秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)

上傳人:xu****n 文檔編號(hào):97288737 上傳時(shí)間:2022-05-27 格式:DOC 頁(yè)數(shù):5 大?。?8.52KB
收藏 版權(quán)申訴 舉報(bào) 下載
2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)_第1頁(yè)
第1頁(yè) / 共5頁(yè)
2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)_第2頁(yè)
第2頁(yè) / 共5頁(yè)
2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)_第3頁(yè)
第3頁(yè) / 共5頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2015《創(chuàng)新大課堂》高三人教版數(shù)學(xué)(理)一輪復(fù)習(xí)課時(shí)作業(yè):第3章 第3節(jié) 三角函數(shù)圖象與性質(zhì)(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、課時(shí)作業(yè) 一、選擇題 1.函數(shù)y= 的定義域?yàn)? (  ) A. B.,k∈Z C.,k∈Z D.R C [∵cosx-≥0,得cos x≥, ∴2kπ-≤x≤2kπ+,k∈Z.] 2.已知函數(shù)f(x)=sin(ω>0)的最小正周期為π,則函數(shù)f(x)的圖象的一條對(duì)稱軸方程是 (  ) A.x=         B.x= C.x= D.x= C [由T=π=得ω=1,所以f(x)=sin, 則f(x)的對(duì)稱軸為2x-=+kπ(k∈Z), 解得x=+(k∈Z), 所以x=為f(x)的一條對(duì)稱軸.] 3.(2012·山東高考)函數(shù)y=2sin(0≤x≤9)的最

2、大值與最小值之和為 (  ) A.2- B.0 C.-1 D.-1- A [當(dāng)0≤x≤9時(shí),-≤-≤,-≤sin ≤1,所以函數(shù)的最大值為2,最小值為-,其和為2-.] 4.已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若f=-2,則f(x)的一個(gè)單調(diào)遞減區(qū)間是 (  ) A. B. C. D. C [由f=-2,得f=-2sin=-2sin=-2,所以sin=1. 因?yàn)閨φ|<π,所以φ=. 由2kπ-≤2x+≤2kπ+,k∈Z, 解得kπ-≤x≤kπ+,k∈Z.] 5.已知函數(shù)f(x)=2sin ωx(ω>0)在區(qū)間上的最小值是-2,則ω

3、的最小值等于 (  ) A. B. C.2 D.3 B [∵x∈,則ωx∈,要使函數(shù)f(x)在上取得最小值-2,則-ω≤-或ω≥,得ω≥,故ω的最小值為.] 6.(2014·北京海淀模擬)已知函數(shù)f(x)=cos2x+sin x,那么下列命題中是假命題的是 (  ) A.f(x)既不是奇函數(shù)也不是偶函數(shù) B.f(x)在[-π,0]上恰有一個(gè)零點(diǎn) C.f(x)是周期函數(shù) D.f(x)在上是增函數(shù) B 二、填空題 7.函數(shù)y=cos的單調(diào)減區(qū)間為_(kāi)_______. 解析 由y=cos=cos得 2kπ≤2x-≤2kπ+π(k∈Z), 故kπ+≤x≤kπ+(k

4、∈Z). 所以函數(shù)的單調(diào)減區(qū)間為(k∈Z) 答案 (k∈Z) 8.已知函數(shù)f(x)=5sin (ωx+2)滿足條件f(x+3)+f(x)=0,則正數(shù)ω=________. 答案  9.如果函數(shù)y=3cos(2x+φ)的圖象關(guān)于點(diǎn)中心對(duì)稱,那么|φ|的最小值為_(kāi)_______. 解析 ∵y=cos x的對(duì)稱中心為(k∈Z), ∴由2×+φ=kπ+(k∈Z),得φ=kπ-(k∈Z). ∴當(dāng)k=2時(shí),|φ|min=. 答案  三、解答題 10.設(shè)f(x)=. (1)求f(x)的定義域; (2)求f(x)的值域及取最大值時(shí)x的值. 解析 (1)由1-2sin x≥0,根據(jù)正

5、弦函數(shù)圖象知:定義域?yàn)? (2)∵-1≤sin x≤1,∴-1≤1-2sin x≤3, ∵1-2sin x≥0,∴0≤1-2sin x≤3, ∴f(x)的值域?yàn)閇0,],當(dāng)x=2kπ+,k∈Z時(shí),f(x)取得最大值. 11.已知函數(shù)f(x)=2sin(π-x)cos x. (1)求f(x)的最小正周期; (2)求f(x)在區(qū)間上的最大值和最小值. 解析 (1)∵f(x)=2sin(π-x)cos x=2sin xcos x=sin 2x, ∴函數(shù)f(x)的最小正周期為π. (2)∵-≤x≤, ∴-≤2x≤π,則-≤sin 2x≤1. 所以f(x)在區(qū)間上的最大值為1,最小值為-. 12.(2012·北京高考)已知函數(shù)f(x)=. (1)求f(x)的定義域及最小正周期; (2)求f(x)的單調(diào)遞增區(qū)間. 解析 (1)由sin x≠0得x≠kπ(k∈Z), 故f(x)的定義域?yàn)閧x∈R|x≠kπ,k∈Z}. 因?yàn)閒(x)==2cos x(sin x-cos x) =sin 2x-cos 2x-1=sin-1, 所以f(x)的最小正周期T==π. (2)函數(shù)y=sin x的單調(diào)遞增區(qū)間為(k∈Z). 由2kπ-≤2x-≤2kπ+,x≠kπ(k∈Z), 得kπ-≤x≤kπ+,x≠kπ(k∈Z). 所以f(x)的單調(diào)遞增區(qū)間為和(k∈Z).

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!