《九年級(jí)數(shù)學(xué)總復(fù)習(xí) 第28課時(shí) 統(tǒng)計(jì)教案 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)數(shù)學(xué)總復(fù)習(xí) 第28課時(shí) 統(tǒng)計(jì)教案 新人教版(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、九年級(jí)數(shù)學(xué)總復(fù)習(xí) 第28課時(shí) 統(tǒng)計(jì)教案 新人教版
復(fù)習(xí)教學(xué)目標(biāo)
1、知道加權(quán)平均數(shù)、頻數(shù)、頻率的概念;指出總體、個(gè)體、樣本;了解三種統(tǒng)計(jì)圖的聯(lián)系和區(qū)別。
2、會(huì)求平均數(shù)、眾數(shù)、中位數(shù);會(huì)用計(jì)算器求方差、標(biāo)準(zhǔn)差;會(huì)列頻數(shù)分布表、畫頻數(shù)分布直方圖、折線圖。
3、能用統(tǒng)計(jì)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。體會(huì)用樣本估計(jì)總體的思想;會(huì)對(duì)日常生活中的某些數(shù)據(jù)發(fā)表自己的看法,對(duì)統(tǒng)計(jì)結(jié)果作出合理的判斷和預(yù)測(cè)。
復(fù)習(xí)教學(xué)過(guò)程設(shè)計(jì)
分布狀況
頻數(shù)分布直方圖
頻數(shù)分布折線圖
頻數(shù)
數(shù)字特征
集中趨勢(shì)
波動(dòng)大小
極差
眾數(shù)
統(tǒng)計(jì)
調(diào)查的方式
總體
抽查
整理數(shù)據(jù)的方式
折線統(tǒng)計(jì)圖
2、
數(shù)字特征
分布狀況
一、【喚醒】
1、填空題
2、判斷題
(1)n個(gè)數(shù)的中位數(shù)一定是這n個(gè)數(shù)中的某一個(gè) ( ╳ )
(2)方差是表示一組數(shù)據(jù)離散程度的量,方差越大,數(shù)據(jù)越整齊 ( ╳ )
(3)要了解全市中學(xué)生身高在某一范圍內(nèi)學(xué)生所占的比例,需知道相應(yīng)的頻率分布 ( √ )
(4)在頻數(shù)分布直方圖中,小長(zhǎng)方形的高是該組的頻率 ( ╳ )
3、(5)如果將所給定的數(shù)據(jù)組中的每個(gè)數(shù)都減去一個(gè)非零常數(shù),那么該數(shù)組的平均數(shù)改變,方差改變 ( ╳ )
3、選擇題
(1)已知一組數(shù)據(jù)5,15,25,35,35, 45,45,45,75,75那么40是這一組的 ( B )
A、平均數(shù)但不是中位數(shù) B、平均數(shù)也是中位數(shù) C、眾數(shù) D、中位數(shù)但不是平均數(shù)
(2)為了解我校八年級(jí)800名學(xué)生期中數(shù)學(xué)考試情況,從中抽取了200名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì).下列判斷:①這種調(diào)查方式是抽樣調(diào)查;②800名學(xué)生是總體;③每名學(xué)生的數(shù)學(xué)成績(jī)是個(gè)體;④200名學(xué)生是總體的一個(gè)樣本;其中正確的判斷有
4、 ( B )
A.、1個(gè) B、2個(gè) C、3個(gè) D、.4個(gè)
(3)有十五位同學(xué)參加智力競(jìng)賽,且他們的分?jǐn)?shù)互不相同,取八位同學(xué)進(jìn)入決賽,某人知道了自己的分?jǐn)?shù)后,還需知道這十五位同學(xué)的分?jǐn)?shù)的什么量,就能判斷他能不能進(jìn)入決賽 ( D )
A、平均數(shù) B、眾數(shù) C、最高分?jǐn)?shù) D、中位數(shù)
(4)為了估計(jì)湖里有多少條魚,先捕了100條魚,做好標(biāo)記然后放回到湖里,過(guò)一段時(shí)間,待帶有標(biāo)記的魚完全混合于魚群后,再捕上200條魚,發(fā)現(xiàn)其中帶有標(biāo)記的魚為2條,
5、湖里大約有魚( C )
A、800條 B、6000條 C、10000條 D、1000條
(5)已知樣本數(shù)據(jù)為9.9,10.3,10,10.1,9.7,則方差為 ( B )
A、0 B、0.04 C、0.2 D、0.4
二、【嘗試】
例1有100名學(xué)生參加兩次科技知識(shí)測(cè)試,條形圖顯示兩次測(cè)試的分?jǐn)?shù)分布情況.
請(qǐng)你根據(jù)條形圖提供的信息,回答下列問(wèn)題(把答案填在題中橫線上);
(1)兩次測(cè)試最低分在第 一
6、次測(cè)試中;
第二次測(cè)試
第一次測(cè)試
0~19
20~39
40~59
60~79
80~99
20
10
學(xué)生數(shù)
分?jǐn)?shù)
40
30
0
(2)第 二 次測(cè)試較容易;
這次測(cè)試分?jǐn)?shù)在60~79之間的頻率是 0.3
(3)第一次測(cè)試中,中位數(shù)在 20~39 分?jǐn)?shù)段,
第二次測(cè)試中,中位數(shù)在 40~59 分?jǐn)?shù)段.
提煉:頻數(shù)分布直方圖的縱坐標(biāo)表示的量是頻數(shù),小長(zhǎng)
方形越高,頻數(shù)越大。橫坐標(biāo)表示的量一般是從
小到大排列,與求中位數(shù)的要求相一致。
例2 某校組織初三同學(xué)外出郊游,下圖是某班學(xué)生外出乘車、
步行、騎車的人
7、數(shù)分布直方圖和扇形分布圖。
(1)求該班有多少名學(xué)生? (2)在扇形統(tǒng)計(jì)圖中,求騎車人數(shù)所占的圓心角度數(shù)。
(3)補(bǔ)上步行分布直方圖的空缺部分;(4)若全年級(jí)有500人,估計(jì)該年級(jí)步行人數(shù)。
乘車50%
步行
20%
騎車
30%
20
12
乘車
步行
騎車
學(xué)生數(shù)
分析:本例從條形統(tǒng)計(jì)圖我們可以獲取乘車、
騎車的人數(shù),從扇形統(tǒng)計(jì)圖獲取乘車、
步行、騎車人數(shù)所占班級(jí)學(xué)生人數(shù)的百
分比。求全年級(jí)步行學(xué)生可以用樣本估計(jì)
總體。
解(略) 答案(1)40 (2)108°
(3)略(4)100
提煉:條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖之間的相
8、互轉(zhuǎn)化,關(guān)鍵是抓住在不同圖形中乘車與騎車人數(shù)不變。補(bǔ)全頻數(shù)分布直方圖要注意小長(zhǎng)方形的高與頻數(shù)成正比。
例3 快樂(lè)公司決定按左圖給出的比例,從甲、乙、丙三個(gè)工廠共購(gòu)買200件同種產(chǎn)品A,已知這三個(gè)工廠生產(chǎn)的產(chǎn)品A的優(yōu)品率如右表所示.
⑴ 求快樂(lè)公司從丙廠應(yīng)購(gòu)買多少件產(chǎn)品A; ⑵求快樂(lè)公司所購(gòu)買的200件產(chǎn)品A的優(yōu)品率;
⑶ 你認(rèn)為快樂(lè)公司能否通過(guò)調(diào)整從三個(gè)工廠所購(gòu)買的產(chǎn)品A的比例,使所購(gòu)買的200件產(chǎn)品A的優(yōu)品率上升3%.若能,請(qǐng)問(wèn)應(yīng)從甲廠購(gòu)買多少件產(chǎn)品A;若不能,請(qǐng)說(shuō)明理由.
③
①
②
① 甲25%
③ 丙
② 乙40%
甲
乙
丙
優(yōu)品率
9、80%
85%
90%
解⑴丙廠:200×(1-25%-40%)=70 ⑵甲廠:200×25%=50;乙廠200×40%=80;
優(yōu)品率 (50×80%+80×85%+70×90%)÷200=0.855=85.5%
⑶設(shè)從甲廠購(gòu)買x件,從乙廠購(gòu)買y件,丙廠購(gòu)買(200―x―y)件.
則80%x+85%y+90%(200―x―y)=200×88. 5%,即2x+y=60; 又80%x和85%y均為整數(shù)。
所以當(dāng)y=0時(shí),x=30; 當(dāng)y=20時(shí),x=20; 當(dāng)y=40時(shí),x=10;當(dāng)y=60時(shí),x=0,
提煉:進(jìn)行加工的能力是學(xué)生必備能力。本題把統(tǒng)計(jì)知識(shí)和不定方程融為一體,解題的關(guān)鍵是注意隱藏條件0.8x、0.85y是整數(shù)。即x是5的倍數(shù),y是20的倍數(shù)
三、【小結(jié)】
1、 帶領(lǐng)學(xué)生回顧嘗試中的填空題。
2、 數(shù)形轉(zhuǎn)化、從圖表、數(shù)據(jù)、文字獲取信息是統(tǒng)計(jì)的主線,用統(tǒng)計(jì)知識(shí)解決生活中的實(shí)際問(wèn)題是我們學(xué)習(xí)的目的。