喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
==========================================
本科學(xué)生畢業(yè)設(shè)計
汽車側(cè)向穩(wěn)定性控制器的設(shè)計
院系名稱: 汽車與交通工程學(xué)院
專業(yè)班級: 車輛工程07-2班
學(xué)生姓名: 劉平藝
指導(dǎo)教師: 張金柱
職 稱: 教授
黑 龍 江 工 程 學(xué) 院
二○一一年六月
The Graduation Design for Bachelor's Degree
Lateral Stability Controller Design for A Car
Candidate:Liu Pingyi
Specialty:Vehicle Engineering
Class:B07-2
Supervisor:Prof. Zhang Jinzhu
Heilongjiang Institute of Technology
2011-06·Harbin
黑龍江工程學(xué)院本科生畢業(yè)設(shè)計
摘 要
基于汽車主動制動側(cè)向穩(wěn)定系控制系統(tǒng),使用的是汽車實際橫擺角速度與駕駛員期望值的差值來判定汽車的穩(wěn)態(tài),同時引入了車輛質(zhì)心側(cè)偏角與經(jīng)驗值進行比較得到了另個一關(guān)于汽車轉(zhuǎn)彎穩(wěn)定的安全系數(shù),希望由此改善和提高汽車在轉(zhuǎn)彎過程中的操縱穩(wěn)定性。
側(cè)向穩(wěn)定性控制系統(tǒng)判定車身狀態(tài)不穩(wěn)定時,可能是轉(zhuǎn)向不足或者是轉(zhuǎn)向過多。當轉(zhuǎn)向不足時系統(tǒng)將制動內(nèi)側(cè)后輪,轉(zhuǎn)向嚴重不足時,同時制動多個車輪;當出現(xiàn)轉(zhuǎn)向過多時,系統(tǒng)將制動外側(cè)車輪,從而穩(wěn)定車輛,保證駕駛員和乘客的安全。
為了提高汽車側(cè)向穩(wěn)定性控制這個目標,在控制過程中使用了汽車輪速傳感器、方向盤轉(zhuǎn)角傳感器、橫擺角和G傳感儀等信號源,控制部分包括制動增壓電機、兩個吸入電磁閥、兩個隔離電磁閥、四個車輪的增壓和減壓電磁閥。通過相關(guān)算法,初步確定汽車穩(wěn)定和各個信號之間的關(guān)系,并實現(xiàn)側(cè)向穩(wěn)定性的初步控制。
關(guān)鍵詞:側(cè)向穩(wěn)定性;橫擺角;轉(zhuǎn)向不足;轉(zhuǎn)向過多;制動;電磁閥
ABSTRACT
Active braking lateral stability based on cars, use of control system is car actual yaw-rate expectations and drivers to determine the difference in value of car, and introduced the steady-state traffic PianJiao and experience value centroid side got another comparison about turning a stable security coefficient car, hope this improvement and improve automobile in turning process manipulation stability.
Lateral stability control system determine body state unstable, may be understeering or move on to too much. When understeer medial rear brake system when will seriously insufficient, steering wheel, and braking when more than; When there is too much, the system will be steering wheels, and brake lateral stability vehicles, ensure the safety of drivers and passengers.
In order to improve the car lateral stability control this goal, in process control the automobile wheel speed sensors will be uesd, steering wheel Angle sensor, yaw angles and G sensing devices such as signal source, the control part includes braking pressurization motor, two inhaled solenoid valve, two separate solenoid valve, four wheels of intensification and decompression solenoid valves. Through the related algorithm, preliminarily determined each signal car stability and the relationship between the lateral stability, and realize the preliminary control.
Key words: Lateral stability; Yaw angles; Understeer; Steering overmuch; Braking; Electromagnetic valve
II
目 錄
摘 要 I
ABSTRACT II
第1章 緒論 1
1.1側(cè)向穩(wěn)定性控制器的研究意義 1
1.2 側(cè)向穩(wěn)定性控制器的優(yōu)點 1
1.3 國內(nèi)、外的現(xiàn)狀 2
1.4 研究內(nèi)容 2
第2章 側(cè)向穩(wěn)定性控制器的結(jié)構(gòu)原理和控制方法 4
2.1 汽車側(cè)向穩(wěn)定性控制器的結(jié)構(gòu)組成 4
2.1.1汽車側(cè)向穩(wěn)定性控制系統(tǒng)的工作原理 4
2.1.2 側(cè)向穩(wěn)定性控制車輪制動原理 6
2.1.3質(zhì)心側(cè)偏角速度與汽車穩(wěn)定性控制的聯(lián)系 6
2.1.4橫擺角與汽車穩(wěn)定性控制的聯(lián)系 7
2.2橫擺角速度、質(zhì)心側(cè)偏角與汽車穩(wěn)定性的控制策略 8
2.2.1閥門值和Y+、Y-的確定 9
2.3 控制算法設(shè)定占空比 11
2.4 本章小結(jié) 11
第3章 硬件系統(tǒng)的選擇與設(shè)計 12
3.1 控制器硬件系統(tǒng)概要 12
3.2傳感器的選擇與電路設(shè)計 13
3.2.1輪速傳感器的選擇與電路設(shè)計 13
3.2.2 方向盤轉(zhuǎn)角傳感器的選擇 14
3.2.3橫擺角和G傳感器總成的選擇 15
3.3液壓電磁閥回路系統(tǒng) 15
3.3.1液壓控制單元結(jié)構(gòu) 15
3.3.2液壓電磁閥控制回路 16
3.3.3驅(qū)動電路的設(shè)計 17
3.3.4驅(qū)動電路圖 18
3.4飛思卡爾MC9S12XS128單片機 18
3.4.1飛思卡爾S12芯片A/D轉(zhuǎn)化模塊特點: 19
3.4.2 PWM的主要特點 19
3.5 本章小結(jié) 20
第4章 軟件設(shè)計 21
4.1 軟件設(shè)計總體思路 21
4.2方向盤轉(zhuǎn)角(前輪轉(zhuǎn)角)信號的采集 22
4.3橫擺角信號與側(cè)向加速度信號的采集 22
4.4 輪速信號采集 23
4.5 PWM寄存器設(shè)置 24
4.6判斷穩(wěn)定系控制程序的編寫 25
4.7 本章小結(jié) 28
第5章 實驗與分析 29
5.1程序的下載 29
5.2測試A/D、PWM和I/O 32
5.3 側(cè)向穩(wěn)定性控制的實驗 32
5.4 實驗分析和結(jié)論 34
5.5 本章小結(jié) 35
結(jié) 論 36
參考文獻 37
致 謝 38
附 錄 39
附錄A 外文文獻 39
附錄B 外文文獻中文翻譯 45
附錄C 程序 50
第1章 緒論
1.1側(cè)向穩(wěn)定性控制器的研究意義
在汽車數(shù)量急劇增長的今天,汽車安全性能越來中重要了,隨著汽車使用率的增加,汽車交通事故率也隨之直線上升。在很多重大交通事故中,車輛往往由于在極端環(huán)境下車輪失去與地面的附著力而導(dǎo)致失控。例如在緊急避讓過程中,突然遇到濕滑、油污路面,或者在過彎當中車速過快而導(dǎo)致的轉(zhuǎn)向不足和轉(zhuǎn)向過度,都有可能讓車輛失控。
側(cè)向穩(wěn)定性控制器通過傳感器得知車輛的抱死情況、車輛的橫擺慣量(簡單理解為車身傾側(cè)的程度),當車輛出現(xiàn)失控趨勢時,對特定的車輪給予額外的制運力,甚至通過調(diào)整車輛的牽引力,務(wù)求以最大的程度保持住車輪的附著力。在側(cè)向穩(wěn)定性控制器的默默工作下,車輛遇到險情時往往能夠化險為夷。對于普通駕駛者而言,側(cè)向穩(wěn)定性控制器顯得格外重要。
當汽車進行蛇形線路測試的時候就可以有效避免汽車的翻轉(zhuǎn)。側(cè)向穩(wěn)定性控制系統(tǒng)不僅僅是在干燥路面上提高了汽車的穩(wěn)定性,還可以在路面附著性比較差的時候,諸如結(jié)冰、濕滑,以及碎石等情況下起作用。在上述不利狀況下,車輪與路面之問的附著力降低,即使是最好的駕駛員也很難將高速行駛的汽車保持在預(yù)定的路線上,汽車容易發(fā)生側(cè)滑和跑偏,失去方向穩(wěn)定性,甚至在急轉(zhuǎn)彎的時候發(fā)生翻車事故,這時就需要側(cè)向穩(wěn)定性控制系統(tǒng)來拯救生命,減少、減輕意外交通事故的發(fā)生。
1.2 側(cè)向穩(wěn)定性控制器的優(yōu)點
側(cè)向穩(wěn)定性控制系統(tǒng)由控制單元及轉(zhuǎn)向傳感器(監(jiān)測方向盤的轉(zhuǎn)向角度)、車輪傳感器(監(jiān)測各個車輪的速度轉(zhuǎn)動)、側(cè)滑傳感器(監(jiān)測車體繞垂直軸線轉(zhuǎn)動的狀態(tài))、橫向加速度傳感器(監(jiān)測汽車轉(zhuǎn)彎時的離心力)等組成。控制單元通過這些傳感器的信號對車輛的運行狀態(tài)進行判斷,進而發(fā)出控制指令,側(cè)向穩(wěn)定性控制器能有效的增強了汽車的安全性能。
(1)能控制啟動防滑,有效加速啟動,在加速階段使汽車得到最大的驅(qū)動力。
(2)制動防抱死,防止汽車出現(xiàn)因制動抱死而失去轉(zhuǎn)向控制,有效減少制動距離。
(3)橫擺力矩的控制,有效避免超速時的轉(zhuǎn)彎不足和過多轉(zhuǎn)向,極大的減少了車輛因轉(zhuǎn)向過多而側(cè)翻以及因轉(zhuǎn)向不足而沖出彎道引發(fā)的交通事故。
1.3 國內(nèi)、外的現(xiàn)狀
汽車側(cè)向穩(wěn)定性控制器的研究是從ABS開始的。ABS在20世紀80年代開始得到廣泛應(yīng)用,目前在國外已經(jīng)發(fā)展成為一種非常成熟的技術(shù)。國內(nèi)對ABS的研究始于80年代初,國內(nèi)研制ABS的單位主要有東風(fēng)汽車公司、交通部重慶公路研究所、重慶宏安ABS有限公司、陜西興平514廠、西安公路學(xué)院等單位和部門。東風(fēng)汽車公司從80年代初就開始研究ABS,是較早研究ABS的廠家之一,現(xiàn)研究工作的主要目標是對國外的產(chǎn)品進行消化吸收,如將德國瓦布科公司的ABS裝于EQl45型汽車上進行各種試驗。重慶公路研究所相繼開發(fā)出了兩代ABS產(chǎn)品,第一代ABS的ECU采用了280芯片。第二代ABS產(chǎn)品為FKX.AC I型,該裝置的ECU中的CPU微處理器采用了美國INTEL公司的MCS.96系列8098單片機,但距離滿足實際應(yīng)用仍有一定的差距。1998年,重慶聚能汽車技術(shù)有限公司在國內(nèi)首家推出適合中國國情的電子式ABS防抱裝置,現(xiàn)已達到年產(chǎn)50萬套的生產(chǎn)能力,是我國國內(nèi)最大的ABS生產(chǎn)基地。
電子穩(wěn)定程序(ESP)是90年代初由德國奔馳公司開發(fā)的車輛穩(wěn)定系統(tǒng)。從1995年至今,伴隨著理論研究的不斷深入和電子技術(shù)的發(fā)展,汽車穩(wěn)定性控制得到了很大的發(fā)展,并開始作為選裝件安裝在一些中高檔轎車上。德國BOSCH公司一直是這方面技術(shù)的領(lǐng)先者,無論是ABS/ASR還是更先進的ESP系統(tǒng),技術(shù)上都一直處于領(lǐng)先地位,為國際大多數(shù)汽車廠商供應(yīng)ABS/ASR/ESP系統(tǒng)。1995年,博世成為首家把ESP投入量產(chǎn)的公司,早在1983年,博世的工程師就通過優(yōu)化的ABS控制系統(tǒng)來增強車輛在全力制動時的穩(wěn)定性,博世在1987年注冊了相關(guān)的專利,1991年博世同戴姆勒-克萊斯勒公司開始聯(lián)合開發(fā)該項目基地。1995年3月電子穩(wěn)定控制系統(tǒng)開始批量生產(chǎn)。同年,ESP成功用于梅賽德斯-奔馳汽車的S級車型上。在接下來的數(shù)年里,博世不斷優(yōu)化ESP的設(shè)計使得ESP開始廣泛占領(lǐng)了轎車市場。
目前,全球有6家汽車零部件制造商生產(chǎn)ESP,他們是德國的博世,日本電裝,日本愛信精工,德國大陸Teves,美國德爾福,美國TRW。
國內(nèi)汽車穩(wěn)定性控制的研究還處在起步階段,只有少數(shù)學(xué)者從事控制方法的仿真研究,而且由于缺少試驗條件,研究還不十分深入,現(xiàn)在吉林大學(xué)、清華大學(xué)、上海交大、西北工大等高校和中國重汽集團、上海匯眾汽車制造公司等企業(yè)也在開展相關(guān)的研究工作。
1.4 研究內(nèi)容
本次研究的內(nèi)容為汽車側(cè)向穩(wěn)定性控制器的設(shè)計,主要研究內(nèi)容如下:
(1)研究汽車側(cè)向穩(wěn)定性控制器的硬件結(jié)構(gòu)和工作原理,了解各個傳感器(橫擺角速度傳感器、車速傳感器、車輪角速度傳感器、方向盤轉(zhuǎn)角傳感器)、執(zhí)行器(ABS泵電磁閥)的功能、驅(qū)動方法(電壓、電流、頻率范圍)等。
(2)根據(jù)設(shè)計要求和硬件條件,設(shè)計合適的擴展電路,
(3)針對汽車側(cè)向穩(wěn)定性控制器的設(shè)計要求,設(shè)計以單片機為核心的側(cè)向穩(wěn)定性控制系統(tǒng),編寫控制程序。
(4)開發(fā)完成軟件和硬件控制器,進行技術(shù)指標的針對性的試驗。
第2章 側(cè)向穩(wěn)定性控制器的結(jié)構(gòu)原理和控制方法
2.1 汽車側(cè)向穩(wěn)定性控制器的結(jié)構(gòu)組成
信號輸入
計算控制
傳感器
控制輸出
執(zhí)行器
圖2.1 側(cè)向穩(wěn)定性控制器結(jié)構(gòu)組成
控制器主要包括三部分:信號輸入、計算控制、響應(yīng)輸出三部分。
信號輸入包括:前輪或方向盤轉(zhuǎn)角信號、橫擺角速度信號、側(cè)向角速度信號、4個車輪轉(zhuǎn)速信號、主缸壓力信號等。
計算控制部分主要由飛思卡爾S12xs128單片機處理信號輸入,做出分析,然后判斷輸出,達到控制的目的。
輸出響應(yīng)部分包括:4個增壓閥(常開)、4個減壓閥(常閉)、2個吸入閥(常閉)、2個隔離法(常開)、2個吸入泵、1個電機。
2.1.1汽車側(cè)向穩(wěn)定性控制系統(tǒng)的工作原理
汽車穩(wěn)定性控制系統(tǒng)的ECU根據(jù)方向盤轉(zhuǎn)角傳感器和車速信號,通過計算來判斷駕駛員的駕駛意圖,計算出理想的車輛運行狀態(tài)值。ECU根據(jù)檢測得到的實際車輛狀態(tài)與理想車輛狀態(tài)的誤差,通過一定的控制邏輯計算出可以使車輛恢復(fù)穩(wěn)定的汽車橫擺力矩,然后通過控制液壓調(diào)節(jié)器的電磁閥開關(guān)動作調(diào)節(jié)制動系統(tǒng)各制動輪缸的壓力來實現(xiàn)所需要的汽車橫擺力矩。改變后的車輛運行狀態(tài)由傳感器測量到 ECU,然后再進行下一循環(huán)的控制,從而使汽車保持穩(wěn)定。這就是汽車穩(wěn)定控制的一般工作原理。
下面以在低附著路面上緊急換道時的情況為例進行詳細說明。圖2.1和圖2.2分別為不施加穩(wěn)定性控制和施加穩(wěn)定性控制時車輛的運行情況。圖2.1中,1為汽車直線行駛,沒有施加穩(wěn)定性控制的車輛駕駛員向左打方向盤2進行換道操作,由于路面的摩擦系數(shù)不能提供足夠的側(cè)向力,于是在位置3時發(fā)生了過度轉(zhuǎn)向。這時車輛急速沿逆時針方向旋轉(zhuǎn),為了彌補這種過度轉(zhuǎn)向,駕駛員在位置4時向右急打方向盤作為補償,由于補償過度車輛又在位置5時發(fā)生了過度轉(zhuǎn)向,使得車輛急速沿順時針方向旋轉(zhuǎn)。由于此時車輛的質(zhì)心側(cè)偏角很大,駕駛員通過方向盤對車輛的控制效果不明顯,從而引起慌亂,于是車輛失去控制而甩出。
圖2.1 不施加汽車穩(wěn)定控制的車輛在低附著路面上緊急換道
由圖2.2中可以看出,施加穩(wěn)定性控制的車輛駕駛員向左打方向盤2進行換道操作,同樣在位置3時發(fā)生了過度轉(zhuǎn)向,汽車穩(wěn)定控制系統(tǒng)檢測到車輛發(fā)生了不穩(wěn)定狀態(tài),于是通過對液壓調(diào)節(jié)器的調(diào)節(jié)使車輛產(chǎn)生抵消當前過度轉(zhuǎn)向趨勢的沿順時針方向的橫擺力矩,使車輛盡量按照駕駛員的操作來運行。在位置4時駕駛員向右打方向盤完成換道操作,在位置5時又發(fā)生了不穩(wěn)定情況,汽車穩(wěn)定控制系統(tǒng)通過施加逆時針方向的汽車橫擺力矩糾正了不穩(wěn)定趨勢。因此,盡管路面附著系數(shù)比較低,但在汽車穩(wěn)定控制系統(tǒng)的輔助下車輛還是比較好地依照駕駛員的意圖完成了換道操作??梢?,汽車穩(wěn)定控制在保障汽車穩(wěn)定方面具有很大的優(yōu)勢。一般認為,安裝汽車穩(wěn)定控制系統(tǒng)相對于沒有安裝在以下幾種情況下具有明顯效果:緊急移線或在低附著路面上移線;移線過程中突然制動;在幅值很大的方向盤轉(zhuǎn)角下連續(xù)躲避障礙;轉(zhuǎn)向時伴隨著加速或制動。
圖2.2 施加汽車穩(wěn)定控制的車輛在低附著路面上緊急換道
如上所述,當汽車行駛在路面摩擦系數(shù)較低或者緊急轉(zhuǎn)向時是汽車最容易發(fā)生交通事故的工況,汽車穩(wěn)定控制系統(tǒng)在這些比較極端的工況下具有明顯的控制效果,因而可以大大提高汽車的主動安全性。
2.1.2 側(cè)向穩(wěn)定性控制車輪制動原理
如圖2.1所示,車輛在制動時輪胎受到的受力分析。主要有地面對車輪產(chǎn)生的與車輛行進方向相反的摩擦力,地面對輪胎的法向反作用力,同時地面還對輪胎有側(cè)向的側(cè)滑摩擦力。地面制動力與地面對輪胎的法向反作用力之間的比值稱為縱向附著系數(shù)。側(cè)滑摩擦力和法向反作用力之間的比值為側(cè)向附著系數(shù)。
圖2.3制動時輪胎受力圖
由于法向作用力在車輛行駛的過程中保持不變,因此,車輛制動時的縱向制動力和側(cè)向制動力與縱向附著系數(shù)和側(cè)向附著系數(shù)成正比。越大,縱向附著力越大,剎車的距離越短,大,側(cè)向附著力越大,車輛在制動的過程中越容易控制方向,保證車輛不會產(chǎn)生側(cè)滑。
2.1.3質(zhì)心側(cè)偏角速度與汽車穩(wěn)定性控制的聯(lián)系
汽車在彎道時,由于本身就會產(chǎn)生橫擺和質(zhì)心側(cè)偏而引起失去彎道的跟蹤能力,從而跑出彎道失去控制穩(wěn)定性,汽車在失去穩(wěn)定的狀態(tài),受環(huán)境的影響很大,當達到極限附著力的時候,汽車的動力學(xué)性能將被改變。
汽車的側(cè)偏力是由于路面的側(cè)向傾斜,側(cè)向風(fēng)或者汽車沿著曲線行駛時的離心力等作用,隨之使側(cè)偏角增加。路面情況不同,將會使車輪達到極限側(cè)偏的時間也不同,汽車達到飽和的時候側(cè)偏角的大小也不相同,高附著系數(shù)輪胎的側(cè)向極限比低附著系數(shù)的輪胎的極限側(cè)偏角要大。
在本實驗中,認定車輪的側(cè)偏系數(shù)是不變的。因此汽車的質(zhì)心側(cè)偏只與車速相關(guān)。相關(guān)實驗證明,汽車的不穩(wěn)定狀態(tài)出現(xiàn)的時候,汽車的質(zhì)心側(cè)偏角增加很明顯,所以將質(zhì)心側(cè)偏角引入控制范圍,相關(guān)數(shù)據(jù)表明,在低附著系數(shù)的路面,質(zhì)心側(cè)偏對車輛的穩(wěn)定性狀態(tài)有很大的影響。簡單的說,車輛穩(wěn)定運行時,地面的附著系數(shù)越低,車輛允許的質(zhì)心側(cè)偏角就越小。質(zhì)心側(cè)偏角的定義方法如下圖2.4所示,OXY為汽車車身坐標系,汽車的合速度與X軸的夾角就是質(zhì)心側(cè)偏角。
圖2.4 質(zhì)心側(cè)偏角示意圖
質(zhì)心側(cè)偏公式如下:
(2.1)
質(zhì)心側(cè)偏側(cè)偏角速度公式:
(2.2)
是兩個相鄰控制周期質(zhì)心側(cè)偏角速度的差值,是ESP控制的周期,在這里設(shè)置為0.1秒。如公式(2.3)
(2.3)
2.1.4橫擺角與汽車穩(wěn)定性控制的聯(lián)系
與汽車穩(wěn)定性緊密相關(guān)的另一個變量是橫擺角速度,本設(shè)計主要就是基于橫擺儀的信號來控制車輛的穩(wěn)定性的,在此前,先引入二自由度汽車模型。
為了方便控制,設(shè)計和分析中將忽略轉(zhuǎn)向系統(tǒng)的影響,既方向盤的輸入角度到前輪的轉(zhuǎn)角,可以認為是等效的,同時特定的認為:汽車沿x軸的前進速度視為不變,汽車只有沿著y軸的側(cè)向運動和繞著z軸的橫擺運動。此外,汽車的側(cè)向加速度限定在0.4g以下,忽略左右輪胎的因載荷不同變化而引起的輪胎特性變化以及輪胎的回正力矩。因此,可以說把汽車簡化為摩托車的模型,整個系統(tǒng)概括為:一個由前后兩個有側(cè)向彈性輪的輪胎支撐地面,具有側(cè)向及橫擺運動的二自由度的汽車模型。如下圖2.5
圖2.5 二自由度汽車模型
通過二自由度汽車模型,引入理想橫擺角速度:
(2.4)
——理想橫擺角速度,單位(rad/s)
——參考車速,單位(m/s);
——前輪轉(zhuǎn)角,單位(rad/s);
L——軸距,單位m,在這里取2.55m;
K——系數(shù)取值范圍0.003—0.004.
其中方向盤轉(zhuǎn)速與輪速之間的轉(zhuǎn)換可認為是理想的,忽略方向轉(zhuǎn)角與前輪轉(zhuǎn)角的差值,
橫擺角速度直接表征的量就是汽車的轉(zhuǎn)向不足與轉(zhuǎn)向過多,如果定義汽車實際的橫擺角速度為Y,用實際橫擺角速度Y與理想橫擺角速度的差值公式如下:
(2.5)
定義橫擺角速度向左為正,向右為負。
2.2橫擺角速度、質(zhì)心側(cè)偏角與汽車穩(wěn)定性的控制策略
在控制中,設(shè)置橫擺角速度閥門值為Y+ 和Y- ,質(zhì)心側(cè)偏角速度的閥門值設(shè)定為+B和-B,控制策略如下表2.1。
表2.1 控制策略
參考變量
控制策略
右前
右后
左前
左后
小增
小增
——
小增
大增
小增
——
——
——
——
——
小增
小增
——
——
——
——
——
小增
大增
小增
——
小增
小增
小增
小增
小增
——
小增
大增
——
——
——
——
小增
——
——
小增
——
——
——
——
大增
小增
——
小增
小增
小增
——
大增
大增
大增
大增
2.2.1閥門值和Y+、Y-的確定
通過查閱想過資料,得出橫擺角速度與時間的關(guān)系。由下圖可以看出,在橫擺角速度在1rad/s時,可以作為汽車側(cè)向穩(wěn)定性控制的一個門限值。
圖2.6 橫擺角速度與時間的關(guān)系
質(zhì)心側(cè)偏角速度為0.2rad/s時是控制的一個閥門值,當質(zhì)心側(cè)角速度超過0.2rad/s還不給予控制超過時間1S后,汽車的可能性能極大的降低了,因此設(shè)定的閥門值為0.2rad/s。如下圖2.7
圖2.7 質(zhì)心側(cè)偏角速度與時間的關(guān)系
圖2.8 質(zhì)心側(cè)偏角速度和橫擺角速度
由上圖2.8可以看出,質(zhì)心側(cè)偏角速度和橫擺角速度有密切的聯(lián)系,這兩者同時控制,將極大的提高汽車的安全性能和可控性能。因此同時控制橫擺角速度和質(zhì)心側(cè)偏角速度是正確的選擇。
2.3 控制算法設(shè)定占空比
在汽車行駛過程中,車速與汽車的側(cè)向穩(wěn)定性有很大的關(guān)系,基本呈線性上升,簡而言之,汽車的速度越高,汽車失去穩(wěn)定性控制的機會就越大。因此要求在汽車高速行駛時,對汽車的控制更加快和準,而在汽車低速時,對駕駛員而言,控制可以相對較慢,如果高占空比高頻控制,可能降低汽車的舒適性,因此設(shè)定占空比和車速成線性控制,在控制算法中稱為比例控制。
具體控制流程如下圖2.9:
控制算法
控制PWM占空比
Duty0
車速
Duty2,
Duty1
圖2.9 車速控制PWM流程圖
具體公式如下:
(2.6)
Duty2在初始時為0,的初始值也為0,在控制算法完成后,將本周期的Duty1賦值給Duty2,同時將本周期的的結(jié)果賦值給。
Duty0是占空比的初始值,在表2.1中設(shè)置車速為0時,小增時占空比為20%,大增設(shè)置為40%。Kv的初選值具體看第4章程序設(shè)置。
2.4 本章小結(jié)
本章主要介紹了側(cè)向穩(wěn)定性控制器的組成、原理和工作過程,還介紹了車輪制動控制的原理和主要控制的理論方法和控制策略。為第四章軟件編程做了鋪墊。
第3章 硬件系統(tǒng)的選擇與設(shè)計
3.1 控制器硬件系統(tǒng)概要
筆記本電腦
橫擺角和G傳感儀
BDM
橫向拉桿位移尺
A/D
飛思卡爾S12XS128 單片機
信號放大除雜
輪速傳感器x4
I/O
控制信號
信號放大隔離電路
泵電機
左前輪增壓閥
右前輪增壓閥
左后輪增壓閥
右后輪增壓閥
左隔離閥
右隔離閥
左吸入閥
右吸入閥
左前輪減壓閥
右前輪減壓閥
左后輪減壓閥
右后輪減壓閥
圖3.1 硬件連線
上圖是本設(shè)計的主要硬件關(guān)系連接圖,主要硬件以及功能如下:1、電腦,用于編程設(shè)計;2、BDM,用于連接電腦與單片機之間的通信,下載電腦的程序到單片機;3、飛思卡爾單片機,功能如下:(1)采集信號,有16路A/D轉(zhuǎn)換功能,可產(chǎn)生8位、10位轉(zhuǎn)換結(jié)果,有40路I/O輸入輸出端口。(2)有8路PWM波形輸出端口。(3)有多個時鐘功能,總線頻率16MHZ。4、橫擺角和G傳感儀,能測量汽車的橫擺角、橫向和縱向加速度;5、電子尺式前輪轉(zhuǎn)角信號,等同于方向盤轉(zhuǎn)角信號; 6、4個輪速傳感器,供給單片機輪速信號,通過相關(guān)控制算法,得到車身狀態(tài)信息;7、12個制動回路電磁閥,分別是4個車輪的制動增壓、減壓電磁閥,2個隔離閥,2個吸入閥, 9、制動泵。
3.2傳感器的選擇與電路設(shè)計
3.2.1輪速傳感器的選擇與電路設(shè)計
目前,測量車輪轉(zhuǎn)動速度的一般方法是將變磁阻式磁電傳感器安裝在車輪總成的非旋轉(zhuǎn)部分上,與隨車輪一起轉(zhuǎn)動的由導(dǎo)磁材料制成的齒圈相對。當齒圈隨車輪一起轉(zhuǎn)動時,由于齒圈與傳感器之間氣隙的的交替變化,導(dǎo)致兩者間磁阻的變化,從而在傳感器內(nèi)的線圈上感生出交變的電壓信號。
輪速傳感器是由永久磁鐵、磁極、線圈和齒圈組成。齒圈5在磁場中旋轉(zhuǎn)時,齒圈齒頂和電極之間的間隙就以一定的速度變化,則使磁路中的磁阻發(fā)生變化。其結(jié)果是使磁通量周期地增減,在線圈1的兩端產(chǎn)生正比于磁通量增減速度的感應(yīng)電壓,并將該交流電壓信號輸送給電子控制器。如下圖3.2
圖3.2 輪速傳感器結(jié)構(gòu)原理圖
1-線圈;2-磁鐵;3磁極;4-磁通;5-齒圈
當齒圈的齒數(shù)一定時,傳感器信號的頻率只與車輪的轉(zhuǎn)速有關(guān)。因此,硬件系統(tǒng)的電控單元通常是經(jīng)過專門的信號處理電路將傳感器正弦波信號轉(zhuǎn)換為同頻率的方波信號,通過檢測方波信號的頻率或周期來計算車輪的轉(zhuǎn)速。
輪速傳感器信號處理電路圖如下:
圖3.3 輪速信號采集電路
6、7為信號輸出端口,接往單片機I/O口進行信號采集。
輪速信號轉(zhuǎn)換流程如下圖3.3:
輪速傳感器
濾波電路
產(chǎn)生方波信號
單片機
圖3.4 輪速信號處理流程
為了提高測量輪速度精度,輪速信號處理電路應(yīng)具有如下功能:
(1)將正弦波信號轉(zhuǎn)換為同頻率的方波信號時,方波的占空比應(yīng)當適中;
(2)由于振動,氣隙在一定范圍內(nèi)變動時,仍然能正確地進行波形變換;
(3)電磁兼容性好,能抑制噪聲干擾。
由以上信息得出,輪速傳感器基本可以滿足設(shè)計要求,可以選用該傳感器和信號處理電路。
3.2.2 方向盤轉(zhuǎn)角傳感器的選擇
在本設(shè)計當中,使用電子尺測量轉(zhuǎn)向橫拉桿的位移測量,電子尺的采集信號為0-5V的電壓信號。
圖3.5 電子尺
由方向盤轉(zhuǎn)角信號輸出的信號時方波信號,通過集成電路信號處理端口,將方向盤信號-720°—+720°的信號轉(zhuǎn)換為0—5v電壓信號,當信號為2.5v時,表征方向盤無轉(zhuǎn)角,電壓信號可以直接輸入到單片機的A/D端口,可隨時取讀電壓信號作為判斷方向盤的轉(zhuǎn)角信號,同時理想的認為是前輪轉(zhuǎn)角信號。
側(cè)向范圍和側(cè)向精度均可以達到設(shè)計要求,因此可以選用電子尺代替方向轉(zhuǎn)角傳感器和前輪轉(zhuǎn)角傳感器。
3.2.3橫擺角和G傳感器總成的選擇
橫擺角和G傳感器總成包括橫擺角速度、縱向以及橫向加速度傳感器,輸出的信號都是0V-5V的模擬量,由于汽車顛簸造成的信號波動特性一致,故封裝在同一模塊中。汽車運行過程中,在較好路面上行駛時,信號較好,而在顛簸路面上行駛,故需要在軟件中設(shè)計數(shù)字濾波環(huán)節(jié)。數(shù)字濾波常用的有維納濾波器、卡爾曼濾波器、線性預(yù)測器、自適用濾波器等。在笨設(shè)計中,采用短時間連續(xù)取值求和,再取平均值的方法,來減少雜波和無效信號的干擾。硬件實物如下圖3.6:
圖3.6 BOSCH的橫擺角與G傳感儀
1-空;2-空;3-5V輸入電壓;4-橫擺角速度信號;5-橫向加速度信號;6-接地
3.3液壓電磁閥回路系統(tǒng)
3.3.1液壓控制單元結(jié)構(gòu)
ECU
圖3.7 液壓控制單元結(jié)構(gòu)
3.3.2液壓電磁閥控制回路
14
15
11
9
5
7
8
10
6
12
13
4
2
1
3
北京現(xiàn)代ESP制動回路圖
圖3.8 未制動時管路電磁閥圖
如圖所示1為右吸入閥,2為左吸入閥,3為右隔離閥,4為左隔離閥,5為右吸入泵,6為左吸入泵,7為左后增壓閥,8為左后減壓閥,9為右前增壓閥,10為右前減壓閥,11為電機,12為左前增壓閥,13為左前減壓閥,14為右后增壓閥,15為右后減壓閥。
低壓回路
高壓回路
圖3.9 左轉(zhuǎn)彎轉(zhuǎn)向不足時ESP制動
此時工作的電磁閥為右吸油電磁閥,右隔離電磁閥,右前增壓閥,左吸油閥,高壓油路為工作油路,低壓油路為回油油路,此時電機工作,帶動左、右吸油泵工作。此時制動的車輪為左后輪。
3.3.3驅(qū)動電路的設(shè)計
對于驅(qū)動電路的設(shè)計,需要電磁閥通過的最小電流為2A,ABS泵需要驅(qū)動的電流為20A最小。同時要求12v大電流電路和控制信號電路之間有良好的隔離效果。
信號輸出為單片機PWM信號,電壓范圍0—5V,電流極小,不超過25mA,控制ESP電磁閥工作的是開關(guān)電路。在設(shè)計電路時,選用光耦P521作為信號隔離元件,選用IRFP250作為大電流承擔(dān)元件,IRFP引腳如圖3.11,分別為G、D、S,當保持Ugs為10V時,IRFP250可通過最大電流為22A。
光耦一般由三部分組成:光的發(fā)射、光的接收及信號放大。輸入的電信號驅(qū)動發(fā)光二極管(LED),使之發(fā)出一定波長的光,被光探測器接收而產(chǎn)生光電流,再經(jīng)過進一步放大后輸出。這就完成了電—光—電的轉(zhuǎn)換,從而起到輸入、輸出、隔離的作用。由于光耦合器輸入輸出間互相隔離,電信號傳輸具有單向性等特點,因而具有良好的電絕緣能力和抗干擾能力。又由于光耦合器的輸入端屬于電流型工作的低阻元件,因而具有很強的共模抑制能力。
光耦結(jié)構(gòu)原理如下圖3.10,1H為信號輸入高電壓端口,2L為信號輸入的地電位端口,3H為信號輸出的高電位端口,4L為信號輸出的地電位端口。信號電流由1H流向2L,發(fā)光二極管發(fā)光,產(chǎn)生的光信號,激發(fā)光敏三極管,使3H和4L之間單向?qū)ā?
圖3.10 光耦原理圖
3.3.4驅(qū)動電路圖
對于驅(qū)動回路,由于有帶鐵芯的電感線圈,因此在高頻斷電的時候,會產(chǎn)生高壓感應(yīng)電動勢,因此在斷電的時候,必須給電磁閥回路短路處理,消耗掉線圈的感應(yīng)電流,在初期制作電路板的時候,由于沒有短路回路,繼電器直接就被高壓電火花吸引而不斷開,或者直接被擊穿了。因此在電路改進的過程中,將繼電器換成了汽車上常用的三極管IRFP250,在Ugs=10V的時候能經(jīng)受最大電流為22A,為了防止長時間工作導(dǎo)致三極管溫度上升,在三極管上安裝了散熱裝置。在三極管D端口和12V之間,制作一個單向回路,用單相管IN4007隔斷,IN4007的擊穿電壓高達1000V,工作電流為1A,在IN4007后串聯(lián)的是主要的耗能電阻100Ω/1W,可經(jīng)受住30A電流沖擊。由以上措施,確保了在光耦回路斷電后,電磁閥的感應(yīng)電流和電壓不干擾三極管的工作,而直接消耗在由電磁閥—電阻—電磁閥的這個循環(huán)回路,由于電磁閥的電阻小,因此只承擔(dān)了很小的一部分能量的消耗。如下圖3.11
圖3.11 電路圖局部視圖
3.4飛思卡爾MC9S12XS128單片機
本文中采用Freescale MC9S12XSl28B單片機作為汽車穩(wěn)定性控制器的主控制單元,F(xiàn)reescale單片機在汽車電子領(lǐng)域應(yīng)用的非常廣泛。MC9S12XSl28是以CPUl2為核心的單片機,其CPU芯片內(nèi)部頻率為16MHz,有128Kb的ROM,采用5V電壓供電,輸入輸出引腳的電壓為5V。(附單片機電路圖)
單片機外圍功能模塊如下:
(1)串行外接設(shè)備(SPI);
(2)串行通信設(shè)備(SCI);
(3)總線接口;
(4)增強型捕捉定時器(ECT);
(5)模數(shù)轉(zhuǎn)換器(ATD);
(6)脈寬調(diào)制模塊(PWM);
(7)CAN控制器。
3.4.1飛思卡爾S12芯片A/D轉(zhuǎn)化模塊特點:
8/10 位精度;7 us, 10-位單次轉(zhuǎn)換時間.;采樣緩沖放大器;可編程采樣時間; 左/右對齊, 有符號/無符號結(jié)果數(shù)據(jù);外部觸發(fā)控制;轉(zhuǎn)換完成中斷;模擬輸入 8 通道復(fù)用;模擬/數(shù)字輸入引腳復(fù)用;1 到 8 轉(zhuǎn)換序列長度;連續(xù)轉(zhuǎn)換模式;多通 道掃描方式。
ATD 模塊有模擬量前端、模擬量轉(zhuǎn)換、控制部分及結(jié)果存儲等四部分組成。其中模擬前端包括多路轉(zhuǎn)換開關(guān)、采樣緩沖器、放大器等,結(jié)果存儲部分主要有8個 16 位的存儲器和反映工作狀態(tài)的若干標志位。
飛思卡爾S12單片機的PWM 調(diào)制波有 8 個輸出通道,每一個輸出通道都可以獨立的進行輸出。每 一個輸出通道都有一個精確的計數(shù)器(計算脈沖的個數(shù)),一個周期控制寄存器 和兩個可供選擇的時鐘源。每一個 PWM 輸出通道都能調(diào)制出占空比從 0—100% 變化的波形。
3.4.2 PWM的主要特點
1、它有 8 個獨立的輸出通道,并且通過編程可控制其輸出波形的周期。
2、每一個輸出通道都有一個精確的計數(shù)器。
3、每一個通道的 PWM 輸出使能都可以由編程來控制。
4、PWM 輸出波形的翻轉(zhuǎn)控制可以通過編程來實現(xiàn)。
5、周期和脈寬可以被雙緩沖。當通道關(guān)閉或 PWM 計數(shù)器為 0 時,改變周期和脈寬才起作用。
6、8 字節(jié)或 16 字節(jié)的通道協(xié)議。
7、有 4 個時鐘源可供選擇(A、SA、B、SB),他們提供了一個寬范圍的時 鐘頻率。
8、通過編程可以實現(xiàn)希望的時鐘周期。
9、具有遇到緊急情況關(guān)閉程序的功能。
10、每一個通道都可以通過編程實現(xiàn)左對齊輸出還是居中對齊輸出。
PWM寄存器的設(shè)置
(1)禁止PWM PWME = 0
(2)選擇時鐘 PWMPRCLK,PWMSCLA,PWMSCLB,PWMCLK
(3)選擇極性 PWMPOL
(4)選擇對齊方式 PWMCAE
(5)選擇占空比和周期PWMDTYx,PWMPERx
(6)使能PWM PWME = 1
3.5 本章小結(jié)
本章主要介紹了控制器的硬件部分的選擇和結(jié)構(gòu)原理,控制器的硬件部分包括信號輸入部分,信號處理部分和執(zhí)行器三部分,還介紹了自主設(shè)計和制作的電路。
第4章 軟件設(shè)計
4.1 軟件設(shè)計總體思路
汽車側(cè)向穩(wěn)定性控制系統(tǒng),根據(jù)采集到的各種數(shù)據(jù),通過加速度的計算,確定汽車是否處于主動減少狀態(tài),決定是否經(jīng)行制動控制,通過滑移率的計算,確定車輪是否處于最大滑移率范圍內(nèi),通過控制相應(yīng)的電磁閥的開啟和閉合,達到最優(yōu)制動的結(jié)果。通過一定的算法計算出橫擺角速度的大小與實際測量的大小相比較,得出汽車目前穩(wěn)定的狀態(tài),通過控制算法,對相應(yīng)的車輪做制動,減輕橫擺角的進一步增大,通過PWM波輸出,控制增壓、減壓電磁閥的開啟和閉合,達到穩(wěn)定性的控制。本系統(tǒng)的軟件設(shè)計主要包括各模塊初始化、主程序設(shè)計、A/D轉(zhuǎn)換模塊程序設(shè)計、PWM驅(qū)動模塊程序設(shè)定、串口程序設(shè)定等。在本次設(shè)計中主要應(yīng)用單片機飛思卡爾MC9S12XS128的模塊有A/D,PWM,定時模塊,I/O模塊等。
引用頭文件
定義全局變量
設(shè)定A/D信號采集
設(shè)定PWM信號輸出
設(shè)定時鐘模塊
設(shè)定輪速信號采集
設(shè)定橫擺穩(wěn)定性控制
主程序
初始化各模塊
取讀輸入信號
穩(wěn)定性判斷
輸出控制
延時
圖4.1 總體流程圖
圖解:(1)全局變量為所有程序公用的信息,如車速信號,制動壓力信號,加速度信號等;(2)A/D采集信號包括電子尺轉(zhuǎn)向信號、橫擺角速度信號、側(cè)向加速度、縱向加速度信號、制動回路壓力信號;(3)PWM波形輸出控制,設(shè)定波形周期,占空比在實際使用的是設(shè)置。(4)輪速采集信號使用的I/O串口,制動主缸增壓電機由I/O控制輸出。
設(shè)置橫擺穩(wěn)定性控制器的控制周期為0.1s,即100ms,因此設(shè)置PWM的周期也為100ms,只需要控制PWM的占空比,也就可以控制一個周期內(nèi)電磁閥的開啟時間,方便設(shè)置改變和控制。
4.2方向盤轉(zhuǎn)角(前輪轉(zhuǎn)角)信號的采集
在試驗車上,安裝的是電子尺,用于測量轉(zhuǎn)向橫拉桿的橫向位移量,將位移量轉(zhuǎn)化為前輪轉(zhuǎn)角,這個值比方向盤轉(zhuǎn)角信號來的準確。電子尺的工作行程為200mm,轉(zhuǎn)向橫拉桿的極限行程為150mm,因此將0-5v等效為0-200mm,5v/200mm=0.025v/mm,即25mv/mm,選用10位A/D轉(zhuǎn)換精度,精度為4.8mv,因此可以測量到0.2mm。
定義無轉(zhuǎn)向信號的時候,信號輸出為2.5v,電子尺的位移為100mm,試驗車的橫向拉桿的實際位移量為150mm,因此采集的有效信號范圍是0.625-4.375v,將此范圍的電壓信號轉(zhuǎn)換為車輪的轉(zhuǎn)角信號。車輪的轉(zhuǎn)角信號范圍是負30°到正30°,即3.75v/60°=0.0625v/°=62.5mv/°,精度足夠高,滿足使用要求。
由以上換算得到角度和電壓的關(guān)系=,假設(shè)向左轉(zhuǎn)為正,向右轉(zhuǎn)為負。
4.3橫擺角信號與側(cè)向加速度信號的采集
橫向加速度信號,橫擺角速度信號以及電子尺的信號均為電壓信號,而且為0-5v電壓,因此采用A/D轉(zhuǎn)換,可得到比較精確的結(jié)果。
A/D寄存器設(shè)置如下:
void ATD_Init(void) //8bit模式
{
ATD0CTL2=0x42; //禁止外部觸發(fā)
ATD0CTL3=0xc0; //7:1數(shù)據(jù)右對齊無符號,每次轉(zhuǎn)換8個序列, No FIFO, Freeze模式下繼續(xù)轉(zhuǎn)
ATD0CTL4=0x17; //765: 采 樣 時 間 為 4 個 AD 時 鐘 周期,ATDClock=[BusClock*0.5]/[PRS+1]=1MHz(BusClock=16MHz)
ATD0CTL5=0x30; //6:0 特殊通道禁止,5:1 連續(xù)轉(zhuǎn)換 0 單次轉(zhuǎn)換 ,4:1 多通道輪流采樣567:
ATD0DIEN=0x00; //輸入允許寄存器
}
4.4 輪速信號采集
本設(shè)計采用頻率法采集輪速,原理如下:在單位周期內(nèi),計算累計脈沖的個數(shù),然后經(jīng)行計算,輪速脈沖經(jīng)過引號處理后為標準的脈沖。
輪速脈沖
采樣周期
圖4-2 頻率法計算輪速周期原理圖
輪速信號的頻率計算公式4.1:
(4.1)
輪速計算公式為:
(4.2)
其中:r為車輪半徑;ψ為一個測量周期的脈沖數(shù);Z為輪速傳感器齒圈的齒數(shù),Z=43;T為采樣周期。
以下為輪速信號采集的相關(guān)寄存器的設(shè)置:
//通道0輸入捕捉初始化
void ECT0_Init(void)
{
TSCR2=0X06; //禁止溢出中斷,分頻系數(shù)為64(24/64MHZ)
TIOS_IOS0=0;// 通道0為輸入捕捉
TCTL4=0X01; //捕捉為上升沿
TIE_C0I=1 ; //允許0通道輸入捕捉
TSCR1=0X80;//時能定時器
}
//定時器0輸入捕捉中斷
#pragma CODE_SEG __NEAR_SEG NON_BANKED
void interrupt 8 Timer0_Onput(void)
{
TFLG1_C0F=1 ;//清中斷標志
Input_Num++;
PORTB=~Input_Num;
if(Input_Num>=255)
{
Input_Num=0;
}
}
輪速控制范圍假設(shè)為5m/s到30m/s,則輪速信號頻率范圍是136Hz到820Hz,設(shè)定采樣周期為50ms,則在車速最低的時候,每個周期采集的輪速信號6個脈沖,有實際意義。將采集的輪速信號,相加取平均值作為車速信號。
4.5 PWM寄存器設(shè)置
PWM設(shè)置如下:
void PWM_Init(void)
{
PWME=0x00; //禁止
PWMPRCLK=0x77; //時鐘預(yù)分頻A=B=16M/128=125K
PWMSCLA=125; //SA=A/2/125=500HZ
PWMSCLB=125; //SB=B/2/125=500HZ
PWMCTL=0x00; //控制寄存器設(shè)置
PWMCLK=0xff; //時鐘寄存器為SB
PWMPOL=0xff; //Duty=High Time 極性設(shè)置 1,高電平輸出
PWMCAE=0x00; // left-aligned 左對齊方式
PWMPER0=50; //Frequency=SB/50=10Hz 周期寄存器設(shè)置
PWMPER1=50;
PWMPER2=50;
PWMPER3=50;
PWMPER4=50;
PWMPER5=50;
PWMPER6=50;
PWMPER7=50;
}
4.6判斷穩(wěn)定系控制程序的編寫
取讀輸入信號
控制方法
判斷控制車輪
控制輸出
延時控制
返回
圖4-3 控制流程圖
等待信號輸入轉(zhuǎn)換完成程序如下:
while(!ATD0STAT2_CCF5);
sum[4]=ATD0DR5L;
while(!ATD0STAT2_CCF5);
sum[5]=ATD0DR5L;
while(!ATD0STAT2_CCF6);
sum[6]=ATD0DR6L;
while(!ATD0STAT2_CCF7);
sum[7]=ATD0DR7L;
ATD0STAT0_SCF=1;
while(!ATD0STAT0_SCF); //轉(zhuǎn)換4,5,6,7通道數(shù)據(jù)
將數(shù)據(jù)換算賦值給相應(yīng)的變量:
cs=sum[4]/20.48;
hx=sum[7]/20.48; // sum[7]橫向加速度,m/s2。加速度范圍[-25m/s2到25m/s2]
hb=sum[6]/20.48;
fx=sum[5]/17.07;
其中:cs-車速;hx-橫向加速度;hb-橫擺角速度;fx-方向轉(zhuǎn)角。
將數(shù)據(jù)換算成最終比較值,程序代碼如下:
hbc=hb-cs/(1+cs*cs*0.003)*fx;
zxcp0=cs*10/0hx-zxcp1*10;
zxcp1=cs*10/hx;
其中hbc是橫擺角速度差值,zxcp0是質(zhì)心側(cè)偏角速度,zxcp1是質(zhì)心側(cè)偏角。
下表是根據(jù)液壓制動管路圖3.8和控制策略表2.1得出下表。
表4.1 車輪制動時各電磁閥導(dǎo)通和截止狀態(tài)
制動輪
右吸入
左吸入
右隔離
左隔離
左前增
右前增
左后增
右后增
代碼
左后輪
導(dǎo)通
導(dǎo)通
截止
導(dǎo)通
截止
截止
導(dǎo)通
截止
ed
右前輪
導(dǎo)通
導(dǎo)通
截止
導(dǎo)通
截止
導(dǎo)通
截止
截止
eb
左前輪
導(dǎo)通
導(dǎo)通
導(dǎo)通
截止
導(dǎo)通
截止
截止
截止
d7
右后輪
導(dǎo)通
導(dǎo)通
導(dǎo)通
截止
截止
截止
截止
導(dǎo)通
de
右前后
左后
導(dǎo)通
導(dǎo)通
截止
截止
截止
導(dǎo)通
導(dǎo)通
導(dǎo)通
f8
右前后
導(dǎo)通
導(dǎo)通
截止
截止
截止
導(dǎo)通
截止
導(dǎo)通
fa
左前后
導(dǎo)通
導(dǎo)通
截止
截止
導(dǎo)通
截止
導(dǎo)通
截止
f5
右前
左前后
導(dǎo)通
導(dǎo)通
截止
截止
導(dǎo)通
導(dǎo)通
導(dǎo)通
截止
f1
右前后
左前
導(dǎo)通
導(dǎo)通
截止
截止
導(dǎo)通
導(dǎo)通
截止
導(dǎo)通
f2
右后
左前后
導(dǎo)通
導(dǎo)通
截止
截止
導(dǎo)通
截止
導(dǎo)通
導(dǎo)通
f4
四輪制動
導(dǎo)通
導(dǎo)通
截止
截止
導(dǎo)通
導(dǎo)通
導(dǎo)通
導(dǎo)通
f0
具體控制程序如下:
if(fx<0) {
if(hbc>30&&zxcp1>12) //轉(zhuǎn)向過多
{
PWME=0xf2; //(1111 0010) 參照制動表查看
}
else if(hbc>30&&zxcp1<-12)
{
PWME=0xfa; //(1111 1010)
}
else if(hbc<30&&hbc>-30&&zxcp1>12)
{
PWME=0xf7; //(1111 0111)
}
else if(hbc<30&&hbc>-30&&zxcp1<-12)
{
PWME=0xee; //(1110 1110)
}
else if(hbc<-30&&zxcp1>12) //轉(zhuǎn)向不足
{
PWME=0xf5;
} //(1111 0101)
else if(hbc<-30&&zxcp1<-12)
{
PWME=0xfb; //(1111 1011)
}
}
else if(fx>0) //向zuo轉(zhuǎn)彎
{
if(hbc>30&&zxcp1>=12) //轉(zhuǎn)向過多
{
PWME=0xf2; //(1111 0010)
}
else if(hbc>30&&zxcp1<-12)
{
PWME=0xfa; //(1111 1010)
}
else if(hbc<30&&hbc>-30&&zxcp1>12)
{
PWME=0xe7; //(1110 0111)
}
else if(hbc<30&&hbc>-30&&zxcp1<-12)
{
PWME=0xeb; //(1110 1011)
}
else if(hbc<=-30&&zxcp1>=12)