畢業(yè)設(shè)計(jì)(論文)任務(wù)書 填表時間: 年 月 日 (指導(dǎo)教師填表)學(xué)生姓名 專業(yè)班級 機(jī)制 指導(dǎo)教師 課題 類型 工程設(shè)計(jì)題目 NGW 行星減速器的結(jié)構(gòu)設(shè)計(jì)主要研究目標(biāo)(或研究內(nèi)容 )研究 NGW 型行星減速器的傳動原理,熟悉基本的設(shè)計(jì)流程,獨(dú)立完成功率 P=10KW、傳動比 i=4.、輸入轉(zhuǎn)速 n=1000rpm 行星減速器的結(jié)構(gòu)設(shè)計(jì);并對減速器的齒輪、軸、軸承等進(jìn)行強(qiáng)度校核;根據(jù)計(jì)算結(jié)果完成減速器裝配圖及零件圖的繪制,并編寫設(shè)計(jì)說明書。(另加載荷系數(shù) 1.25 按一級設(shè)計(jì))課題要求、主要任務(wù)及數(shù)量(指圖紙規(guī)格、張數(shù),說明書頁數(shù)、論文字?jǐn)?shù)等)設(shè)計(jì)出結(jié)構(gòu)合理的 NGW 行星減速器,對齒輪、軸、軸承進(jìn)行強(qiáng)度校核計(jì)算,根據(jù)計(jì)算結(jié)果完成行星減速器的裝配圖和零件圖繪制;完成0#圖紙的設(shè)計(jì)工作量,要求對尺寸完整,公差及表面粗糙度標(biāo)注合理、正確,圖紙符合制圖標(biāo)準(zhǔn);撰寫符合洛陽理工學(xué)院畢業(yè)設(shè)計(jì)要求的設(shè)計(jì)說明書,外文資料譯文字?jǐn)?shù)符合要求,譯文正確。進(jìn)度計(jì)劃1—3 周 查閱資料、英文翻譯、完成開題報告4—7 周 進(jìn)行結(jié)構(gòu)設(shè)計(jì)和尺寸計(jì)算8—11 周 繪制總體裝配圖、零件圖12---13 周 撰寫設(shè)計(jì)說明書14 周 準(zhǔn)備答辯主要參考文獻(xiàn)1. 徐 機(jī)械設(shè)計(jì)手冊【M】 (第二版、第三卷、第四卷) ,機(jī)械工業(yè)出版社,2000.2. 漸開線齒輪行星傳動的設(shè)計(jì)與編造委員會。漸開線齒輪行星傳動的設(shè)計(jì)與制造【M】 。2002,43. 濮良貴。機(jī)械設(shè)計(jì) 第八版【M】.北京:高等教育出版社,200054. 孫恒,陳作模.機(jī)械原理 第七版【M】.北京:高等教育出版社,20065. 吳宗澤,羅圣國.機(jī)械設(shè)計(jì)課程設(shè)計(jì)手冊【M】.北京;高等教育出版社,20066. 饒振剛.行星齒輪傳動設(shè)計(jì)【M】.北京:化學(xué)工業(yè)出版社 20037. 馬從謙,陳自修.漸開線行星齒輪傳動設(shè)計(jì)【M】.北京,機(jī)械工業(yè)出版社,19878. 馬從謙,陳自修.漸開線行星齒輪傳動設(shè)計(jì)【M】.北京,機(jī)械工業(yè)出版社,19879.指導(dǎo)教師簽字: 教研室主任簽字: 年 月 日 行星的發(fā)展減少電機(jī)與機(jī)械動力監(jiān)測和網(wǎng)絡(luò)能力在 Jang 和 Kwee-Bo Sim*摘要: 這篇文章描述有用的方式測量適應(yīng)的扭矩和 RPM 馬達(dá)。 為此我們做了行星行星減速器包括 2 個霍爾傳感器它和監(jiān)控系統(tǒng)。 監(jiān)控系統(tǒng)顯示感覺的價值(扭矩, rpm)并且故意的價值 (力量)和它也有網(wǎng)絡(luò)能力使用 Bluetooth 協(xié)議。 我們表示,我們的解答是更多低廉和簡單的方法措施扭矩和 rpm 比以前。主題詞: 霍爾傳感器,行星減少馬達(dá),遙遠(yuǎn)的顯示器,扭矩。1. 介紹當(dāng)馬達(dá)轉(zhuǎn)動時,扭矩和 rpm 是變化作為裝載或駕駛的狀態(tài)連接通過減少單位改變。 相反,你可能監(jiān)測裝載或駕駛的變動狀態(tài)以測量的馬達(dá)扭矩方式和 rpm. 對扭矩和 rpm 測量的申請包括確定功率引擎,馬達(dá)、渦輪,或者其他轉(zhuǎn)動的設(shè)備引起或消耗。 在工業(yè)界, ISO 9000 和其他質(zhì)量管理規(guī)格現(xiàn)在要求測量扭矩的公司在制造業(yè)期間,特別是,當(dāng)緊固件是應(yīng)用的[1]。傳感器做必需的扭矩和 rpm 自動測量在螺絲和匯編機(jī)器,和可以增加到手工具。 在兩個盒,收集的數(shù)據(jù)在數(shù)據(jù)可以被積累日志記錄器為質(zhì)量管理和報告目的。扭矩傳感器的其他工業(yè)應(yīng)用包括測量的金屬撤除率在機(jī)器工具; 扭矩工具和傳感器的定標(biāo);測量的果皮力量、摩擦和瓶蓋扭矩 ;測試的春天; 并且做生物動態(tài)措施 ments。 有扭矩測量方法使用張力測量儀和橋式電路。 可以安裝應(yīng)變儀直接地在軸。 由于軸是轉(zhuǎn)動,扭矩傳感器可以連接到它的電源并且信號波形加工電子通過滑動環(huán)。應(yīng)變儀可以通過變壓器也連接,消滅對高效維護(hù)滑動環(huán)的需要。用于扭矩測量的應(yīng)變儀包括箔、散開的半導(dǎo)體和薄膜類型。這些可以連接直接地軸焊接或膠粘劑[1]。但是,因?yàn)檫@是聯(lián)絡(luò)方法,它有生活是依賴于轉(zhuǎn)動的速度和使用的時間。如此這系統(tǒng)需求在一些的替換零件或整體系統(tǒng)為維護(hù)。 并且這系統(tǒng)也是相對地大和昂貴的,要求在先的討厭的過程。測量方法在 rpm 測量可以是劃分成 3 個主要小組; 機(jī)械,光學(xué)和頻閃觀測的測量方法[4]。機(jī)械方法是聯(lián)絡(luò)方法和有某一缺點(diǎn),但這個方法是寂靜的為低革命頻繁地使用在 20 之間和 20,000 轉(zhuǎn)每分鐘。 光學(xué) rpm 測量是最普遍的并且有測定范圍的 0 對 100,000rpm。自轉(zhuǎn)被傳達(dá)給測量儀器通過來自儀器的紅外線射線由一卷反射性磁帶在對象然后反射。頻閃觀測的測量方法使用頻閃觀測的原則和有清楚的好處其他測量方法使用機(jī)械或光學(xué)傳感器; 運(yùn)用這個方法測量是可能的非常小對象 rpm 或在不能進(jìn)入的地方。它有測定范圍的 100 對 20,000rpm。在本文,我們提出另非與方法聯(lián)系使用測量扭矩和 rpm 霍爾效應(yīng)傳感器. 我們做了減少馬達(dá)使用行星訓(xùn)練并且投入霍爾效應(yīng)傳感器在它。 這個電動機(jī)組也有監(jiān)視可能通過測量扭矩和 rpm 的系統(tǒng)霍爾效應(yīng)傳感器。 這個監(jiān)控系統(tǒng)包括無線通信的作用與一臺遠(yuǎn)程服務(wù)器使用 Bluetooth 協(xié)議。 它可以給電動機(jī)組遠(yuǎn)程存取點(diǎn)。2. 扭矩和 rpm 測量2.1. 關(guān)于行星火車的特殊性能多數(shù)馬達(dá)在它的中軸有減少單位增加扭矩或減少不能的速度體會在單獨(dú)馬達(dá)。 在許多應(yīng)用,你使用各種各樣得到期望扭矩和速度傳動箱以調(diào)整減速比。有許多傳動箱,但角色行星火車越來越成為重要現(xiàn)今。 此提議的方法研究是實(shí)際情形用行星傳動箱。很明顯的優(yōu)勢,行星齒輪火車是更高的扭矩容量,更小的尺寸,更低重量和提高效率特性研究行星設(shè)計(jì)。規(guī)模小和模塊化施工行星齒輪火車,也意味著它們可以拼裝分幾個階段進(jìn)行,提供高還原能力,從一個高度緊湊封裝。因此,行星齒輪火車是可取的辦法,在許多方面,如車輪和絞車驅(qū)動,也回轉(zhuǎn)硬盤大轉(zhuǎn)折直徑 cogged 項(xiàng)目需要慢運(yùn)動非常高的負(fù)荷[ 3 ] 。圖。 1 所示的一般結(jié)構(gòu),行星齒輪列車。特別企劃約行星齒輪列車它們可以產(chǎn)生不同的齒輪比視乎其中齒輪您使用作為投入,其中齒輪你利用作為產(chǎn)出,其中,你仍然持有。在所提出的方法這個研究中,我們考慮發(fā)生這種情況的投入是太陽齒輪,而我們舉行齒圈文具和重視的輸出軸向星球的載體。當(dāng)然,這是可能的運(yùn)用我們法,以其他案件;孫齒輪靜止或行星承運(yùn)人平穩(wěn)。2.2 .基本思路為測量扭矩在齒輪火車,齒圈是固定到房屋由一個彈性材料。當(dāng)電動機(jī)轉(zhuǎn)動,其負(fù)荷,使部分應(yīng)變之間的靜止元(齒圈)和旋轉(zhuǎn)要素(太陽齒輪和行星承運(yùn)人)由行動反應(yīng)部隊(duì)。這株推出彈性材料,然后,它使一些位移相對應(yīng),其扭矩。與普通方法測量應(yīng)變本身,我們試圖偵測位移所致由應(yīng)變和結(jié)構(gòu)的特點(diǎn),本行星齒輪火車。我們可以測量這個位移用霍爾傳感器和磁鐵對。2.3 .測量扭矩在許多應(yīng)用中,線性霍爾效應(yīng)傳感器是配合使用永久磁鐵。至最大限度地線性度,一個大的變化,在電場強(qiáng)度比所需的位移,是理想的。謹(jǐn)慎選擇該磁體和方式安置這磁石,將付出很大的紅利。高品質(zhì),高場強(qiáng)磁體一般需要在大多數(shù)線性傳感應(yīng)用。表 1 顯示了一些基本的磁鐵特性特別是磁鐵類型和釤鈷或磁鋼八磁體推薦[ 6 ] 。有一些方法結(jié)合起來,磁鐵與霍爾傳感器。圖。 2 顯示幻燈片式傳感方法采用單磁鐵這是一個不復(fù)雜的方法獲取線性輸出電壓與滑動式運(yùn)動。顯示圖。 2 ,取決于地點(diǎn)該傳感器的相對零場中心的磁石,消極和積極輸出可以制作中心部分的產(chǎn)量是非常線性的。為我們的霍爾傳感器,該傳感器的輸出電壓在該中心的磁鐵是vcc / 2 。顯示圖。 3 ,適當(dāng)?shù)拇盆F,在規(guī)模和磁力,可直接安裝于齒圈。我們作出了一個洞就齒圈支持者(彈性材料)與單純重視的霍爾傳感器??諝庵械牟罹鄠鞲衅骱痛盆F另一個重要因素,良好的靈敏度??傮w而言,最薄弱的磁體(靈活)將一般運(yùn)行在 0.25 毫米至 2 毫米范圍內(nèi),而最強(qiáng)(釹或釤鈷)可能會讓空氣間隙為 4 毫米至 6 毫米。該霍爾傳感器的輸出電壓成為香港藝術(shù)發(fā)展局通過輸入放大器的監(jiān)測系統(tǒng)。關(guān)系位移和扭矩也不同與汽車大小,電容和類型等,所以我們應(yīng)該得出關(guān)系方程或甩(查找表)衡量每機(jī)械位移,從各種參考道具扭矩。我們認(rèn)為甩補(bǔ)償非線性特性的霍爾傳感器及其他未知因素。2.4 .測量 RPM顯示圖。 3 ,我們注重妥善磁鐵對地球的載體和內(nèi)容,其他大廳傳感器對對方的磁鐵。由于電動機(jī)轉(zhuǎn)動,磁鐵附上對行星的載體,也是旋轉(zhuǎn),這是經(jīng)過對固定霍爾傳感器每旋轉(zhuǎn)。輸出電壓霍爾本霍爾傳感器成為比較投入的監(jiān)管制度。圖。 4 顯示了另一種滑動式傳感方法測量 rpm 的。相圖。2 ,霍爾傳感器在圖。 4 滑動對南極的磁鐵。如果比較器輸入值超過參考值,計(jì)數(shù)旗將設(shè)置;跌破參考值,計(jì)數(shù)國旗,將被清拆。我們可以計(jì)算出轉(zhuǎn)與時間間隔這種計(jì)數(shù)國旗的時期。我們也可以取代霍爾效應(yīng)傳感器霍爾效應(yīng)開關(guān)或霍爾集成電路[ 5,7 ] ?;魻栭_關(guān)綜合比較與預(yù)定義開關(guān)點(diǎn)和一個數(shù)字輸出可適應(yīng)不同的邏輯系統(tǒng)。所有大廳交換機(jī)包括:開漏輸出晶體管,需要有一個外部拉了電阻,電源電壓無關(guān)。一個標(biāo)準(zhǔn)的音樂廳開關(guān)有一個單一的大廳板塊和響應(yīng)有關(guān)絕對值磁場垂直該板塊。該霍爾開關(guān)的特點(diǎn)是磁轉(zhuǎn)轍器樂隊(duì)(或國際收支) ,博夫(或 brpn ) 。如果磁通量超過茂時,輸出晶體管開動;跌破,博夫,晶體管關(guān)掉。磁滯 bhys 是區(qū)別的轉(zhuǎn)轍器樂隊(duì)和,博夫。3 .計(jì)算扭矩, rpm 和力3.1 .輸出力矩測量扭矩是校準(zhǔn)輸出數(shù)據(jù)由藝發(fā)局利用關(guān)系方程或甩和輸出扭矩是最后的展示價值確定按下列公式,從測量扭矩。以=噸架z3 1 +架z3 ) /架z3 , ( 1 )到:輸出扭矩展示t3的:測量扭矩z1 :有多少牙齒的太陽齒輪架z3 :有多少牙齒的齒圈3.2 .測量RPM (w o)作為計(jì)數(shù)輸出脈沖的霍爾傳感器或音樂廳開關(guān),我們可以很容易地計(jì)算出轉(zhuǎn)的馬達(dá)。不同的霍爾效應(yīng)傳感器,霍爾效應(yīng)開關(guān)已好處就是可以直接連上微控制器輸入端口沒有額外的電路喜歡比較,因?yàn)樗鼈兊妮敵龌魻栯妷弘x散的脈搏。但由于霍爾開關(guān)其特點(diǎn)是磁性開關(guān)點(diǎn)樂隊(duì)和,博夫,我們不能更改的參考價值或開關(guān)站。 測量rpm的值,可以作為代表以下方程。 To= T z3 1+ z3) / z3, (1) To: 輸出扭矩展示T3 : 測量扭矩z1 : 有多少牙齒太陽齒輪z3 : 有多少牙齒的齒圈3.3.發(fā)射功率(W)該發(fā)射功率往往成為更為有用重要措施,比其他任何展示價值可乘以輸出扭矩和rpm 。W= To wo. (3) 4 .監(jiān)控系統(tǒng)4.1 .主板圖。 6 顯示框圖監(jiān)測制度。這是簡單而組成的 3 條主要部件;霍爾傳感數(shù)據(jù)輸入和處理部分,其中包括中央處理器,通訊部分,而且用戶界面的一部分包括液晶顯示器和按鍵?;魻杺鞲袛?shù)據(jù)輸入部分,有一個放大器藝發(fā)局測量扭矩,并作比較測量 rpm 的。特別是參考電壓為測量 rpm 的,是需要變,為消除干擾噪聲。其中的噪音干擾,可被磁鐵產(chǎn)生的磁通從汽車本身當(dāng)電動機(jī)轉(zhuǎn)動。我們會設(shè)法消除這種噪音在地控制閾值設(shè)定轉(zhuǎn)計(jì)數(shù)旗。因此,我們用一個可變電阻調(diào)整適當(dāng)?shù)膮⒖家庖姟?.2 .聯(lián)網(wǎng)能力它是趨于昂貴的測量系統(tǒng)有自己的通信環(huán)境是否他們是有線或無線。其中, rs232 串口通信是目前最流行的和基本的,在許多工業(yè)應(yīng)用。但流動系統(tǒng)是越來越重要的今天。特別是無處不在的環(huán)境正成為非常大的問題。在我們的研究中,我們把自己的監(jiān)測系統(tǒng),以具有無線通信能力,通過藍(lán)牙模塊。我們作出的監(jiān)察制度,以重視對汽車股盡可能緊湊。這個監(jiān)控系統(tǒng)只是收集大廳傳感器輸出的價值觀和傳達(dá)他們的原始資料,以個人電腦或筆記型電腦透過無線通訊。用戶可以監(jiān)測其最后的數(shù)據(jù)處理微機(jī)。它并不難,擴(kuò)大遠(yuǎn)程監(jiān)控,以對互聯(lián)網(wǎng)基礎(chǔ)與 tcp / ip 。藍(lán)牙技術(shù)是一種利用技術(shù)在短距離( 10 米)無線電聯(lián)系,打算取代有線( )連接便攜式和/或固定電子設(shè)備等。其關(guān)鍵特點(diǎn)是耐用性,低復(fù)雜度,低功耗成本低。設(shè)計(jì)運(yùn)行環(huán)境噪音的頻率環(huán)境中,藍(lán)牙收音機(jī)使用一種快速確認(rèn)和跳頻計(jì)劃使環(huán)節(jié),競爭力不強(qiáng)。藍(lán)牙無線通信模塊,操作在 2.4ghz 和避免干擾其它信號由跳躍到一個新的頻率后,轉(zhuǎn)遞或收到一包。藍(lán)牙技術(shù)還可以很容易形成一個微微網(wǎng),其中有碩士和 7 個奴隸[ 10 ] 。在許多工業(yè)應(yīng)用中,大多數(shù)系統(tǒng),可以有很多汽車,而不是只有一個,每個電機(jī)有一個與其他汽車公司。就這樣的環(huán)境,該微微網(wǎng)內(nèi)使用藍(lán)牙技術(shù)將提供若干其他優(yōu)勢以及遠(yuǎn)程監(jiān)控功能和這是另一個原因,我們認(rèn)為藍(lán)牙在我們的研究。5 .實(shí)驗(yàn)5.1.實(shí)驗(yàn)我們選擇了 atmega128 的勵磁調(diào)節(jié)器作為中央處理器,因?yàn)樗?10位 adc 和片上模擬比較器。該 atmega128 的還支持差分輸入渠道,它具有可編程增益的 10 倍和 200x 的,因此,我們可以放大霍爾傳感器的輸出力矩 10 ×前/模數(shù)轉(zhuǎn)換。主要特點(diǎn)實(shí)驗(yàn)局;CPU : ATmega128,ADC : 10-bit resolution with gain 10x on CPU, LCD : character LCD type,KEY : 2 keys,COMM.: 422MHz RF Module.我們想用藍(lán)牙模塊,但對于容易使用后,射頻模組,是先在我們的實(shí)驗(yàn)。執(zhí)行的,藍(lán)牙技術(shù)是闊葉明年一步。我們實(shí)驗(yàn)中,我們已研制出轉(zhuǎn)矩傳感器模塊構(gòu)成的霍爾傳感器和 2 磁鐵對。其基本思想是我們的扭矩傳感器 需由光電傳感器構(gòu)成的發(fā)射器和接收器對。圖。 7 顯示結(jié)構(gòu),我們力矩傳感器和無花果。8 顯示特性霍爾輸出電壓推拉辦法[ 6 ] 。在案件的推拉方式,傳感器動作兩磁鐵。補(bǔ)充領(lǐng)域提供一個線性的,陡坡耕地產(chǎn)量。產(chǎn)量近軌至軌(接地至 vcc )與極性取決于磁鐵方向。在我們的實(shí)驗(yàn)中,位移的轉(zhuǎn)矩約 0.25 毫米在 29.4 nm 左右。6 .結(jié)論一種方法來衡量機(jī)械轉(zhuǎn)矩開發(fā)電動汽車是建議。扭矩測量方法試行本學(xué)習(xí)是減少的情況,當(dāng)輸入的是孫齒輪,而我們掌握齒圈文具和重視輸出軸,以該星球的載體。另一種是過載情況下,當(dāng)輸入的是星球的載體,我們抓住了齒圈文具和附上輸出軸,以太陽齒輪。我們可以運(yùn)用我們的方法,不是向齒圈平穩(wěn)的情況外,也有其他的案件;孫齒輪文具和行星承運(yùn)人平穩(wěn)。所建議的方法很簡單,非常小 很便宜,在測量功率包括扭矩和 rpm的汽車。這方法不需要添加劑保養(yǎng),因?yàn)檫@是該非接觸式的方法。此外,對實(shí)驗(yàn)中,我們的非接觸式方法降低振動和噪聲的汽車遠(yuǎn)不止我們作出的。這是因?yàn)槭褂脧椥圆牧线@也意味著,我們可以測量扭矩更多正好,我們可以擴(kuò)大我們的應(yīng)用范圍更比較普遍。在這個情況下,測量扭矩或功率重要的是,我們的解決方案不僅是簡單和便宜而且還可以舉一個實(shí)例進(jìn)行監(jiān)管價值觀。即時監(jiān)測功率,扭矩和 rpm 通過無線通信是非常有用的并有多種應(yīng)用。事實(shí)上,我們可以作汽車股較小的廣泛應(yīng)用,我們像機(jī)器人手指來控制力量。一般來說,行星齒輪火車比較昂貴,比平常多級齒輪箱。但值得以取代以往的多級齒輪箱我國行星齒輪傳動,具有遠(yuǎn)程監(jiān)控能力和添加劑的優(yōu)勢??傊?,我們的解決方案具有很強(qiáng)的點(diǎn)尺寸,成本和無線通訊。所以它可以提供許多應(yīng)用在工業(yè)領(lǐng)域和延長申請的是依賴于用戶的想象力。此外,使用的微微網(wǎng)或散射凈我們的運(yùn)動單位,將作其它用途。Development of Planetary Reduction Motor with Mechanical Power Monitoring and Network CapabilityIn-hun Jang and Kwee-Bo Sim*Abstract: This article describes the useful way to measure the torque and RPM of the gearedmotor. For this we have made the planetary geared reduction motor including 2 Hall sensors in it and the monitoring system. The monitoring system displays the sensing values (torque, rpm) and the calculated value (power) and it also has the network capability using the Bluetooth protocol. We will show that our solution is much more inexpensive and simple method to measure torque and rpm than before.Keywords: Hall sensor, planetary reduction motor, remote monitor, torque.1. INTRODUCTIONWhen the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor changes of the loads or the driving status in the manner of measuring motor torque and rpm. Applications for torque and rpm measurement sinclu de determining the amount of power an enginemotor, turbine, or other rotating device generates or consumes. In the industrial world, ISO 9000 and other quality control specifications are now requiring companies to measure torque during manufacturing, especially when fasteners are applied [1].Sensors make the required torque and rpm measurements automatically on screw and assembly machines, and can be added to hand tools. In both cases, the collected data can be accumulated on data loggers for quality control and reporting purposes.Other industrial applications of torque sensors include measuring metal removal rates in machine tools; the calibration of torque tools and sensors; measuring peel forces, friction, and bottle cap torque; testing springs; and making bio-dynamic measurements.There is a torque measuring method using the strain gauge and bridge circuit. A strain gage can be installed directly on a shaft. Because the shaft is rotating, the torque sensor can be connected to its power source and signal conditioning electronics via a slip ring. The strain gage also can be connected via a transformer, eliminating the need for high maintenance slip rings. Strain gages used for torque measurements include foil, diffused semiconductor, and thin film types. These can be attached directly to the shaft by soldering or adhesives [1].But, because this is a contact method, it has the lifetime which is dependent on rotating velocity and used time. So this system demands on replacement of some parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process.The measuring method in rpm measurement can be divided into 3 main groups; mechanical, optical and stroboscopic measuring methods [4].The mechanical method is the contact method and has the some disadvantage, but this method is still frequently used for low revolutions between 20 and20,000 rpm.The optical rpm measurement is the most popular and has the measuring range of 0 to 100,000rpm. The rotation is transmitted to the measuring instrument via infra red light beam coming from the instrument which is then reflected by a reflective tape on the object.The stroboscopic measuring method uses the stroboscopic principle and has clear advantages over other measuring methods using mechanical or optical sensors; using this method it is possible to measure the rpm of very small objects or in inaccessible places. It has the measuring range of 100 to 20,000rpm.In this paper, we are going to propose another non contact method to measure torque and rpm using the Hall effects sensor. We have made reduction motor using planetary gear trains and put the Hall effects sensor in it. This motor unit also has the monitoring system that can measure the torque and rpm through the Hall effects sensors. This monitoring system includes the function of wireless communication with a remote server using Bluetooth protocol. It gives a motor unit to have the remote access point.2. TORQUE AND RPM MEASURMENT2.1. The special feature about planetary gear trainMost motor has a reduction unit on its center shaft to increase torque or to decrease velocity that can not be realized in a motor alone. In many applications, one gets desired torque and velocity using various gearboxes with adjusting reduction ratio.There are many kinds of gearboxes, but the role of planetary gear trains is becoming more and more important nowadays. The method proposed by this study is the case with planetary gearboxes.The obvious advantages of the planetary gear trains are the higher torque capacity, smaller size, lower weight and improved efficiency characteristics of a planetary design. The small size and modular construction of planetary gear trains also means that they can be assembled in several stages, providing high reduction capability from a highly compact package. As such, planetary gear trains are the preferred solution in many areas such as wheel and winch drives and also slewing drives for turning large diameter cogged items that require slow movement at very high loads [3].Fig. 1 shows the general structure of planetary gear train. The special feature about planetary gear train is that they can produce different gear ratios depending on which gear you use as the input, which gear you use as the output, and which one you hold still.In the method proposed by this study, we consider the case that the input is the sun gear, and we hold the ring gear stationary and attach the output shaft to the planet carrier. Of course, it is possible to apply our method to other cases; sun gear stationary or planet carrier stationary.2.2Basic idea for measuring torqueIn the gear train, the ring gear is fixed to the housing by an elastic material.When the motor is rotating, the loads make some strain between the stationary element (the ring gear) and the rotating elements (the sun gear and planet carrier) by the action-reaction force. This strain pushes out the elastic material and then it makes some displacement corresponding to its torque.Compare with ordinary method measuring the strain itself, we try to detect the displacement caused by the strain and the structural characteristic of the planetary gear train. We can measure this displacement by using the hall sensor and magnet pair.2.3. Measurement of the torqueIn many applications, the linear Hall effects sensors are used in conjunction with a permanent magnet. To maximize linearity,a large change in field strength vs. the required displacement is desired. Careful selection of the magnets, and the way of placement of that magnet, will pay large dividends.High-quality, high field-strength magnets are generally required in most linear sensing applications.Table 1 shows some basic magnet characteristics on particular magnet types and Samarium-cobalt orAlnico 8 magnets are recommended [6].There are some methods to combine the magnetwith Hall sensor.Fig. 2 shows slide-by sensing method using single magnet that is a non-complex method of obtaining a linear output voltage vs. slide-by movement. As shown in Fig. 2, depending upon the location of the sensor relative to the zero-field center of the magnet, both negative and positive outputs can be produced and the center portion of the output is very linear. For our Hall sensor, the sensor output voltage at the center of magnet is Vcc/2.As shown in Fig. 3, a proper magnet in the size and the magnetic force can be mounted directly on the ring gear. We make a hole on the ring gear supporter (elastic material) and simply attach the Hall sensor.The air gap between the sensor and the magnet is another important factor for good sensitivity.In general terms, the weakest magnets (flexible) would typically operate in a 0.25 mm to 2 mm range, while the strongest (neodymium or samarium cobalt) could allow an air gap of 4 mm to 6 mm.The Hall sensor output voltage becomes the ADC input through the amplifier of the monitoring system.The relations between the displacement and the torque also vary with the motor size, capacitance and types etc. So we should derive the relational equation or LUT (Look Up Table) measuring the each mechanical displacement from the various reference dummy torque. We consider LUT for compensating nonlinear characteristic of Hall sensor and other unknown factor.2.4. Measurement of the RPMAs shown in Fig. 3, we have attached a proper magnet on the Planet Carrier and set the other Hall sensor on the opposite side of the magnet.As the motor is rotating, the magnet attached on the planet carrier is also rotating and it is passing by on the fixed hall sensor every rotation.Output hall voltage of this Hall sensor becomes the comparator input of the monitoring system.Fig. 4 shows another slide-by sensing method for measuring RPM.Comparing with Fig. 2, the hall sensor in Fig. 4 is sliding on the South Pole of the magnet.If the comparator input value exceeds the reference value, a counting flag will be set; on dropping below the reference value, a counting flag will be cleared. We can calculate the RPM with the time interval of this counting flag’s period.We can also replace the Hall effects sensor with Hall Effect switch or Hall IC [5,7]. Hall switches have an integrated comparator with predefined switching points and a digital output which can be adapted to different logic systems. All Hall switches include an open-drain output transistor and require an external pull-up resistor to the supply voltage. A standard Hall switch has a single Hall plate and responds to the absolute value of the magnetic field perpendicular to the plate.The Hall switch is characterized by the magnetic switching points BON (or BOP) and BOFF (or BRPN). If the magnetic flux exceeds BON, the output transistor is switched on; on dropping below BOFF, the transistor is switched off. The magnetic hysteres is BHYS is the Fig. 5. Definition of switching points [5]. difference between the switching points BON and BOFF. Fig. 5 shows this definition [5,7].3. COMPUTING TORQUE, RPM AND POWER3.1. Output torqueThe measuring torque is the calibrated output data from ADC using relational equation or LUT and the output torque is the final displaying value determined by following equation from the measuring torque.To=T3(z1+z3)/z3, (1)o T : Output torque to display3 T : Measuring torque1 z : Number of teeth of the sun gear3 z : Number of teeth of the ring gear3.2. Measuring RPM (wo) to displayAs counting output pulse of the Hall sensor or Hall switch, we can easily calculate the rpm of the motor.Differently Hall Effect sensor, Hall Effect switch has benefit that can be connected directly on the micro-controller input port without additional circuit like comparator, because their output hall voltages are discrete pulse. But because the Hall switch is characterized by the magnetic switching points BON and BOFF, we can not vary the reference value or the switching points.The measuring RPM wo can be representative as following equation.wo =60×cntRotate , (2)cntRotate : Revolution per every second.Infrared sensor with reflective tape is another good choice for measuring rpm, but the size of planetary gearbox and infrared sensor itself must be considered.3.3. Transmit power (W)The transmit power often becomes more useful and important measure than any other displaying values and can be calculated by multiplying the output torque and RPM.W=Towo. (3)4. THE MONITORING SYSTEM4.1. Main boardFig. 6 shows the block diagram of the monitoring system. It is simple and composed of 3 main parts; Hall sensing data input and processing part including CPU, communication part, and user interface part including LCD and keys.Hall sensing data input part has an amplifier and ADC for measuring torque, and a comparator for measuring RPM. Especially the reference voltage for measuring RPM is needed to variable for eliminating interference noise. One of the interference noises may be magnet flux generated from motor itself when motor is rotating. We try to eliminate this noise in the manner of controlling the threshold value to set RPM counting flag. So we use a variable resistor to adjust proper reference input.4.2. Networking capabilityIt is tending that expensive measurement systems have their own communication environments whether they are cable or wireless. Among them, RS232 serial communication is the most popular and basic in many industrial applications. But the mobile systems are becoming more and more important nowadays. Especially ubiquitous environments are becoming a very big issue.In our study, we make our monitoring system to have wireless communication ability using Bluetooth module. We make the monitoring system to attach on the motor unit as possible as compact.This monitoring system just collects the Hall sensors output values and transmits their raw data to PC or notebook through the wireless communication. User can monitor the final processing data on PC.It is not difficult to extend remote monitoring to on internet base with TCP/IP.Bluetooth is a technology using short range (10m) radio links, intended to replace the cable(s) connecting portable and/or fixed electronic devices. Its key features are robustness, low complexity, low power and low cost. Designed to operate in noisy frequency environments, the Bluetooth radio uses a fast acknowledgement and frequency hopping scheme to make the link robust. Bluetooth radio modules operateat 2.4GHz, and avoid interference from other signals by hopping to a new frequency after transmitting or receiving a packet.Bluetooth also can easily form a piconet which has a master and up to seven slaves [10]. In many industrial applications, most systems could have many motors rather than one and each motor have a correlation with other motors. On such environments, the piconet using Bluetooth will give some other advantages as well as remote monitoring function and this is the another reason that we consider Bluetooth in our study.5. EXPERIMENTS5.1. ExperimentsWe choose the ATmega128 AVR as CPU, because it has 10-bit ADC and on-chip Analog Comparator.The ATmega128 also supports differential input channels with a programmable gain of 10x and 200x, so we can amplify the hall sensor output for torque 10x before the A/D conversion.The main features of experiment board are;CPU : ATmega128,ADC : 10-bit resolution with gain 10x on CPU,LCD : character LCD type,KEY : 2 keys,COMM. : 422MHz RF Module.We want to use Bluetooth Module, but for easy to use, the RF module is tested first in our experiments. The implementation of Bluetooth is leaved for next step. On our experiments, we have developed the torque sensor module that consists of Hall sensor and 2 magnets pair. The basic idea of our torque sensor Fig.7.Torque sensor module. Fig. 8. Hall output voltage in push-pull approach. takes from the photoelectric sensor that consists of emitters and receivers pair.Fig. 7 shows the structure our torque sensor and Fig. 8 shows the characteristic of Hall output voltage in Push-Pull approach [6].In the case of the Push-Pull approach, the sensor moves between two magnets. Complementary fields provide a linear, steep-sloped output. The output is nearly rail-to-rail (GND to Vcc) with polarity dependent upon magnet orientation.In our experiments, the displacement by torque isabout 0.25mm at 29.4 N-m.6. CONCLUSIONSA method to measure the mechanical torque developed by an electrical motor is suggested.The torque measuring method experimented by this study is the reduction case when the input is the sun gear, and we hold the ring gear stationary and attach the output shaft to the planet carrier.Other is the overdrive case when the input is the planet carrier, and we hold the ring gear stationary and attach the output shaft to the sun gear.We can apply our method not to the ring gear stationary case, but also to other cases; sun gear stationary and planet carrier stationary.The suggested method is very simple, very smalland very inexpensive in measuring the powerincluding the torque and RPM of the motor. And this method does not need additive maintenance, because this is the non-contact method. Furthermore, on experiments, our non-contact method reduces the vibration and noise of the motor much more than we supposed to. This is caused by using elastic material and it also means that we can measure the torque more exactly and we can extend our application scope more widely.In the case the measuring the torque or power is important, our solution is not only simple and cheap but also can give an instance in monitoring such values. Instant monitoring power, torque and rpm through the wireless communication are very useful and have many applications. Indeed we can make a motor unit smaller to wide our application like robot finger to control force.In general, Planetary Gear Train is relatively more expensive than usual multistage spur gear box. But it deserves to replace usual multistage spur gear box by our Planetary Gear Train, having remote monitoring ability and more additive advantages.In conclusion, our solution has a strong point in size, cost and wireless communication. So it can give many applications on industrial field and the extension of the application is dependent on user’s imagination. Moreover, the usage of piconet or scatter net of our motor units will make other applications.REFERENCES[1] OMEGA Press LLC, “Force-related measurements,” Omega Engineering inc. Trans. inMeasurement and Control, vol. 3, pp. 51-56, 2001.[2] Omegadyne Pressure, Force, Load, Torque Data Book, Omegadyne, Inc., 1996[3] P. Lynwander, Gear Drive Systems: Design and Application, pp. 293-324, 1983.[4] Testo inc., “Rpm measurement,” Online Catalog, http://www.testo.de/US/en/site/information/library jsp, pp.266-267.[5] Micronas Semiconductor Holding AG, “Sensors overview and system solutions,” http://www.micronas.com/products/oveview/sensors/index.php.[6] J. Gilbert and R. Dewey, “Linear hall-effect sensors,” Application Note 27702, Applications Information, Allegro Micro systems, Inc., 2002.[7] Samsung Electro Mechanics, “Hall IC,” Data Sheet, http://www.sem.samsung.co.kr/cms/Down FileServlet?filePath=/file/repository/product/DA TASHEET_RAW/B210/B210_DATASHEET_R AW.pdf.[8] Samsung Electro Mechanics, “Hall Sensor,”Data Sheet, http://www.sem.samsung.co.kr/ms /DownFileServlet?filePath=/file/repository/prod uct/DATASHEET_RAW/C030/C030_DATASH EET_RAW.pdf.[9] Allegro Micro Systems Inc., “3503 Ratio-metric, linear Hall-effect sensors,” Data Sheet, http:// www.allegromicro.com/datafile/3503.pdf, Oct. 2005.[10] J. Ketchum, “Protocol architecture,” https:// www.bluetooth.org/foundry/sitecontent/docume nt/Protocol_Architecture/en/1/Protocol_Architec ture.pdf, January 2003.In-Hun Jang :received the B.S. and M.S degrees in Department of Controland Instrumentation Engineering fromChung-Ang University, Seoul, Korea,in 1993 and 1999 respectively and heis currently pursuing the Ph.D. at the same university.Kwee-Bo Sim :received the B.S. and M.S. degrees in the Department of Electronic Engineering from Chung- Ang University, Korea, in 1984 and 1986 respectively, and Ph.D. degree in the Department of Electrical Engineering from The University of Tokyo, Japan, in 1990. Since 1991, he has been a Faculty Member of the School of Electrical and Electronics Engineering at Chung-Ang University, where he is currently a Professor. His research interests are in artificial life, emotion recognition, ubiquitous intelligent robot, intelligent System, computational intelligence, intelligent home and home network, ubiquitous computing and Sense Network, adaptation and machine learning algorithms, neural network, fuzzy system, evolutionary computation, multi-agent and distributed autonomous robotic system, artificial immune system, evolvable hardware and embedded system etc. He is a Member of IEEE, SICE, RSJ, KITE, KIEE, KFIS, andICASE Fellow. He