—,齒輪—; 頂隙系數(shù):齒輪— 2.3 裝配條件驗算 對于所設計的單級2Z-X(A)型的行星齒輪傳動應滿足如下裝配條件 2.3.1 鄰接條件 按公式驗算其鄰接條件,即 行星輪c的齒頂圓的直徑=164.513,和代入上式,如此得 滿足鄰接條件 2.3.2 同心條件 按公式對于角變位有 ,代入上式得 2.3.2 安裝條件 按公式驗證其安裝條件,即得 將 代入該式驗證得 滿足安裝條件 嚙合要素的驗算 1. a-c傳動端面重合度 〔1〕頂

41、圓齒形曲率半徑 太陽輪 行星輪 〔2〕端面嚙合長度 式中“〞號正號為外嚙合,負號為嚙合; 端面節(jié)圓嚙合角。 直齒輪== 如此 〔3〕端面重合度 2. 端面重合度 〔1〕頂圓齒形曲率半徑 行星輪由上面計算得, 齒輪 〔2〕端面嚙合長度 = 〔3〕端面重合度 = 2.4 齒輪強度校核 2.4.1 a-c傳動強度校核 本節(jié)僅列出相嚙合的小齒輪(太陽輪)的強度計算過程,大齒輪(行星輪)的計算方法一樣,從略。 1.確定計算載荷 名義轉(zhuǎn)矩 =376.89 N·m 名義圓周力 ==N=8868N 2.應力循環(huán)次

42、數(shù) =60=次=次 == = = 式中 —太陽輪相對于行星架的轉(zhuǎn)速() —壽命期要求傳動的總運轉(zhuǎn)時間(h) t=10a=70400h 3. 確定強度計算中的各種系數(shù) 1)使用系數(shù)K 取K=1. 25 2)動負荷系數(shù)K 因z=17<50和= <150 ,可根據(jù)圓周速度 == 查得〔6級精度):K=1. 039 3)齒向載荷分布系數(shù)K、K K= 1+(K-1 )KK K=1+(K-1)KK 式中 K— 計算接觸強度時運轉(zhuǎn)初期(未經(jīng)跑合)的齒向載荷分布系數(shù),查得 K= 1

43、.11 (=0.5); K— 計算接觸強度時的跑合影響系數(shù), 查得 K= 0.72(,HB=450); K— 計算彎曲強度時運轉(zhuǎn)初期(未經(jīng)跑合)的齒向載荷分布系數(shù), 查得 K=1.13(=12.4) K—計算彎曲強度時的跑合影響系數(shù),查得K=0.97 (,HB=450); K—與均載系數(shù)有關的系數(shù),K K—與均載系數(shù)有關的系數(shù),K 如此 K= 1+(1.11-1 ) K=1+(1.13-1) 4)齒間載荷分布系數(shù)K、K 因=1. 25,精度6級,硬齒面直齒輪,查得K=K 5)節(jié)點區(qū)域系數(shù)Z按下式計算

44、 Z== =2.171 式中 直齒輪= 0 —端面節(jié)圓嚙合角 直齒輪== —端面壓力角 直齒輪==20 6)彈性系數(shù) 查得 (鋼-鋼) 7)載荷作用齒頂時的齒形系數(shù)Y 根據(jù) z=17和x 查得Y 8)載荷作用齒頂時的應力修正系數(shù)Y 查得Y 9)重合度系數(shù)z、 z== =0.25+=0.25+ 10)螺旋角系數(shù)、按下式計算 因 =0,z= 得=1 = 得=1 4.齒數(shù)比== 5.計算接觸應力的根本值 = 1MPa 6.接觸應力 = =802MPa 7.彎曲應力的根本值 =YYY

45、Y = 8.齒根彎曲應力 = 1 =143MPa 9.確定計算許用接觸應力時的各種系數(shù) l)壽命系數(shù)Z 因N= ,得Z 2)潤滑系數(shù)Z 因=220和>1200MPa 查得Z 3)速度系數(shù)Z 因和=1591 MPa 查得Z 4)粗糙度系數(shù)Z 因 >1200 MPa和齒面R6 查得Z 5)工作硬化系數(shù) 因大小齒輪均為硬齒面,且齒面R>6, 由圖5-17取 6)尺寸系數(shù) 查得Z 10.許用接觸應力 = =1591 =1592MPa 11.接觸強度安全系數(shù)S S== 12.確定計算許用彎曲應力時的各種系數(shù) l)試驗齒輪的應力

46、修正系數(shù) 2)壽命系數(shù)因N=,查得 3)相對齒根圓角敏感系數(shù) 由=1.796,查得 4)齒根外表狀況系數(shù)= 0.925(齒根R6= 37. 8) 5)尺寸系數(shù) 可按下式計算 =0.01m= 13.許用彎曲應力 = =485 =745 MPa 14.彎曲強度安全系數(shù)S S== 2.4.1 c-b傳動強度校核 本節(jié)僅列出相嚙合的大齒輪(齒輪)的強度計算過程,小齒輪(行星輪)的計算方法一樣,從略。 齒輪強度驗算按第5章中的有關公式和圖表進展。 1.名義切向力 =8868N 2.應力循環(huán)次數(shù)N N=60

47、=6010次 式中 n—太陽輪相對于行星架的轉(zhuǎn)速() = n-n= 3.確定強度計算中的各種系數(shù) 1)使用系數(shù)K 取K=1. 25 2)動負荷系數(shù)K 根據(jù) == 查得〔7級精度):K=1. 068 3)齒向載荷分布系數(shù)K,K 由式(5-1)和(5-2) K= 1+(K-1 )KK K=1+(K-1)KK 式中 K— 計算接觸強度時運轉(zhuǎn)初期(未經(jīng)跑合)的齒向載荷分布系數(shù),查得 K= 1.187 (=0.5); K— 計算接觸強度時的跑合影響系數(shù),查得 K,HB=450);

48、K— 計算彎曲強度時運轉(zhuǎn)初期(未經(jīng)跑合)的齒向載荷分布系數(shù),由圖5-4查得 K=1.12(=12.4) K—計算彎曲強度時的跑合影響系數(shù),由圖5-5查得K,HB=450); K—與均載系數(shù)有關的系數(shù),K K—與均載系數(shù)有關的系數(shù),K 如此 K= 1+(1.187-1 ) K=1+(1.12-1) 4)齒間載荷分布系數(shù)K、K 因 =,精度7級,非硬齒面直齒輪由表5-9查得K=K 5)節(jié)點區(qū)域系數(shù)Z可查圖5-13或按下式計算 Z== =2.495 式中 直齒輪= 0 —端面節(jié)圓嚙合角 直齒輪

49、==20 —端面壓力角 直齒輪==20 6)彈性系數(shù)Z 查得 Z(鋼一鋼) 7)載荷作用齒頂時的齒形系數(shù)Y 查得Y 8)載荷作用齒頂時的應力修正系數(shù)Y 查得Y 9)重合度系數(shù)z,Y z== =0.25+=0.25+ 10)螺旋角系數(shù)Z , Y可按下式計算 因 =0,z= 得z=1 Y= 所以 z=1,Y=1 4.齒數(shù)比u== 5.計算接觸應力的根本值 = 1MPa 6.接觸應力 = =401MPa 7.彎曲應力的根本值 = YYYY = 8.齒根彎曲應力 =KKKK 1

50、 9.確定計算許用接觸應力時的各種系數(shù) l)壽命系數(shù)Z 因N10,查得Z=1 2)潤滑系數(shù)Z 因和=1282MPa 查得Z=1 3)速度系數(shù)Z 和=1282MPa 查得Z 4)粗糙度系數(shù)Z 因 =1282 MPa和齒面R6 查得Z 5)工作硬化系數(shù) 取 6)尺寸系數(shù) 查得Z 10.許用接觸應力 = Z Z Z ZZw Z =12821111 =1283MPa 11.接觸強度安全系數(shù)S S== 12.確定計算許用彎曲應力時的各種系數(shù) l)試驗齒輪的應力修正系數(shù)Y 2)壽命系數(shù)因N10,查得Y 3)相對齒根圓角敏感系數(shù)Y 由Y=

51、 2.65,查得Y 4)齒根外表狀況系數(shù)0.925(齒根R6= 37. 8) 5)尺寸系數(shù)Y 可按下式計算 Y= 13.許用彎曲應力 =YYYYY =3702111MPa 14.彎曲強度安全系數(shù)S S== 第3章 軸的設計計算 行星齒輪減速器結(jié)構特點:行星輪軸承安裝在行星輪,行星軸固定在行星架的行星輪軸孔中;輸出軸和行星架通過鍵聯(lián)接其支承軸承在減速器殼體,太陽輪通過雙聯(lián)齒輪聯(lián)軸器與高速軸聯(lián)接,以實現(xiàn)太陽輪浮動。太陽輪浮動原理如圖3-1所示: 圖3-1 太陽輪浮動原理 3.1 行星軸設計 1. 初算軸的最小直徑 在相對運動中,每個行星

52、輪軸承受穩(wěn)定載荷,當行星輪相對于行星架對稱布置時,載荷如此作用在軸跨距的中間。取行星輪與行星架之間的間隙,如此跨距長度。當行星輪軸在轉(zhuǎn)臂中的配合選為H7/h6時,就可以把它看成是具有跨距為的雙支點梁。當軸較短時,兩個軸承幾乎緊緊地靠著,因此,可以認為軸是沿著整個跨度承受均布載荷〔見圖3-2〕。 圖3-2 行星輪軸的載荷簡圖 危險截面〔在跨度中間〕的彎矩 Nmm =148538. Nmm 行星輪軸采用40Cr鋼,調(diào)質(zhì)MPa,考慮到可能的沖擊振動,取安全系數(shù);如此許用彎曲應力MPa=176MPa,故行星輪軸直徑 取 其實際尺寸將在選擇軸承時最

53、后確定。 2. 選擇行星輪軸軸承 在行星輪安裝兩個軸承,每個軸承上的徑向載荷 N =1614N 在相對運動中,軸承外圈以轉(zhuǎn)速 考慮到行星輪軸的直徑,以與安裝在行星輪體的軸承,其外廓尺寸將受到限制,故初步選用單列深溝球軸承6306型,其參數(shù)為 kN kN 〔油浴〕; 取載荷系數(shù) ; 當量動載荷 N=1937N; 軸承的壽命計算 h=97377h 根據(jù)設計要求,該減速器要求連續(xù)工作10年,每年按320天計算,每天按22小時計算,即h。所以設計決定選用6306型軸承,并把行星輪軸直徑增大到。 校核行星輪輪緣厚度是否大于許用值: = mm

54、式中 行星輪模數(shù)〔mm〕 mm 滿足條件>。 由于行星輪寬度mm,因此兩個軸承之間安裝一厚度為5mm,寬度為13mm的套筒。 3.2 轉(zhuǎn)軸的設計 3.2.1 輸入軸設計 1.初算軸的最小直徑 由下式 初步估算軸的最小直徑,選取軸材料為40Cr鋼,調(diào)質(zhì)處理。根據(jù)表3-2查得。 表3-2 軸常用幾種材料的與值 軸的材料 Q235-A、20 Q275、 35〔1Cr18Ni9Ti〕 45 40Cr、35SiMn 38SiMnMo / 15~25 20~35 25~45 35~55 149~126 135~112 126~103

55、 112~97 查表取=112,得 輸入軸的最小直徑安裝法蘭,該截面處開有鍵槽,軸頸增大5%~7%。 故 其實際尺寸將在選擇軸承時最后確定。 2.選擇輸入軸軸承 (1) 軸的結(jié)構設計 根據(jù)估算所得直徑,輪彀寬與安裝情況等條件,軸的結(jié)構尺寸可進展草圖設計。該軸中間一段對稱安裝一對深溝球軸承6217型,其尺寸為,可畫出輸入軸草圖〔如附圖03〕。 軸承的壽命計算 其參數(shù)為 kN kN 〔油浴〕; 取載荷系數(shù) ; 當量動載荷 N=3873N; 軸承的壽命計算 h=165258h>70400h 故該對軸承滿足壽命要求。 3.2.2 輸出軸設計 1

56、.初算軸的最小直徑 在三個行星輪均布的條件下,輪齒嚙合中作用于中心輪上的力是相互平衡的,在輸出軸軸端安裝膜片盤式聯(lián)軸器時,如此輸出軸運轉(zhuǎn)時只承受轉(zhuǎn)矩。輸出軸選用42CrMo合金鋼,其許用剪切應力MPa,即求出輸出軸伸出端直徑 Nmm =6114 Nmm 式中 —輸出軸轉(zhuǎn)矩; —齒輪嚙合傳動的效率,取=0.97。 2.選擇輸出軸軸承 由于輸出軸的軸承不承受徑向工作載荷〔僅承受輸出行星架裝置的自重〕,所示軸承的尺寸應由結(jié)構要求來確定。 輸出軸端,軸頸mm。 由于結(jié)構特點,輸出軸軸承須兼作行星架軸承。為了太陽輪安裝方便,使太陽輪能通過行星架輪轂中的孔,故輪轂孔的直徑應大

57、于太陽輪的齒頂圓直徑=99.076mm。 故按結(jié)構要求選用特輕系列單列深溝球軸承6030型,其尺寸為,可畫出行星架草圖〔如附圖03〕。 軸承的壽命計算 其參數(shù)為 kN kN 〔油浴〕; 取載荷系數(shù) ; 當量動載荷 N=5088N; 軸承的壽命計算 h=1600938h>70400h 故該軸承滿足壽命要求。 3.輸出軸上鍵的選擇與強度計算 平鍵連接傳遞轉(zhuǎn)矩時,其主要失效形式是工作面被壓潰。因此,通常只按工作面上的擠壓應力進展強度校核計算。普通平鍵連接的強度條件按〔3-2〕式計算 〔3-2〕 式中 -轉(zhuǎn)

58、矩,; -軸頸,mm; -鍵與輪轂鍵槽的接觸高度,,此處為鍵的高度,mm; -鍵的工作長度,mm,型鍵;型鍵;型鍵,其中為鍵的長度,為鍵的寬度; -許用擠壓應力,,在這里鍵材料為45鋼。其許用擠壓應力值按輕微沖擊算查相關資料的=100~120。 由前面計算知輸入轉(zhuǎn)矩Nm, 選用型鍵,其型號為, 將數(shù)值,, 鍵連接處的軸頸 =110mm代入式〔3-2〕得 < 故該鍵滿足強度要求。 第4章 行星架和箱體的設計 4.1 行星架的設計 4.1.1 行星架結(jié)構方案 轉(zhuǎn)臂x是行星齒輪傳動中的一個較重要的構件。一個結(jié)構合理的轉(zhuǎn)臂x應當是外廓尺寸

59、小,質(zhì)墾小,具有足夠的強度和剛度,動平衡性好,能保證行星輪間的載荷分布均勻,而且應具有良好的加工和裝配工藝。從而,可使行星齒輪傳動具有較大的承載能力、較好的傳動平穩(wěn)性以與較小的振動和噪聲。 由于在轉(zhuǎn)臂x上一般安裝有個行星輪的心軸或軸承,故它的結(jié)構較復雜,制造和安裝精度要求較高。尤其,當轉(zhuǎn)臂x作為行星街輪傳動的輸出根本構件時,它所承受的外轉(zhuǎn)矩最大,即承受著輸出轉(zhuǎn)矩。 目前,較常用的轉(zhuǎn)臂結(jié)構有雙側(cè)板整體式、雙側(cè)板分開式和單側(cè)板式三種類型。 1. 雙側(cè)板整體式轉(zhuǎn)臂 在行星輪數(shù) 2的2Z-X型傳動中,一般采用如圖3-16所示的雙側(cè)板整體式轉(zhuǎn)臂。 由于雙側(cè)板整體式轉(zhuǎn)臂的剛性較好,因此,它已獲得

60、較廣泛的應用。當傳動比(如2Z-X(A)的傳動比>4)較大時,行星輪的軸承一般應安裝在行星輪輪緣孔臂較合理。 對于尺寸較小的整體式轉(zhuǎn)臂結(jié)構,可以采用整休鍛造毛坯來制造,但其切削加工量較大。因此,對于尺寸較大的整體式轉(zhuǎn)臂結(jié)構,如此可采用鑄造和焊接的方法,以獲得形狀和尺寸較接近于實際轉(zhuǎn)臂的毛坯。但在制造轉(zhuǎn)臂的工藝過程中,應注意消除鑄造或焊接的應力和其他缺陷;否如此將會影響到轉(zhuǎn)臂的強度和剛度,而致使其產(chǎn)生較大的變形,從而,影響行星齒輪機構的正常運轉(zhuǎn)。在此,還應該指出的是:在加工轉(zhuǎn)臂時,應盡可能提高轉(zhuǎn)臂x上的行星輪心軸孔〔或軸承孔〕的位置精度和同軸度 圖4-1 雙側(cè)板整體式轉(zhuǎn)臂 2

61、. 雙側(cè)板分開式轉(zhuǎn)臂 雙側(cè)板分開式轉(zhuǎn)臂(見圖4-1)的結(jié)構特點是將一塊側(cè)板裝配到另一塊側(cè)板上,故又稱之為裝配式轉(zhuǎn)臂;其結(jié)構較復雜。這主要與行星齒輪傳動機構的安裝工藝有關。當傳動比擬小,例如,2Z-X(A)型的傳動比<4時,因行星輪的直徑較小,行星輪的軸承通常需要安裝在轉(zhuǎn)臂的側(cè)板孔。此時,采用雙側(cè)板分開式的轉(zhuǎn)臂,可使其裝配較方便。 在雙側(cè)板整體式和雙側(cè)板分開式轉(zhuǎn)臂中,均可采用連接板(連接塊)將兩塊側(cè)板連接在一起。這樣的連接方式便于安裝和拆卸。轉(zhuǎn)臂x中所需連接板的數(shù)目一般應等于行星輪數(shù)。 圖4-2 雙側(cè)板分開式轉(zhuǎn)臂 3. 單側(cè)板式轉(zhuǎn)臂 由圖4-3可見,單側(cè)板式轉(zhuǎn)臂的結(jié)構較簡

62、單。但最明顯的缺點是其行星輪為懸臂布置,受力情況不好。轉(zhuǎn)臂x上安裝行星輪的軸應按懸臂梁計算,軸徑d應按彎曲強度和剛度確定。軸徑與轉(zhuǎn)臂x上軸孔之間的配合長度,一般可按關系式選取。軸與孔應采取過盈配合,如采取H和H的配合。 圖4-3 單側(cè)板式轉(zhuǎn)臂 綜上所述:由于雙側(cè)板整體式轉(zhuǎn)臂的剛性較好,又因2Z-X型的傳動比=5.5>4,故在此情況下本設計采用這種結(jié)構類型的轉(zhuǎn)臂。 4.1.2 行星架制造精度 由于在轉(zhuǎn)臂x上支承和安裝著3個行星輪的心軸,因此,轉(zhuǎn)臂x的制造精度對行星齒輪傳動的工作性能、運動的平穩(wěn)性和行星輪間載荷分布的均勻性等都有較大的影響。在制定其技術條件時,應合理地提出精

63、度要求,且嚴格地控制其形位偏差和孔距公差等。 1. 中心距極限偏差 在行星齒輪傳動中,轉(zhuǎn)臂x上各行星輪軸孔與轉(zhuǎn)臂軸線的中心距偏差的大小和方向,可能增加行星輪的孔距相對誤差和轉(zhuǎn)臂x的偏心量,且引起行星輪產(chǎn)生徑向位移;從而影響到行星輪的均載效果。所以,在行星齒輪傳動設計時,應嚴格地控制中心距極限偏差值。要求各中心距的偏差大小相等、方向一樣;一般應控制中心距極限偏差=0.01~0.02mm的圍。該中心距極限偏差之值應根據(jù)巾心距值,按齒輪精度等級按照 表4-1選取。 表4-1 中心距極限偏差 精度等級 齒輪副的中心距a >18 >30 >50 >80

64、 >120 >180 >250 >315 IT8 IT9 26 31 23 37 27 50 36 65 70 2. 各行星輪軸孔的孔距相對偏差 由于各行星輪軸孔的孔距相對偏差對行星輪間載荷分布的均勻性影響很大,故必須嚴格控制值的大小。而值主要取決于各軸孔的分度誤差,即取決于機床和工藝裝備的精度。一般,值可按下式計算,即 括號中的數(shù)值,高速行星齒輪傳動取小值,一般中低速行星傳動取較大值。 3. 轉(zhuǎn)臂x的偏心誤差 轉(zhuǎn)臂x的偏

65、心誤差,推薦值不大于相鄰行星輪軸孔的孔距相對偏差的1/2,即 4. 各行星輪軸孔平行度公差 各行星輪軸孔對轉(zhuǎn)臂x軸線的平行度公差和可按相應的齒輪接觸精度要求確定,即和是控制齒輪副接觸精度的公差,其值可按下式計算,即 = = 式中和—在全齒寬上方向和方向的軸線平行度公差,;按GB/T10095—1988選取。 —轉(zhuǎn)臂x上兩臂軸孔對稱線(支點)間的距離。 —齒輪寬度。 5. 平衡性要求 為了保證行星齒輪傳動運轉(zhuǎn)的平穩(wěn)性,對中、低速行星傳動的轉(zhuǎn)臂x應進展靜平衡;一般,許用不平衡力矩可按表4-2選取。對于高速行星傳動,其轉(zhuǎn)臂x應在其.上全部零件裝配完成

66、后進展該部件的動平衡。 表4-2轉(zhuǎn)臂x許用不平衡力矩 轉(zhuǎn)臂外圓直徑 <200 200~300 350~500 許用不平衡力矩 /N 6. 浮動構件的軸向間隙 如前所述,在行星齒輪傳動中,上述各根本構件(中心輪a, b以與轉(zhuǎn)臂x)均可以進展浮動,以便使其行星輪間載荷均勻分布。但是,在進展各浮動構件的結(jié)構設計時,應注意在每個浮動構件的兩端與其相鄰零件間需留有一定的軸向間隙,通常,選取軸向間隙=0.5~1.5mm,否如此,使相鄰兩零件接觸后,不僅會影響浮動和均載效果,而且還會導致摩擦發(fā)熱和產(chǎn)生噪聲。軸向間隙的大小通常是通過控制有關零件軸向尺寸的制造偏差和裝配時固定有關零件的軸向位置或修配有關零件的端面來實現(xiàn)。對于小尺寸、小規(guī)格的行星齒輪傳動其軸向間隙可取小值,對于較大尺寸、大規(guī)格的行星傳動其軸向間隙可取較大值。 4.2 箱體的設計 機體是上述各根本構件的安裝根底,也是行星齒輪傳動中的重要組成局部。在進展機體的結(jié)構設計時,要根據(jù)制造工藝、安裝工藝和使用維護與經(jīng)濟性等條件來決定其具體的結(jié)構型式。 對于單件生產(chǎn)和要求質(zhì)量較輕的非標準行

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!