張雙樓煤礦1.8 Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip
張雙樓煤礦1.8 Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip,張雙樓煤礦1.8,Mta新井設(shè)計(jì)含5張CAD圖-采礦工程,張雙樓,煤礦,1.8,Mta,設(shè)計(jì),CAD,采礦工程
英文原文
EME rock burst monitoring in coal mine huafeng
(Dou lin ming ,china university of mining and technology, Xu fangjun,Zhang xiufeng,huafeng mine,shan dong, china)
Abstract
The electromagnetic emission is caused by the inhomogeneous variable speed and the deformation of various parts of the coal and the variable speeding movement of electrical particles during crack expansion. This article is about the EME rules before and after the coal sample failure in 4# coal seam of HuaFeng mine by experiments. some methods to monitor and forecast .KBD5 apparatus has been used to monitor the 4# coal seam which has high danger of burst in Huafeng mine, many times rock pressure were forecasted according to the EME rules. Therefore EME technique can be applied in coal mines.
1 EME mechanism of rock burst failure
1.1 EME Mechanism of Rock Burst Failure
The research shows that the EME is the result of the deformation and the failure of the loaded inhomogeneous materials, such as coal and rock, and is formed in the variable speeding movement of electrical particles during crack expansion caused by the inhomogeneous variable speed and the deformation of various parts of the coal.
Variable deformation of various parts of the variously loaded coal and rock makes the free and escaping electrons move from the high-stress zones to the low-stress zones. At the same time, a lot of charges are covering the coal sample’s surface, thus coulomb’s field or low frequency EME comes into being. Before the crack expands, there are a great number of charges or electrons on it. After the crack expansion, parts of the coal around the crack contract, meantime the Coulomb’s field is formed because of the high concentration of electrons are accelerated with EME radiated. EME are ionized.
1.2 EME Phenomena and Experiment Result of Rock Burst
The EME characteristic of HuaFeng coal was described by the experiment in lab. Fig 1 represents the typical curves of the stress distribution, EME impulse distribution and EME amplitude distribution of HuaFeng coal sample, which has high danger of Rock Burst.
From the experiment results we know that EME signals appear in the process of deformation and failure udder loading the various coal and rock. EME amplitude is below a certain value before the brittle failure, while it suddenly increase of loading and the rate of deformation in coal. EME amplitude is below a certain value before the brittle failure, while it suddenly increases during the brittle failure of the loaded coal sample.
If the 80% of the maximum failure stress of the coal sample is considered as the warning EME value of Rock Burst, then it can be figured out on the basis of EME experiment. The
warning EME value of Rock Burst of the 4# coal seam in HuaFeng Mine are listed as Tab 1 shows:
Tab 1 The warning EME value of Rock Burst
Coal seam
The stress value of brittle
failure/Mpa
The EME value of coal failure
Maximum
Warning value
Amplitude/mv
Impulse
maximum
Warning value
maximum
Warning value
4#
16.1
12.9
433
346
610
488
a. The relationship between EAE load and time of 5# coal sample
b. The relationship between EAE amplitude and time of 5#coal sample
c. The relationship between EAE impulse and time of 5#coal sample Fig.1 the result of coal sample experiment
The experiment results show EME impulse basically increased with the increase of loading and the rate of deformation in coal. The higher the stress and the rate of deformation are, the stronger the EME signal is.
2 forecastinf of rock burst
2.1 The principle of EME’s forecasting Rock Burst
The coal on the working face is in an unstable state when it’s stress balance is broken after the heading and working space has been formed. There is EME radiated in the process of the rib coal’s deformation and crack’s forming to have a new stress balance, causing the coal to deform and to crack.
The higher the stress in the coal is , the stronger the EME value is. The higher the EME frequency is, the greater the danger of Rock Burst is. From the low-stress zone to the high-stress zone with the working face advancement, the EME signal is becoming stronger. In the abutment area, the stress sis the highest, and the deformation of the coal is also great, therefore the EME signal is the strongest. In the low-stress zone, the EME amplitude decrease and intends to the balance. The EME signal received by isolated way is a collectivity of the ones if both low-stress zone and high-stress zone. When the stress in the monitored zone is high ,the EME signal gives the just character of high stress zone, therefore we can use the EME signal to describe the high stress zone and then forecast the Rock Burst.
The research of the on-site test and the analysis in theory all shows that the deformation value-ε(t) vary with EME amplitude and impulse. Before the Rock Burst, the EME value is higher, then it decreases, bur during this period of time the value reaches or exceeds critical value. The change of the EME value and impulse reflects the process of the failure’s growth.
2.2 Methods of the Forecasting Rock Burst
2.2.1 The EME parameters
The EME maximum amplitude, the average amplitude and the impulse is applied for describing high-stress zone in coal seam.
2.2.2 Method of the forecasting Rock Burst
The EME critical point, deviation values, fractal character can be used to forecast the Rock Burst.
The EME critical point is a method that 1.5 average values measured on the place where there is mo danger of coal failure or in normal condition are considered as the critical values. When the EME value monitored exceeds the critical value, the danger of rock burst increases. The formula is:
Ecri=1.5Eave
EME Fractal character is a method of analysis of fractal dimension of the EME data by time. Practice proves that under normal conditions the change of fractal dimension of the EME value is small, but before or after the rock burst, it much changes. When this change is from little to much of from much to little, it has high danger of Rock Burst when mining.
D=(E-Eave)/Eave×100%
2.2.3 The principle of the forecasting
The factors influencing the Rock Burst include geography conditions, mining technology and so on. Based on kinds of factors’ influence on Rock Burst, the danger classification of rock burst is decided.
Tab 2 The classification of Rock Burst
Danger classification Of Rock Burst
Danger state of Rock burst
Danger index of Rock Burst
A
No danger
<0.25
B
Weak danger
0.25—0.5
C
Middle danger
0.5—0.75
D
Great danger
0.75—0.95
E
unsafe
>0.95
3 Application of the eme technique
3.1 The Condition of the Tested Working Face
EME technique was used in Huafeng Mine on 3406(1) working face, which is located in District 2 of mining area 3 of layer 4 at level-750m. Seam 4 which is 6.5m thick has high danger of Rock Burst. It has 3 layers, the first layer is 2.2m thick, and its dip angle is 34°.3406(1) working face is neighbored by Fault 51 pillar in the west and Mining areas 2 separating pillar in the east. Below the working face 3406 is the virgin coal seam, and above if is the goal of mining area3 at level 3. the air road2ay is –537m above the sea level, the drawing roadway –616m, the stride length of working face is 650m. The immediate roof is siltstone with the thickness of 2.0m.
3.2 The KBD5 apparatus
KBD5 apparatus is used to monitored the EME on the working face, in the way of non-touched directional testing, accepting, accepting a wide range of frequency to the top of 500HZ, testing a distance from 7m to 22m, and the tested point is 10m far from each other.
3.3 Application of the EME Technique
The research show the change of the EME on the tested working face and in the roadway is usually small, and there is less EME impulse. The EME amplitude in different area of the working face is different. It is high where the pressure and the danger of Rock burst is high. There are obvious signs of the greatly after the reliving shot. This proves that there is great deformation in the coal wall, it is very likely to have Rock Burst.
Fig3 is about the results of the EME of the middle of the 3406(1) working face.Fig4 is about the regularity of the fractal character of the three features. Fig 5 is about the regularity of the deviation values of the three features’ parameters. According to these figures, the three feature parameters have all exceeded the critical value before the Rock Burst.
Fig.3 The Regularity of the EME Amplitude Before and after Rock Burst
Fig.4 The relationship between the EME fractal dimension and time of 130th prop of the working face
Fig.5 The change of EME deviation of 130th prop of the working face
3.4 The EME Forecasting Guideline of Rock Burst on the Working Face
According to many times of EME practice, the EME forecasting guideline of Rock Burst on the 3406(1) working face is decided. Tab 3 shows the forecasting guideline in the way of critical point and deviation value.
Tab 3. The forecasting guideline of Rock Burst
Maximum amplitude
Average amplitude
Impulse
Critical point
173
104
22
Deviation value
35%
15%
150%
We have successfully forecasted many times of Rock Burst by using the guideline, and protected us from many accidents.
3.5 EME Forecasting Accuracy
If the monitored Rock BURST C is considered as the forecasting the 1.0 or above vibration and rock burst is 100%. If Rock Burst D is considered as the forecasting criterion, the accuracy is 73%.
4 conclusions
(1) EME signals appear in the process of deformation and failure under loading the coal and rock. EME basically grows stronger with the increase of loading and the rate of deformation in coal.
(2) EME amplitude is below a certain value before the brittle failure, while it suddenly increases during the brittle failure of the loaded coal sample. EME impulse is increased with the increase of the load and the deformation.
(3) The of-site practice shows that the maximum EME amplitude, average amplitude and the impulse increase with the increase of the danger of rock burst. The EME character of different state of working face and the forecasting guideline cha forecast many times of rock burst.
(4) If the monitored rock burst C is considered as the forecasting criterion, the accuracy of forecasting the 1.0 of above vibration and ROCK BURST is 100%.
References
[1] Dou Lin ming, He xue qiu "burst control theory and technology", China Mining University Press, 2001
[2] Dou Lin ming "Electromagnetic radiation and acoustic emission in coal and rock burst on the application" [PhD thesis], China University of Mining, 2001,3
[3] Dou lin ming,Hexueqiu "coal electromagnetic radiation when the rock mass failure of Tsinghua University",
December 2001 41
[4] Dou Lin ming, He xue qiu: "Rock Burst Control Theory and Technology", China Mining University Press, 2001
[5] Fang huan ming: "burst of production of the mine and its prevention," Coal Library, 2002
[6] Wang sheng shen: "Mine Disaster Control Theory and Technology", China Mining University Press, 1989
[7] Jiang guo an, Lv jia li: "Mining Engineering English", 1998
[8] The National Natural Science Terminology Committee: "Coal Science and Technology Foundation", 1996
[9] ChenyanGuang, Xu yong qi: "China's coal mining approach", China Mining University Press, 1991
[10] Feng chang rong: "Coal Mine Mining Design Manual", Coal Industry Press, 1984
[11] Feng chang rong: "Mining Engineering graduate design guidance", China Mining University Press, 1996
中文譯文
華豐煤礦沖擊礦壓電磁輻射監(jiān)測
竇林名 1,徐方軍 2,張秀峰 2
(1.中國礦業(yè)大學(xué);2.中國山東華豐煤礦)
摘要
電磁輻射是由煤的裂縫在擴(kuò)大的過程中,變速運(yùn)動和不同部分的變形以及電子變速運(yùn)動引起的。這篇論文是關(guān)于華豐煤礦 4#煤層破壞前后的電磁輻射實(shí)驗(yàn)結(jié)果。一些關(guān)鍵的、有價值的監(jiān)測和預(yù)報沖擊礦壓的方法已經(jīng)被認(rèn)可。KBD5 裝置已經(jīng)被用來監(jiān)測華豐煤礦有高沖擊礦壓的 4#煤層。多次預(yù)報的沖擊礦壓同電磁輻射 規(guī)律完全一致。因此,電磁輻射技術(shù)能被用在煤礦中。
1 沖擊礦壓的電磁輻射機(jī)理
1.1 沖擊礦壓的電磁輻射機(jī)理
研究表明電磁輻射是煤巖體非均勻物質(zhì)在加載過程中變形破壞引起的,是在裂縫擴(kuò)大過程中由變速運(yùn)動和煤不同部分變形引起電子變速運(yùn)動形成的。
不同部分受到不同載荷引起不同的變形,煤巖使自由電子由高壓區(qū)移到低壓區(qū)。同時, 大量的電子積聚在煤樣表面,因此,在庫侖力的作用下,低頻率的電磁輻射就產(chǎn)生了,在裂縫擴(kuò)大之前,大量的電子在樣品上,在裂縫變速擴(kuò)大的過程中,電子被釋放出,電磁輻射和聲發(fā)射同時放出。在裂縫擴(kuò)大后,部分集中在裂縫的四周,同時,由于電子高度集中在裂縫的兩邊,庫侖力形成了。庫侖力的影響下,自由電子運(yùn)動加速了電磁輻射。當(dāng)分子和原子被減速、被電離時,電磁輻射被放出。
1.2 沖擊礦壓的電磁輻射現(xiàn)象和實(shí)驗(yàn)結(jié)果
下面是實(shí)驗(yàn)室測試的華豐煤礦煤樣的電磁輻射特征。圖 1 為華豐礦 5#煤樣的典型應(yīng)力—時間、電磁輻射脈沖數(shù)—時間、電磁輻射幅值—時間的曲線圖。從實(shí)驗(yàn)結(jié)果得到,5# 煤層有很高的沖擊礦壓危險性。
從實(shí)驗(yàn)結(jié)果我們可以得出:不同類型的煤巖體在載荷作用下變形及破壞過程中都有電磁輻射信號產(chǎn)生。電磁輻射基本上隨著載荷的增加而增加。在加載煤樣發(fā)生沖擊破壞之前, 電磁輻射幅值總低于一個特定值,而在沖擊破壞時,電磁輻射幅值會突然增加。
(a)5#煤層煤樣變形破壞的 P—T 曲線圖
(b) 5#煤層煤樣電磁輻射幅值—時間曲線圖
(c) 5#煤層煤樣電磁輻射脈沖數(shù)—時間曲線圖
圖 1 煤樣實(shí)驗(yàn)結(jié)果
根據(jù)電磁輻射實(shí)驗(yàn),假如煤樣破壞最大壓力的 80%作為沖擊破壞的預(yù)警值,表 1 列出了華豐煤礦 4#煤層電磁輻射值與巖體沖擊破壞預(yù)警值。
表 1 電磁輻射值與沖擊破壞預(yù)警值
煤層
沖擊破壞力/MPa
煤沖擊破壞時的電磁輻射值
最大值
預(yù)警值
幅值/mv
脈沖數(shù)
最大值
預(yù)警值
最大值
預(yù)警值
4#
16.1
12.9
433
346
610
488
實(shí)驗(yàn)結(jié)果表明:煤體電磁輻射脈沖數(shù)隨著載荷的增大及變形速度的增強(qiáng)而增大,載荷越大,加載速度越大,煤樣的變形破壞越強(qiáng)烈,電磁輻射信號越強(qiáng)。
2 沖擊礦壓的預(yù)報
2.1 電磁輻射預(yù)報沖擊礦壓的原則
在工作面形成之后,工作面煤的壓力平衡狀態(tài)被打破了,處在一種不平衡狀態(tài),在煤變形和斷裂形成新的壓力平衡過程中,電磁輻射被防出。
煤中壓力越高,電磁輻射值越高。電磁輻射頻率越高,發(fā)生沖擊礦壓的危險性就越高。隨著工作面的推進(jìn),由低應(yīng)力區(qū)到高應(yīng)力區(qū),電磁輻射信號變得更加強(qiáng)烈。在臨近區(qū),壓力最高,煤的變形最大,因此,電磁輻射信號最強(qiáng)。在低應(yīng)力區(qū),電磁輻射幅值減小,趨于平衡。通過隔離方法,收集低應(yīng)力區(qū)與高應(yīng)力區(qū)的電磁輻射信號,當(dāng)監(jiān)測區(qū)的應(yīng)力增大
時,電磁輻射信號正好提供了高應(yīng)力區(qū)的特征。因此,我們可以用電磁輻射信號來監(jiān)測高應(yīng)力區(qū)和預(yù)報沖擊礦壓。
通過現(xiàn)場觀測和理論分析發(fā)現(xiàn)變形值—ξ(t)和變形能—W(t)與電磁輻射幅值、脈沖數(shù)并不一致。在沖擊破壞之前,電磁輻射值非常高,接著降低。但是在這一階段,電磁輻射只會達(dá)到或超過臨界值,電磁輻射幅值和電磁輻射頻率的改變,反映了煤巖逐步破壞的過程。
2.2 沖擊礦壓預(yù)報方法
2.2.1 電磁輻射參數(shù)
電磁輻射最大幅值、平均幅值和脈沖數(shù)被用來描述煤層高壓力區(qū)。
2.2.2 預(yù)報沖擊礦壓的方法
電磁輻射臨界點(diǎn),偏差值,不連續(xù)特征能被用來預(yù)報沖擊礦壓。
電磁輻射臨界點(diǎn)是在煤還沒有破壞危險或自然條件下測得的平均值的 1.5 倍,當(dāng)電磁輻射監(jiān)測值超過臨界點(diǎn),沖擊礦壓的危險性就會增加。公式為:
Ecri=1.5Eave
磁輻射不連續(xù)特征是分析電磁輻射數(shù)據(jù)隨時間而變化的一種方法,實(shí)踐證明了,在自然條件下電磁輻射不連續(xù)值是很小的,但是,在沖擊礦壓發(fā)生前后,它會發(fā)生巨大的變化, 當(dāng)這變化由小變大,或由大變小,在采礦過程中就會有沖擊礦壓發(fā)生的危險。
電磁輻射偏差值是通過分析平均值和檢測值之間的不同,來預(yù)報沖擊礦壓的一種方法。實(shí)踐證明在沖擊礦壓發(fā)生前偏差值變化非常大。公式為:
D=(E-Eave)/Eave×100%
2.2.3 預(yù)報原則
地質(zhì)條件、采礦工藝等多方面的因素影響了沖擊礦壓。根據(jù)影響沖擊礦壓的因素,規(guī)定了沖擊礦壓危險性等級。
表 2 沖擊礦壓等級
沖擊礦壓等級
沖擊礦壓危險性狀態(tài)
沖擊礦壓指標(biāo)
A
沒有危險
<0.25
B
有危險
0.25—0.5
C
中等危險
0.5—0.75
D
非常危險
0.75—0.95
E
不安全
>0.95
3 電磁輻射技術(shù)的應(yīng)用
3.1 被測工作面的地質(zhì)條件
電磁輻射技術(shù)被用在華豐煤礦 3406(1)工作面,3402 工作面位于-750 水平,3 采區(qū)
2 區(qū)段 4#煤層。4#煤層厚 6.5m,有高沖擊礦壓危險性。它有三個分層,第一層是 2.2m 厚, 角度為 34°,3406(1)工作面的西邊是遺留下的 51 個煤柱,和東邊 2 采區(qū)的煤柱。3406
(1)工作面下面是未開采煤層,在它的上面 3 水平 3 采區(qū)?;仫L(fēng)巷標(biāo)高-537m,運(yùn)輸巷標(biāo)高-616m,工作面走向長度 650m。直接頂是厚 2.0m 的泥巖。
3.2 KBD5 裝置
KBD5 裝置被用來監(jiān)測工作面的電磁輻射幅值,通過非接觸直接測試最高范圍到 500
赫茲的電磁輻射。測試距離從 7m 到 22m,每個測點(diǎn)之間的距離都在十米以上。
3.3 電磁輻射技術(shù)的應(yīng)用
研究表明被測工作面和巷道的電磁輻射通常變化非常小,很少有電磁輻射脈沖。在工作面不同位置,電磁輻射幅值不同,壓力越高,沖擊礦壓的危險性越高,電磁輻射幅值越高。在發(fā)生沖擊礦壓之前,電磁輻射幅值電磁輻射脈沖數(shù)快速增加,這是要發(fā)生沖擊礦壓的信號。沖擊礦壓再一次發(fā)生時,電磁輻射脈沖又巨大變化。這證明了在煤壁中發(fā)生了巨大變形,很有可能發(fā)生了沖擊礦壓。
圖 3 是 3406(1)工作面中部的電磁輻射結(jié)果。圖 4 是電磁輻射不完整特征的三個規(guī)
律。圖 5 是電磁輻射偏差值的三個特征參數(shù)規(guī)律。根據(jù)這些圖,在沖擊礦壓發(fā)生前,三個特征參數(shù)都超過臨界值,它們的偏差值,不連續(xù)值變化很大,因此,用電磁輻射技術(shù)和其它方法能很大提高預(yù)測沖擊礦壓的準(zhǔn)確性。
圖 3 沖擊礦壓前后電磁輻射脈沖規(guī)律
圖 4 工作面 130 支柱電磁輻射不連續(xù)關(guān)系
圖 5 電磁輻射偏差值
3.4 電磁輻射預(yù)報工作面沖擊礦壓指標(biāo)
根據(jù)多次的電磁輻射實(shí)驗(yàn),規(guī)定了 3406(1)工作面沖擊礦壓電磁輻射預(yù)報指標(biāo)。表3 列出了臨界值和偏差值指標(biāo)。
通過利用以上指標(biāo),我們已經(jīng)成功預(yù)測了多次沖擊礦壓,在多次沖擊礦壓中保護(hù)了我們自己。
表 3 沖擊礦壓預(yù)報指標(biāo)
最大幅值
平均幅值
脈沖
臨界點(diǎn)
173
104
22
偏差值
35%
15%
150%
3.5 電磁輻射預(yù)報的精確性
假如,被監(jiān)測到的沖擊礦壓的 C 級作為臨界點(diǎn),則預(yù)測沖擊礦壓的精確度為 100%。假如,沖擊礦壓的 D 級作為臨界點(diǎn),則預(yù)測沖擊礦的精確度為 73%。
4 結(jié)論
(1)在煤巖體加載變形和破壞過程中會有電磁輻射信號放出。電磁輻射基本上隨著載荷的增加而增大,隨著加載及變形速率的增加而增大。
(2)在加載煤樣發(fā)生沖擊破壞之前,電磁輻射幅值總低于一個特定值,而在沖擊破壞時,電磁輻射幅值會突然增加,電磁輻射脈沖會隨著加載及變形的增加而增大。
(3)現(xiàn)場觀測顯示了電磁輻射脈沖最大值,平均值和電磁輻射脈沖數(shù)會隨著沖擊礦 壓危險性的增加而增加。工作面不同地點(diǎn)的電磁輻射特征和預(yù)報指標(biāo)預(yù)報了多次沖擊礦壓。
(4)假如,被監(jiān)測到的沖擊礦壓的C 級作為臨界點(diǎn),則預(yù)測沖擊礦壓的精確度為100%。假如,沖擊礦壓的 D 級作為臨界點(diǎn),則預(yù)測沖擊礦的精確度為 73%。
參考文獻(xiàn)
[1] 竇林名,何學(xué)秋 《沖擊礦壓防治理論與技術(shù)》 ,中國礦業(yè)大學(xué)出版社,2001
[2] 竇林名 . 《電磁輻射和聲發(fā)射在煤礦和沖擊礦壓上的應(yīng)用》[博士生論文], 中國礦業(yè)大學(xué),2001,3
[3] 竇林名,何學(xué)秋 《煤巖體破壞時的電磁輻射清華大學(xué)學(xué)報》, 2001 年 12 月 41 期[4].竇林名,何學(xué)秋:《沖擊礦壓防治理論與技術(shù)》,中國礦業(yè)大學(xué)出版社,2001 [5].方煥明:《淺談生產(chǎn)礦井沖擊礦壓及其防治》,煤炭圖書館,2002
[6]. 王省身:《礦井災(zāi)害防治理論與技術(shù)》,中國礦業(yè)大學(xué)出版社,1989
[7].蔣國安、呂家立:《采礦工程英語》,1998 [8].全國自然科學(xué)名詞審定委員會:《煤炭科技名詞》,1996
[9]. 陳炎光、徐永祈:《中國采煤方法》,中國礦業(yè)大學(xué)出版社,1991
[10]. 馮昌榮:《煤礦礦井采礦設(shè)計(jì)手冊》,煤炭工業(yè)出版社,1984
[11].馮昌榮:《采礦工程專業(yè)畢業(yè)設(shè)計(jì)指導(dǎo)》,中國礦業(yè)大學(xué)出版社,1996
收藏