丁集礦井1.8Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip
丁集礦井1.8Mta新井設(shè)計(jì)含5張CAD圖-采礦工程.zip,礦井,1.8,Mta,設(shè)計(jì),CAD,采礦工程
Fuzzy evaluation on geological conditions of coal seam in China
Zhang Dongsheng, Zhang Xianchen & Yan Xuefeng
China University of Mining & Technology, Xuzhou, Jiangsu, P. R. China
Dszhang123@263.net
Abstract
The geological conditions of coal seam are evaluated quantitatively by using fuzzy method and from pointview of coal mining. According to the evaluation results, decision-making on mining techniques, mining programming and design, production management can be carried out effectively. The latest developments in China are introduced. The evaluation contents, the structure and index system of evaluation factors, the membership functions and weights of evaluation factor, evaluation model and reliability are stated in detail. The effective application of fuzzy evaluation in the prediction of coal face output is introduced emphatically. Fuzzy evaluationon geological conditions of coal seam is the basic work that ensures a mine run efficiently, safely and steadily .
Keywords:Fuzzy evaluation; geological conditions; evaluation
1 INTRDUCTION
To exploit the coal resource rationally means that the mining technical level and the relevant technical decisions are suitable for the characteristic and difference of coal geological conditions. If the evaluation is far below or above the actual geological conditions, it is unfavorable to make the most of the coal natural superiority and easy to make false technical decisions. So, it is very important to improve mining effects and economic benefits that the geological conditions are evaluated appropriately and the corresponding measures are taken.
2 CONTENTS OF FUZZY EVALUATION
Based on the coal mining experience and rules summarized by widely investigation, the evaluation on geological conditions of coal seam should be taken by not only studying the influence of main factors to the selection of coal mining technology and mining effects, but also constructing a comprehensive supported by National Natural Science Foundation of China(NSFC) (50374065),NSFC for extinguished scholars (50225414) evaluation model with multi-levels and multi-factors by the use of mining theory, fuzzy mathematics andAnalytic Hierarchy Process (called AHP for short), etc. In addition, the evaluation reliability should be considered in the application of evaluation results. So, the complete contents of fuzzy evaluation should include:
(1) Investigating the experience and material of geological conditions, coal mining technology, technical effects, and safety state of face extraction in typical mining district.
(2) Determining the structure of evaluation factors and the index system of geological factors, the
membership functions and the weights of evaluation factors, and establishing the fuzzy evaluation model by summarizing the influence of geological factors to coal mining technology and using the methods of fuzzy mathematics, etc. K
(3) Dividing the coal seam into many smaller blocks ij (i is coal seam number, j is block number.)Kijaccording to geological reports, and making pre-mining evaluation of the blocks to get the pre-mining evaluation value Pij. K
(4) Making the second evaluation of typical blocks ij having been mined to get the evaluation valuePPij Pij according to the geological report and supplementary geological material after mining, is more suitable to practice. R = P''
(5) Analyzing the reliability of pre-mining evaluation, P'
( R is reliability index of the pre-mining evaluation K ), R ≤1.
(6) Making evaluation on the blocks, based on the Pij' and the Rij , the evaluation value of the blocks is:P0 = P' × Ri
(7) Modifying the evaluation model or making a new evaluation according to its application and actual requirement.
3 STRUCTURE AND INDEX SYSTEM OF EVALUATION FACTORS
The structure of evaluation factors reflects the connotation of evaluation. Its establishment should consider not only the general and specific difficult geological conditions, but also the principles of systematicness, feasibility and simplicity for the evaluation factors and indices obtained easily. Fuzzy evaluation on geological conditions of gently inclined or inclined coal seam in China consists of the evaluations for the general geological conditions and for the specific difficult geological conditions. The evaluation for the general geological conditions includes seven factors of geological structure, thickness of coal seam, stability of coal seam, pitch of coal seam, roof and floor of coal seam, hardness of coal seam and block dimension. The evaluation for the specific difficult geological conditions includes the other four factors of gas geology, hydrogeology, coal spontaneous combustion and the others besides the seven factors mentioned above. Furthermore, the geological structure contains three basic factors of fault, fold and magma. The stability of coal seam contains three basic factors of minability of coal seam, variability of coal seam and band coefficient. The roof and floor of coal seam contains four basic factors of immediate roof, main roof, false roof and immediate floor. The block dimension contains two basic factors of face length and advance length. So, there are fifteen basic factors altogether considering the thickness of coal seam, pitch of coal seam and hardness of coal seam. Quantitative indices should be selected rationally in order to evaluate the fifteen basic factors.
4 MEMBERSHIP FUNCTIONS OF EVALUA-TION FACTORS
The membership function of evaluation factor is the quantitative description on fuzzy relationship between the change of a geological factor and the mining effect. It can be obtained by using technical summary, scientific research achievement, statistic analysis and specialist experience comprehensively, and adopting the statistic analysis method, undetermined coefficient method and heterogeneous fuzzy statistic method, etc. Figure 1(a), (b), (c) and (e) show the membership functions ma (a ), m m (m), ml (l)and m s (s)of
coal seam pitch ( a ), thickness of coal seam (m), face length (l) and advance length (s). Membership functions of coal seam variance coefficient ( g ), minability of coal seam ( Km ), band (G ), immediate roof (o ), main roof ( N ), false roof (hv), immediate floor (Rc ) and magma (k) are m (r), m (K ), mG (G), m(s), mN (N ), m (h ), m (R ), mK (K ) , See fig.1. The membership functions mF(F) and mq (q) of fault (F) and fold (q) are where FN is the fault density, FL is the fault length coefficient, Fh is the fault drop height coefficient, q1 is the fold strength coefficient, q2 is the fold complexity coefficient.
5 WEIGHTS OF EVALUATION FACTORS
The essence of the weights of evaluation factors is the quantitative description on the relative importance of geological factors influencing the coal mining technology. To determine the weights of evaluation factors should take mining law as basis and take the mutual adaptability between geological condition and mining technology as main content, and should make full use of statistic data, research achievement and specialists’ experience. AHP is the method most in use at present. Based on the knowledge of specialist, this method is more suitable to solve the evaluation on geological conditions of concrete coal seam.
Table 1 shows the weights of geological factors obtained by AHP.
6 FUZZY EVALUATION MODEL
6.1 Optimal Model For Fuzzy Evaluation
The linear weighted comprehensive evaluation model is often used for fuzzy evaluation on geological conditions of coal seam. In recent years, the optimal model for fuzzy evaluation is presented to reduce the subjectivity of evaluation. Its main characteristic lies in using two -basic point method. That is to say, in the evaluation system with a number of blocks, there are an ideal point corresponding with good vector G (G=(g1, g2, ┄,gn)) and an anti-ideal point corresponding with bad vector B (B=(b1, b2, ┄,bn)). SupposeRR mihat the comprehensive evaluation values of i( i= (r11, r22, ┄, r1m) is , and then compute the generalized distances D (Ri, G) and D (Ri, B). If taking the square sum of weighted distances of all samples as optimal criterion, the optimal solution of the comprehensive evaluation value is
Figure 1. Membership functions of evaluation factors
6.2 Comprehensive Evaluation Model For Special Difficult Conditions
Based on above-mentioned fuzzy evaluation, a comprehensive evaluation model for special difficult geological conditions of coal seam is established to get the difficult coefficient D. The greater the value of D is the more difficult the geological mining conditions are. Because the influence of individual factor to whole evaluation should be embodied, continuous multiplication must be adopted when structuring the model. That is, D =1-B× P, where B is the evaluation value of special geological conditions, P is the evaluation value of general geological conditions.
Figure 2. Relationship between evaluation values and reliability
Figure 2 shows the characteristic of reliability of pre-mining evaluation, based on the pre-mining and after -mining evaluation and calculation of evaluation reliability of 12 mining districts and 107 typical coal seam blocks. The greater the value of pre-mining evaluation is, the better the coal seam conditions are, and the higher the reliability of pre-mining evaluation is. On the contrary, the less the value of pre-mining evaluation is, the worse the coal seam conditions are, and the
8 PREDICTION OF COAL FACE OUTPUT
Under the certain conditions of equipment, technique and management, there is a close relationship between coal face output and its geological conditions for a coal mine. Through the fuzzy evaluation on coal geological conditions and the statistic analysis on production-technique indices, the relationship between the coal face output and the fuzzy evaluation value can be fitted to establish a new model for the prediction of coal face output. There are many prediction models as linear equation, duality quadratic equation and exponential equation, etc. For example:
a =C1 + C 2 P (fully-mechanized coal mining technology)
a =D(C + CP + CP2) (fully-mechanized or conventionally-mechanized coal mining technology)
a =D(C + CP + CP2 + CP3 ) (blasting coal mining technology)
a =24.5(1.13 +1.24 ln P) (fully-mechanized coal mining technology with great power in Nantun Mine)
a =(14.66ln M -6.77)(1.28 +1.4ln P) (fully-mechanized coal mining technology with sublevel caving in Dongtan Mine)
where D is the difficult coefficient, C1, C2, C3, and C4 are statistic regression constants.
REFERENCES
[1]I.B.Turksen 1991. Measurement of membership functions and their acquisition. Fuzzy sets and Systems. 40:36-40.
[2]North-Holland. R.Knosala & W.Pedrycz. 1992. Evaluation of de-sign alternative in mechanical engineering. Fuzzy sets and Systems. 47:24-28.
[3]J.S.Dyer & R.K.Sarin. 1979. Measurable Multi-attribute Value Function. Operations Research
煤層地質(zhì)條件模糊綜合評(píng)價(jià)在中國的應(yīng)用
張東升 張先塵 楊學(xué)峰
江蘇徐州中國礦業(yè)大學(xué)Dszhang123@263.net
摘要:地質(zhì)條件煤層定量評(píng)價(jià)采用模糊方法和pointview采煤。根據(jù)評(píng)價(jià)結(jié)果,采礦技術(shù)決策,采礦規(guī)劃與設(shè)計(jì),生產(chǎn)管理可以有效地進(jìn)行。本文介紹是中國的最新事態(tài)發(fā)展。評(píng)價(jià)的內(nèi)容,結(jié)構(gòu)和指標(biāo)體系等評(píng)價(jià)因素,隸屬函數(shù)和權(quán)重的評(píng)價(jià)因子,評(píng)價(jià)模型和可靠性是在細(xì)節(jié)。重點(diǎn)介紹有效應(yīng)用模糊綜合評(píng)價(jià)來預(yù)測采煤工作面產(chǎn)量。基本的工作式模糊綜合評(píng)價(jià)的地質(zhì)煤層條件,以確保煤礦高效,安全和穩(wěn)步運(yùn)行。
關(guān)鍵詞:模糊評(píng)價(jià);地質(zhì)條件評(píng)價(jià)
1、簡介
合理利用煤炭資源意味著用采礦技術(shù)水平和相關(guān)技術(shù)決定適合不同特點(diǎn)和地質(zhì)條件下的煤。如果評(píng)價(jià)是遠(yuǎn)低于或高于以上的實(shí)際地質(zhì)情況,這對(duì)大多數(shù)煤炭自然優(yōu)勢是不利的并容易作出不實(shí)的技術(shù)決定。因此,地質(zhì)條件評(píng)價(jià)和相應(yīng)的適當(dāng)采取措施對(duì)提高開采效果和經(jīng)濟(jì)效益是非常重要的。
2、目錄模糊評(píng)價(jià)
基于廣泛調(diào)查總結(jié)了的煤炭開采經(jīng)驗(yàn)和規(guī)則,煤層地質(zhì)條件評(píng)價(jià)不但應(yīng)采取的學(xué)習(xí)選擇煤炭開采技術(shù)和采礦業(yè)等主要影響因素而且而且還使用采礦理論建設(shè)多層次和多因素的綜合評(píng)價(jià)模型,模糊數(shù)學(xué)和層次分析法( AHP法要求短期)等。此外,評(píng)價(jià)的可靠性中應(yīng)審議應(yīng)用評(píng)價(jià)結(jié)果。因此,完整的模糊綜合評(píng)價(jià)的內(nèi)容應(yīng)包括:
( 1 )調(diào)查的經(jīng)驗(yàn)和材料的地質(zhì)條件,煤礦開采技術(shù),技術(shù)的影響,以及國家的安全面臨提取典型采區(qū)。
( 2 )通過總結(jié)地質(zhì)因素的影響,以煤炭開采技術(shù)和使用模糊數(shù)學(xué)方法等,確定評(píng)價(jià)的結(jié)構(gòu)因素和指標(biāo)體系的地質(zhì)因素,隸屬函數(shù)和權(quán)重的評(píng)價(jià)因素,建立模糊評(píng)價(jià)模型。
( 3 )根據(jù)地質(zhì)報(bào)告劃分煤層成許多較小的塊矩陣度Kij(i煤層號(hào)碼, J是塊號(hào)碼。 ),并事先采礦評(píng)價(jià)塊矩陣Kij并獲得前采礦評(píng)估價(jià)值。
( 4 )第二次評(píng)估典型塊矩陣Kij已獲得開采價(jià)值的評(píng)價(jià)矩陣P`ij,根據(jù)地質(zhì)報(bào)告和地質(zhì)采礦補(bǔ)充材料'矩陣Pij更適合應(yīng)用。
( 5 )采礦評(píng)價(jià)前的可靠性分析,矩陣矩陣矩陣Rij =P`ij/Pij(矩陣R是采礦前評(píng)價(jià)可靠性指標(biāo)矩陣Kij) ,矩陣R ≤ 1 。
( 6 )依據(jù)P`ij和Rij制作評(píng)價(jià)區(qū)塊,,評(píng)估價(jià)值的區(qū)塊是:Pij = P`ij× Rij。
( 7 )根據(jù)其申請(qǐng)和實(shí)際要求修改的評(píng)價(jià)模型或作出新的評(píng)價(jià)。
3結(jié)構(gòu)和指標(biāo)體系的評(píng)價(jià)因素
結(jié)構(gòu)的評(píng)價(jià)因素反映內(nèi)涵的評(píng)價(jià)。它的建立應(yīng)考慮不僅是一般和特殊困難的地質(zhì)條件,而且還有系統(tǒng)性,可行性和簡單的評(píng)價(jià)因素和指標(biāo)容易獲得的原則。模糊綜合評(píng)價(jià)在中國根據(jù)一般地質(zhì)條件和地質(zhì)條件的具體困難評(píng)估緩傾斜或傾斜煤層地質(zhì)條件。在評(píng)價(jià)一般地質(zhì)條件包括七個(gè)因素的地質(zhì)構(gòu)造,煤層厚度,穩(wěn)定的煤層,音高煤層,頂?shù)装宓拿簩?,煤層硬度和攔截層面。在評(píng)價(jià)具體困難的地質(zhì)條件,包括其他四個(gè)因素天然氣地質(zhì)學(xué),水文地質(zhì)學(xué),煤炭自燃和其他7個(gè)因素,除了如上所述。此外,地質(zhì)結(jié)構(gòu)包含三個(gè)基本因素?cái)鄬?,褶皺和巖漿。。穩(wěn)定的煤層包含三個(gè)基本因素多層煤層,煤層變異與帶系數(shù)。煤層頂?shù)装宓拿簩影膫€(gè)基本要直接頂,老頂,偽頂和直接底。該區(qū)塊的層面包含兩個(gè)基本因素的工作面長度和推進(jìn)長度。因此,有15個(gè)基本因素完全考慮煤的煤層厚度,煤層間距和煤層硬度。為了評(píng)估15基本因素應(yīng)選擇合理的定量指標(biāo)。
4隸屬函數(shù)評(píng)價(jià)性因素
隸屬函數(shù)的評(píng)價(jià)因子是變化的地質(zhì)因素和開采效果的定量描述的模糊關(guān)系。它可使用技術(shù)總結(jié),科研成就,統(tǒng)計(jì)分析和全面專家經(jīng)驗(yàn),并通過統(tǒng)計(jì)分析方法,待定系數(shù)法和異構(gòu)模糊統(tǒng)計(jì)方法,等獲得。
圖1 a,b,c和e顯示的隸屬函數(shù),煤層間距,m煤層厚度,l工作面長度,s推進(jìn)長度,隸屬函數(shù)煤層變異系數(shù),minability煤層,,直接頂,老頂,偽頂,直接底,巖漿,見圖1 隸屬函數(shù)
這里Fn故障密度,F(xiàn)l是故障長度系數(shù),F(xiàn)h斷層落差系數(shù),q1是褶皺強(qiáng)度系數(shù),q2是褶皺復(fù)雜性系數(shù)
圖1 隸屬函數(shù)評(píng)價(jià)因素
5評(píng)價(jià)因素權(quán)重
評(píng)價(jià)因素權(quán)重的本質(zhì)是影響采煤技術(shù)的地質(zhì)因素的相對(duì)重要性。要確定評(píng)價(jià)因素權(quán)重應(yīng)采取采礦法為基礎(chǔ),并采取之間的相互適應(yīng)性地質(zhì)條件和開采技術(shù)為主要內(nèi)容,并應(yīng)充分利用統(tǒng)計(jì)數(shù)據(jù),研究成果和專家的經(jīng)驗(yàn)?;谥R(shí)的專家,層次分析法是最目前使用的。這種方法更適合于評(píng)價(jià)和解決具體煤層地質(zhì)條件。表1顯示了通過AHP得到的地質(zhì)因素權(quán)重的層次分析法
6模糊評(píng)價(jià)模型
6.1優(yōu)化模型的模糊評(píng)價(jià)
線性加權(quán)綜合評(píng)價(jià)模型通常用于煤層條件地質(zhì)模糊評(píng)價(jià)。近年來,優(yōu)化模型提出模糊綜合評(píng)價(jià),以減少主觀性的評(píng)價(jià)。其主要特點(diǎn)在于使用兩個(gè)基本點(diǎn)的方法。這就是說,在若干塊評(píng)價(jià)體系中,有一個(gè)相應(yīng)的理想的點(diǎn)良好載體G( G = (g1,g2……gn) )和一個(gè)相應(yīng)的反理想點(diǎn)不良載體B( B= (b1,b2……bn) ),假設(shè)該綜合評(píng)價(jià)值Ri (Ri = (r11, r22, ┄r1m) 是
μi,然后計(jì)算廣義距離D(Ri, G) 和 D (Ri, B).。如果考慮所有樣本的平方和加權(quán)距離為最優(yōu)標(biāo)準(zhǔn),最佳的解決方案的綜合評(píng)價(jià)值是:
6.2特別困難的條件下綜合評(píng)價(jià)模型
基于上述模糊評(píng)價(jià),特殊困難地質(zhì)條件的綜合評(píng)價(jià)模型,煤層建立困難系數(shù)D。D的更大的價(jià)值是比較困難的地質(zhì)開采條件。因?yàn)檎麄€(gè)評(píng)價(jià)應(yīng)該體現(xiàn)個(gè)人的影響因素。連續(xù)乘法時(shí)必須通過結(jié)構(gòu)模型。就是D =1- B× P, 這里B是評(píng)估價(jià)值的特殊地質(zhì)條件, P是評(píng)估價(jià)值一般地質(zhì)條件。
圖2評(píng)估值之間的關(guān)系和可靠性
7可靠性模糊評(píng)價(jià)
圖2顯示的特點(diǎn),可靠性,采礦前評(píng)價(jià)的基礎(chǔ)上,預(yù)先采礦和在開采的評(píng)估和計(jì)算可靠性的評(píng)價(jià)12采礦區(qū)和107個(gè)典型的煤煤層區(qū)塊。采礦前評(píng)價(jià)具有更大的價(jià)值,更好的煤層條件,并更高的可靠性。相反,減少采礦前評(píng)價(jià)是具有最嚴(yán)重的煤層條件和較低的可靠性。不同煤層區(qū)塊信度的評(píng)價(jià)不同,但是他們總是在整體范圍內(nèi)組成指數(shù)函數(shù)的雙包絡(luò)線R1和R2中。適當(dāng)?shù)闹档腞應(yīng)選擇修改該值的P ',同時(shí)評(píng)價(jià)新區(qū)塊。
8預(yù)測工作面產(chǎn)量
在某些條件下的設(shè)備,技術(shù)和管理的煤礦,采煤工作面產(chǎn)量和地質(zhì)條件之間存在著密切的關(guān)系。
通過模糊評(píng)價(jià)煤礦地質(zhì)條件和統(tǒng)計(jì)分析生產(chǎn)技術(shù)指標(biāo),采煤工作面產(chǎn)量和模糊綜合評(píng)價(jià)值的關(guān)系之間的都可以建立在一個(gè)新的預(yù)測采煤工作面產(chǎn)量模式下。有很多預(yù)測模型的線性方程,對(duì)偶二次方程和指數(shù)方程等,例如:
a =C1+ C2 P(綜采開采技術(shù))
a =D(C1+ C2 P + C3 P2)(綜或常規(guī)機(jī)械化采煤技術(shù))
a = D( C1+C2P+C3P2+C4P3)(爆破采煤技術(shù))
a = 24.5(1.13 +1.24 ln P) (在南屯煤礦綜采開采技術(shù))
a = (14.66lnM - 6.77)(1.28+1.4ln P) (東灘礦綜采放頂煤技術(shù))
其中D是困難系數(shù),的C1 , C2 ,C3 ,和C4是統(tǒng)計(jì)回歸常數(shù)。
參考文獻(xiàn)
[1] IBTurksen 1991年,隸屬函數(shù)的測量和采集。模糊集與系統(tǒng), 40:36-40 ,北荷蘭。
[2] Knosala與美國Pedrycz 1992年,評(píng)價(jià)日簽署替代機(jī)械工程,模糊集與系統(tǒng),47:24-28 。
[3] JSDyer & RKSarin , 1979年,衡量多屬性值函數(shù),運(yùn)籌學(xué)。
收藏
鏈接地址:http://m.hcyjhs8.com/p-5128457.html