立臥式33軸組合鉆床上主軸箱設(shè)計(jì)
立臥式33軸組合鉆床上主軸箱設(shè)計(jì),立臥式33軸組合鉆床上主軸箱設(shè)計(jì),臥式,33,組合,鉆床,主軸,設(shè)計(jì)
黃河科技學(xué)院畢業(yè)設(shè)計(jì)
黃河科技學(xué)院本科畢業(yè)設(shè)計(jì)任務(wù)書(shū)
工 學(xué)院 機(jī)械 系 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 專業(yè) 2008 級(jí) 2 班
學(xué) 號(hào) 學(xué)生 指導(dǎo)教師
畢業(yè)設(shè)計(jì)(論文)題目:
立臥式33軸組合鉆床上主軸箱設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)工作內(nèi)容與基本要求(目標(biāo)、任務(wù)、途徑、方法,應(yīng)掌握的原始資料(數(shù)據(jù))、參考資料(文獻(xiàn))以及設(shè)計(jì)技術(shù)要求、注意事項(xiàng)等):
基本要求:
1、 了解發(fā)動(dòng)機(jī)機(jī)體大批量生產(chǎn)流水線中組合機(jī)床的原理、結(jié)構(gòu)、工藝水平、分析使用現(xiàn)狀及存在的問(wèn)題;
2、 分析三缸機(jī)體的結(jié)構(gòu)、工藝流程及設(shè)計(jì)要求;
3、 按組合機(jī)床設(shè)計(jì)規(guī)范要求完成設(shè)計(jì)任務(wù)。
主要內(nèi)容:
1、 課題調(diào)研,搜集查閱資料,撰寫(xiě)文獻(xiàn)綜述;
2、 裝配圖,主要零件圖;
3、 編寫(xiě)設(shè)計(jì)說(shuō)明書(shū),翻譯外文資料。
主要參考資料:
1、 機(jī)械設(shè)計(jì)基礎(chǔ),張衛(wèi)國(guó),華中科技大學(xué)出版社;
2、 機(jī)械設(shè)計(jì)手冊(cè),機(jī)械設(shè)計(jì)委員會(huì),機(jī)械工業(yè)出版社;
3、 組合機(jī)床設(shè)計(jì)簡(jiǎn)明手冊(cè),謝家瀛,機(jī)械工業(yè)出版社。
設(shè)計(jì)時(shí)間安排:
1、 第1—2周(2月13日—2月26日):完成開(kāi)題報(bào)告;
2、 第3—4周(2月27日—3月11日):完成譯文,文獻(xiàn)綜述;
3、 第5—12周(3月12日—5月6日):完成總體設(shè)計(jì),設(shè)計(jì)說(shuō)明書(shū);
4、 第13周(5月7日—5月13日): 答辯文獻(xiàn)準(zhǔn)備完成;
5、 第14周(5月14日—5月19日): 答辯。
畢業(yè)設(shè)計(jì)(論文)時(shí)間: 2012 年 02 月 13 日至 2012 年 05 月 15 日
計(jì) 劃 答 辯 時(shí) 間: 2012 年 05 月 19 日
專業(yè)(教研室)審批意見(jiàn):
審批人簽名:
黃河科技學(xué)院畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告表
課題名稱
立臥式33軸組合鉆床上主軸箱設(shè)計(jì)
課題來(lái)源
教師擬訂
課題類(lèi)型
AX
指導(dǎo)教師
學(xué)生姓名
專 業(yè)
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 號(hào)
一、調(diào)研資料的準(zhǔn)備
根據(jù)任務(wù)書(shū)的要求,在做本課題前,查閱了與課題相關(guān)的資料有:機(jī)械設(shè)計(jì)基礎(chǔ)、機(jī)械設(shè)計(jì)手冊(cè)、組合機(jī)床設(shè)計(jì)簡(jiǎn)明手冊(cè)、機(jī)械設(shè)計(jì)、機(jī)械制圖、機(jī)械制造工藝學(xué)、與畢業(yè)設(shè)計(jì)指導(dǎo)手冊(cè)等。
二、設(shè)計(jì)的目的與要求
通過(guò)此次設(shè)計(jì)過(guò)程,了解發(fā)動(dòng)機(jī)機(jī)體大批量生產(chǎn)流水線中組合機(jī)床的原理、結(jié)構(gòu)、工藝水平、分析使用現(xiàn)狀及存在的問(wèn)題,以及分析三缸機(jī)體的結(jié)構(gòu)、工藝流程及設(shè)計(jì)要求。
按組合機(jī)床設(shè)計(jì)規(guī)范要求完成設(shè)計(jì)任務(wù)。
三、設(shè)計(jì)的思路與預(yù)期成果
1、設(shè)計(jì)思路
分析加工工藝,根據(jù)“三圖一卡”繪制主軸箱原始設(shè)計(jì)依據(jù)圖,確定主軸結(jié)構(gòu)、軸頸及齒輪模數(shù),擬定傳動(dòng)系統(tǒng),用計(jì)算機(jī)計(jì)算和驗(yàn)算箱體軸孔的坐標(biāo)尺寸,繪制主軸箱裝配圖、主要零件圖及編制組件明細(xì)表。
2、預(yù)期的成果
(1)完成文獻(xiàn)綜述一篇,不少與3000字,與專業(yè)相關(guān)的英文翻譯一篇,不少于3000字
(2)編寫(xiě)設(shè)計(jì)說(shuō)明書(shū)一份
(3)繪制主軸箱裝配圖,主要零件圖
(4)刻錄包含本次設(shè)計(jì)的所有內(nèi)容的光盤(pán)一張
四、任務(wù)完成的階段內(nèi)容及時(shí)間安排
1、第1—2周(2月13日—2月26日):完成開(kāi)題報(bào)告;
2、第3—4周(2月27日—3月11日):完成譯文,文獻(xiàn)綜述;
3、第5—12周(3月12日—5月6日):完成總體設(shè)計(jì),設(shè)計(jì)說(shuō)明書(shū);
4、第13周(5月7日—5月13日): 答辯文獻(xiàn)準(zhǔn)備完成;
5、第14周(5月14日—5月19日): 答辯。
五、完成設(shè)計(jì)(論文)所具備的條件因素
本人已修完機(jī)械設(shè)計(jì)基礎(chǔ)機(jī)械設(shè)計(jì)、機(jī)械制圖、液壓與氣壓傳動(dòng)、金屬工藝學(xué)、機(jī)械制造技術(shù)基礎(chǔ)、等課程,借助圖書(shū)館的相關(guān)文獻(xiàn)資料,相關(guān)的網(wǎng)絡(luò)等資源,查閱機(jī)械設(shè)計(jì)手冊(cè)、組合機(jī)床設(shè)計(jì)手冊(cè)畢業(yè)設(shè)計(jì)指導(dǎo)手冊(cè),以及良好的計(jì)算機(jī)繪圖(CAD)操作能力。
指導(dǎo)教師簽名: 日期:
課題來(lái)源:(1)教師擬訂;(2)學(xué)生建議;(3)企業(yè)和社會(huì)征集;(4)科研單位提供
課題類(lèi)型:(1)A—工程設(shè)計(jì)(藝術(shù)設(shè)計(jì));B—技術(shù)開(kāi)發(fā);C—軟件工程;D—理論研究;E—調(diào)研報(bào)告
(2)X—真實(shí)課題;Y—模擬課題;Z—虛擬課題
要求(1)、(2)均要填,如AY、BX等。
黃河科技學(xué)院畢業(yè)設(shè)計(jì) (文獻(xiàn)綜述) 第 9 頁(yè)
回轉(zhuǎn)式多工位組合機(jī)床
現(xiàn)代社會(huì)中,人們?yōu)榱烁咝?、?jīng)濟(jì)地生產(chǎn)各種高質(zhì)量產(chǎn)品,日益廣泛的使用各種機(jī)器、儀器和工具等技術(shù)設(shè)備與裝備。為制造這些技術(shù)設(shè)備與裝備,又必須具備各種加工金屬零件的設(shè)備,諸如鑄造、鍛造、焊接、沖壓和切削加工設(shè)備等。由于機(jī)械零件的形狀精度、尺寸精度和表面粗糙度,目前主要靠切削加工的方法來(lái)達(dá)到,特別是形狀復(fù)雜、精度要求高和表面粗糙度要求小的零件,往往需要在機(jī)床上經(jīng)過(guò)幾道甚至幾十道切削加工工藝才能完成。因此,機(jī)床是現(xiàn)代機(jī)械制造業(yè)中最重要的加工設(shè)備。機(jī)床的技術(shù)性能直接影響機(jī)械產(chǎn)品的質(zhì)量及其制造的經(jīng)濟(jì)性,進(jìn)而決定著國(guó)民經(jīng)濟(jì)的發(fā)展水平??梢赃@樣說(shuō),如果沒(méi)有機(jī)床的發(fā)展,現(xiàn)代社會(huì)目前不可能達(dá)到現(xiàn)在物質(zhì)文明的高度。[1]
一個(gè)國(guó)家要繁榮富強(qiáng),必須實(shí)現(xiàn)工業(yè)、農(nóng)業(yè)、國(guó)防和科學(xué)技術(shù)的現(xiàn)代化,這就需要一個(gè)強(qiáng)大的機(jī)械制造業(yè)為國(guó)民經(jīng)濟(jì)各部門(mén)提供現(xiàn)代化得先進(jìn)技術(shù)設(shè)備與裝備,即各種機(jī)器、儀器和工具等。所以說(shuō),機(jī)床工業(yè)是機(jī)械制造業(yè)的“裝備部”、“總工藝師”,對(duì)國(guó)民經(jīng)濟(jì)發(fā)展起著重大作用。因此,許多國(guó)家都十分重視本國(guó)機(jī)床工業(yè)的發(fā)展和機(jī)床技術(shù)水平的提高,使本國(guó)國(guó)民經(jīng)濟(jì)的發(fā)展建立在堅(jiān)實(shí)可靠的基礎(chǔ)上。[2]
我國(guó)的機(jī)床工業(yè)是在1949年新中國(guó)成立以后才開(kāi)始建立起來(lái)的。解放前,由于長(zhǎng)期的封鎖統(tǒng)治和19世紀(jì)中葉以后帝國(guó)主義的侵略和掠奪,我國(guó)的工農(nóng)業(yè)生產(chǎn)非常落后,沒(méi)有獨(dú)立的機(jī)械制造業(yè)。至解放前夕,全國(guó)只有少數(shù)城市的一些規(guī)模很小的機(jī)械廠,制造少量簡(jiǎn)單的皮帶車(chē)間、牛頭刨床和砂輪等;1949年全國(guó)機(jī)床產(chǎn)量?jī)H1000多臺(tái),品種不到10個(gè)。
解放后,黨和人民政府十分重視機(jī)床工業(yè)的發(fā)展。在解放初期的三年經(jīng)濟(jì)恢復(fù)時(shí)期,就把一些原來(lái)的機(jī)械修配廠改建為專業(yè)廠;在隨后開(kāi)始的幾個(gè)五年計(jì)劃期間,又陸續(xù)擴(kuò)建、新建了一系列機(jī)床廠。經(jīng)過(guò)50多年的建設(shè),我國(guó)機(jī)床工業(yè)從無(wú)到有,從小到大,現(xiàn)在已經(jīng)種類(lèi)比較齊全,具有一定實(shí)力的機(jī)床工業(yè)體系,能生產(chǎn)5000多種機(jī)床通用品種,數(shù)控機(jī)床1500多種;不僅裝備了國(guó)內(nèi)的工業(yè),而且每年還有一定數(shù)量的機(jī)床出口。[3]
我國(guó)機(jī)床行業(yè)的發(fā)展是迅速的,成就是巨大的。但由于起步晚、底子薄,與世界先進(jìn)水平相比,還有較大差距。為了適應(yīng)我國(guó)工業(yè)、農(nóng)業(yè)、國(guó)防和科學(xué)技術(shù)現(xiàn)代化的需要,為了提高機(jī)床產(chǎn)品在國(guó)際市場(chǎng)上的競(jìng)爭(zhēng)能力,必須深入開(kāi)展機(jī)床基礎(chǔ)理論研究,加強(qiáng)工藝試驗(yàn)研究,大力開(kāi)發(fā)精密、重型和數(shù)控機(jī)床,使我國(guó)的機(jī)床工業(yè)盡早躋身于世界先進(jìn)行列。[4]
世界上第一臺(tái)組合機(jī)床于1908年在美國(guó)問(wèn)世,30年代后組合機(jī)床在世界各國(guó)得到迅速發(fā)展。至今,它已成為現(xiàn)代制造工程的關(guān)鍵設(shè)備之一。現(xiàn)代制造工程從各個(gè)角度對(duì)組合機(jī)床提出了愈來(lái)愈高的要求,而組合機(jī)床也在不斷吸取新技術(shù)成果而完善和發(fā)展。
在組合機(jī)床(圖1)這類(lèi)專用機(jī)床中,回轉(zhuǎn)式(回轉(zhuǎn)工作臺(tái)式和鼓輪式)多工位合機(jī)床和自動(dòng)線占有重要位置。因?yàn)檫@類(lèi)組合機(jī)床是采用多工位、多軸、多面和多方向同時(shí)加工工件的,因而具有很高的生產(chǎn)率。同時(shí),這樣的機(jī)床,工件經(jīng)加工出基準(zhǔn)后上機(jī)(線)或毛坯直接上機(jī)(線),可實(shí)現(xiàn)工件的全部加工。并且,由于工件在加工過(guò)程中往往是只需一次裝夾,因而加工精度比較高。因此,這類(lèi)機(jī)床是內(nèi)燃機(jī)行業(yè)或其它一些大批量生產(chǎn)部門(mén)使用的重要技術(shù)裝備。
根據(jù)美國(guó)在1978~1983年這5年間對(duì)所生產(chǎn)的4856臺(tái)組合機(jī)床所作的統(tǒng)計(jì)分析表,回轉(zhuǎn)工作臺(tái)組合機(jī)床占了]/3,自動(dòng)線41.5%(表1)。
應(yīng)用統(tǒng)計(jì)數(shù)字可以看出,回轉(zhuǎn)工作臺(tái)組合機(jī)床是僅次于自動(dòng)線而為工業(yè)部門(mén)使用較多的高效加工設(shè)備。[5]
回轉(zhuǎn)式務(wù)工位組合機(jī)床,特別適合于加工輪廓尺寸在250mm以內(nèi)的中小零件。這類(lèi)機(jī)床的應(yīng)用主要集中于汽車(chē)、閥門(mén)、氣動(dòng)、液壓、制鎖、輕工儀表和電氣等工業(yè)部門(mén)。市場(chǎng)銷(xiāo)量大,因此在國(guó)內(nèi)外有許多從事其設(shè)計(jì)和制造的廠家。如歐美的‘rons-hoffen、Diedeoheim、witzig&Frank、Riello、IMAS、AugustWenzler、wiest、Haaf、RinoBerard、K.P.Pfiffner、J.Worner、Mikro、EugenBader、Kin-gsbury、H位11erHille、Etxe一TarSA和Posalux,日本的三協(xié)精機(jī)、巖田工機(jī),前蘇聯(lián)的哈爾科夫小型組合機(jī)床廠(X3MAC)和我國(guó)的大連組合機(jī)床研究所、大連機(jī)床廠、常州機(jī)床廠和北方精密機(jī)械廠等。其中,北方精密機(jī)械廠是我國(guó)唯一專門(mén)從事回轉(zhuǎn)工作臺(tái)組合機(jī)床生產(chǎn)的專業(yè)廠,目前的生產(chǎn)能力為年產(chǎn)約30臺(tái)。[6]
據(jù)估計(jì)目前我國(guó)回轉(zhuǎn)式多工位組合機(jī)床約占整個(gè)組合機(jī)床的4%,與機(jī)床工業(yè)發(fā)達(dá)的國(guó)家相比,無(wú)論在數(shù)量上還是在技術(shù)上均存在一定差距。因此,加速發(fā)展這類(lèi)機(jī)床,以滿足四化建設(shè)的需要,是我國(guó)機(jī)床行業(yè)面臨的一項(xiàng)任務(wù)。
回轉(zhuǎn)式多工位組合機(jī)床按其回轉(zhuǎn)輸送裝置的旋轉(zhuǎn)軸線所處位置,可分為回轉(zhuǎn)工作臺(tái)式(鉛垂軸線)和鼓輪式(水平軸線)兩種。而回轉(zhuǎn)工作臺(tái)又可分為傳統(tǒng)回轉(zhuǎn)工作臺(tái)、懸掛回轉(zhuǎn)工作臺(tái)和環(huán)形工作臺(tái)三種結(jié)構(gòu)型式(圖2)。
所有回轉(zhuǎn)式多工位組合機(jī)床的共同特點(diǎn)是:工件沿回轉(zhuǎn)工作臺(tái)或鼓輪的圓周進(jìn)行輸送;在各加工工位上配置完成不同加工工藝的動(dòng)力頭,加工時(shí),工件固定不動(dòng),由刀具實(shí)現(xiàn)旋轉(zhuǎn)和進(jìn)給。機(jī)床的第一個(gè)工位系上料(手動(dòng)或自動(dòng))工位,接著是加工和測(cè)量工位。有的機(jī)床為實(shí)現(xiàn)工件的全部加工,在加工工位間設(shè)置工件的轉(zhuǎn)位或換夾工位。卸料可在第一個(gè)工位上、也可在最后一個(gè)工位上進(jìn)行,這樣可使上下料時(shí)間與機(jī)動(dòng)時(shí)間重疊。從結(jié)構(gòu)配置上說(shuō),回轉(zhuǎn)式多工位組合機(jī)床實(shí)際上是一種特殊型式的小型自動(dòng)線。[7]
回轉(zhuǎn)式多工位組合機(jī)床具有下列優(yōu)點(diǎn):
1)生產(chǎn)效率高;
2)機(jī)床結(jié)構(gòu)配置有利于操作和調(diào)整人員接近加工區(qū),便于迅速調(diào)整機(jī)床;
3)加工精度高(因加工過(guò)程中工件不需換夾);
4)機(jī)床所占作業(yè)面積?。?
5)在加工時(shí)間內(nèi),可采用單獨(dú)設(shè)置的裝卸工位進(jìn)行手動(dòng)或自動(dòng)上下料;
6)在機(jī)床上幾乎可以實(shí)現(xiàn)所有的切削加工工藝,也可附加無(wú)屑加工工藝。如:鉆削、深孔鉆削、銑削、車(chē)削、切槽、鉸削、拉削、插削、去毛刺以及簡(jiǎn)單的裝配等。[8]
組成回轉(zhuǎn)式多工位組合機(jī)床的主要部件有回轉(zhuǎn)分度裝置、中間底座、 鼓輪支架、定位裝置和動(dòng)力頭等。這些部件的結(jié)構(gòu)和技術(shù)性能,在很大程度上決定了回轉(zhuǎn)式多工位組合機(jī)床的結(jié)構(gòu)型式及其技術(shù)水平。
回轉(zhuǎn)式多工位組合機(jī)床的回轉(zhuǎn)分度驅(qū)動(dòng)一般采用電氣機(jī)械、液壓和氣動(dòng)等方式。應(yīng)用液壓和電氣機(jī)械驅(qū)動(dòng)的較多(鼓輪的回轉(zhuǎn)分度一般為液壓驅(qū)動(dòng))而使甩氣動(dòng)驅(qū)動(dòng)的較少。液壓由于可采用較高的工作壓力,故其結(jié)構(gòu)空間比氣動(dòng)的小。目前,由于電液比例閥的應(yīng)用,而大大提高了工作臺(tái)的分度轉(zhuǎn)位速度,縮短了分度轉(zhuǎn)位時(shí)間。同時(shí),由于電液比例閥可改善機(jī)床的起動(dòng)和緩沖性能,故也可改善工作臺(tái)定位時(shí)的工作條件。電氣機(jī)械驅(qū)動(dòng)主要有馬氏槽盤(pán)和圓柱凸輪間歇運(yùn)動(dòng)機(jī)構(gòu)。圖所示是瑞士Mirkron公司回轉(zhuǎn)工作臺(tái)組合機(jī)床上所采用的圓柱凸輪間歇運(yùn)動(dòng)機(jī)構(gòu)。采用這種驅(qū)動(dòng)裝置,工作臺(tái)轉(zhuǎn)位分度時(shí)平穩(wěn)無(wú)沖擊,故可采用一個(gè)高速電機(jī)進(jìn)行驅(qū)動(dòng),從而縮短了輔助時(shí)間。
回轉(zhuǎn)工作臺(tái)組合機(jī)床的中間底座和鼓輪式組合機(jī)床的鼓輪支架,從某種意義上說(shuō),是這類(lèi)機(jī)床的核心部件,因?yàn)榻M成機(jī)床的所有其它部件均是環(huán)繞著這種部件配置的。因此,中間底座(或鼓輪支架)的穩(wěn)定性和剛性對(duì)機(jī)床的工作精度具有重要影響。中間底座和鼓輪支架雖然多數(shù)是采用鑄鐵結(jié)構(gòu),但目前采用焊接結(jié)構(gòu)的也逐漸在增多。[9]
回轉(zhuǎn)工作臺(tái)組合機(jī)床的分散和集中傳動(dòng)回轉(zhuǎn)工作臺(tái)組合機(jī)床的傳動(dòng)結(jié)構(gòu)基本上有兩種:分散傳動(dòng)和集中傳動(dòng)。采用分散傳動(dòng)時(shí),回轉(zhuǎn)工作臺(tái)分度傳動(dòng)和動(dòng)力頭的進(jìn)給傳動(dòng)互為獨(dú)立。這種結(jié)構(gòu)的優(yōu)點(diǎn)是,便于各部件的單獨(dú)調(diào)整。特別是在機(jī)床上有幾種工件輪番生產(chǎn)時(shí),機(jī)床的調(diào)整較為方便。采用集中傳動(dòng)時(shí),回轉(zhuǎn)工作臺(tái)的分度傳動(dòng)和各動(dòng)力頭主軸的進(jìn)給是由一個(gè)機(jī)械驅(qū)動(dòng)裝置集中驅(qū)動(dòng)的,這種傳動(dòng)可保證所有部件嚴(yán)格協(xié)調(diào)地工作,不會(huì)出現(xiàn)部件的誤動(dòng)作,從而提高機(jī)床工作的可性。采用機(jī)械集中傳動(dòng)還可減少熱源對(duì)機(jī)工作精度的影響,同時(shí),機(jī)械進(jìn)給l十分定,也有利于提高工件的加工質(zhì)量。但這傳動(dòng)不易改變切削參數(shù),這樣的機(jī)床專用都很強(qiáng),因此,只適合于加工單一品種且大批量生產(chǎn)的諸如電子元器件、噴油嘴等較小工件。[10]
自80年代初以來(lái),隨著世界經(jīng)濟(jì)的增長(zhǎng)和競(jìng)爭(zhēng)的加劇,產(chǎn)品市場(chǎng)的需求日益向滿足個(gè)性化方向發(fā)展。產(chǎn)品品種增多,投產(chǎn)批量相應(yīng)減少(由大批向中小批發(fā)展),供貨期也越來(lái)越短。用于單一品種生產(chǎn)的傳統(tǒng)組合機(jī)床和自動(dòng)線已難于滿足多品種生產(chǎn)的要求,組合機(jī)床制造業(yè)日益面臨嚴(yán)峻的挑戰(zhàn),提高組合機(jī)床的柔性就成為關(guān)系到組合機(jī)床制造業(yè)生存和發(fā)展的緊迫任務(wù)。十多年來(lái),許多組合機(jī)床制造廠先后開(kāi)發(fā)了各種NC通用部件,如NC動(dòng)力滑臺(tái)、CNC三坐標(biāo)加工模塊和NC動(dòng)力頭(加工模塊)等,并通過(guò)采用CNC控制和數(shù)據(jù)處理等技術(shù)來(lái)提高組合機(jī)床的柔性,以適應(yīng)變型多品種加工。[11]
用戶的需求和相關(guān)技術(shù)的進(jìn)步是推動(dòng)組合機(jī)床技術(shù)不斷發(fā)展的主要?jiǎng)恿?。近幾年?lái),回轉(zhuǎn)式多工位組合機(jī)床技術(shù)發(fā)展主要有以下趨向:
1)近十多年來(lái),現(xiàn)有刀具材料和刀具性能的不斷改善以及新的刀具材料(涂層碳化鎢硬質(zhì)合全、碳(氮)化鈦硬質(zhì)合金、陶瓷刀具材料、立方氮化硼和聚晶金剛石等)的出現(xiàn)和推廣應(yīng)用,使機(jī)床的切削速度和進(jìn)給速度有了較大幅度的提高,從而使切削基本時(shí)間大大縮短。同時(shí),隨著驅(qū)動(dòng)技術(shù)的進(jìn)步,機(jī)床輔助時(shí)間也顯著減少,目前,回轉(zhuǎn)工作臺(tái)的分度時(shí)間一般為0.5~3.2秒。這樣回轉(zhuǎn)式多工位組合機(jī)床的節(jié)拍時(shí)間也隨之縮短,目前,一般在6——30秒范圍內(nèi)。
2)在機(jī)床上集成更多的加工工藝(包括各種切削工藝、成型工藝(滾壓)和簡(jiǎn)一單的裝配工藝等),進(jìn)一步擴(kuò)大了機(jī)床的工藝和應(yīng)用范圍。
3)實(shí)現(xiàn)多面、多方向、多工位和多加工,進(jìn)一步提高生產(chǎn)率。
4)采用高精度端面齒盤(pán)定位和發(fā)展銷(xiāo)定位,并采用滾珠預(yù)緊無(wú)間隙定位等,進(jìn)一步提高回轉(zhuǎn)分度工作臺(tái)和鼓輪的分度位精度。
5)在加工流程中實(shí)現(xiàn)工件夾具的自轉(zhuǎn)位或工件自動(dòng)換夾,從而在一臺(tái)機(jī)床上現(xiàn)工件五面加工或完成從工件毛坯到成品全部加工。
6)采用自動(dòng)上下料裝置,實(shí)現(xiàn)工件工的全部自動(dòng)化。
7)采用刀具尺寸測(cè)量控制和功能監(jiān)系統(tǒng),進(jìn)一步提高機(jī)床的加工精度、自動(dòng)水平和利用率。
8)在機(jī)床上裝夾多個(gè)工件,以提高產(chǎn)率。
9)設(shè)置NC加工工位和采用CNC制,在保持高生產(chǎn)率的條件下提高機(jī)床性,實(shí)現(xiàn)多品種加工。[12]
回轉(zhuǎn)式多工位組合機(jī)床是一種高效自動(dòng)化加工設(shè)備,是一種特殊型式的組合機(jī)床自動(dòng)線。在工業(yè)發(fā)達(dá)國(guó)家,這種機(jī)床的應(yīng)用遍及許多工業(yè)部門(mén),其比例約占整個(gè)組合機(jī)床的三分之一。設(shè)計(jì)制造這類(lèi)機(jī)床的不僅有一般機(jī)床廠,而且還有不少專業(yè)廠。根據(jù)國(guó)外的發(fā)展經(jīng)驗(yàn)和國(guó)內(nèi)汽車(chē)、閥門(mén)、電氣、氣動(dòng)、液壓和制鎖等行業(yè)的發(fā)展需求,我們應(yīng)重視并大力發(fā)展這類(lèi)高效自動(dòng)化的加工設(shè)備。為此,在我國(guó)應(yīng)建立幾個(gè)生產(chǎn)回轉(zhuǎn)工作臺(tái)式組合機(jī)床和鼓輪式組合機(jī)床的專業(yè)廠,并不斷增強(qiáng)這些企業(yè)自身的研究開(kāi)發(fā)能力,進(jìn)一步提高這類(lèi)機(jī)床的技術(shù)水平,以便滿足國(guó)內(nèi)經(jīng)濟(jì)建設(shè)的需求,并增強(qiáng)參與國(guó)際市場(chǎng)競(jìng)爭(zhēng)的能力。[13]
參考文獻(xiàn)
[1]趙紅美,李靜,耿亞楠.組合機(jī)床多軸箱 CAD 的應(yīng)用現(xiàn)狀 . 現(xiàn)代制造工程,2006 11 32-34
[2]黃勤,閆建偉.多軸箱傳動(dòng)設(shè)計(jì)的簡(jiǎn)易方法 . 現(xiàn)代機(jī)械,2005 1 45-47
[3]李如松.回轉(zhuǎn)式多工位組合機(jī)床的技術(shù)現(xiàn)狀 大連組合機(jī)床研究所 1993
[4]劉國(guó)光.組合機(jī)床多軸箱計(jì)算機(jī)輔助設(shè)計(jì) . 機(jī)械與電子,2000 5 18-20.
[5]大連組合機(jī)床研究所.組合機(jī)床設(shè)計(jì) (第二版) [M]北京: 機(jī)械工業(yè)出版社,1985
[6]叢風(fēng)廷,遲建山.組合機(jī)床設(shè)計(jì) (第二版) [M]上海: 上海科學(xué)技術(shù)出版社,1993
[7]劉濤,劉偉.變速箱殼體銷(xiāo)孔加工組合機(jī)床設(shè)計(jì) [M]組合機(jī)床與自動(dòng)化加工技術(shù),2001(7) :24-25
[8]謝家瀛.組合機(jī)床設(shè)計(jì)簡(jiǎn)明手冊(cè)[M].北京:機(jī)械工業(yè)出版社,2002.
[9]金振華主編。組合機(jī)床及其調(diào)整與使用.北京:北京工業(yè)出版社,1990
[10] Menfred Weck. Handbook of Machine Tools [M],1984.
[11]大連組合機(jī)床研究所編.組合機(jī)床設(shè)計(jì)第一冊(cè).北京:機(jī)械工業(yè)出版社,1975
[12] John. L. Feirer. Machine Tools Netalworking [M],1973.
[13]沈陽(yáng)工學(xué)院等編.組合機(jī)床設(shè)計(jì).上海:上海科技出版社,1985
單位代碼 02
學(xué) 號(hào)
分 類(lèi) 號(hào) TH
密 級(jí)
畢業(yè)設(shè)計(jì)
文獻(xiàn)綜述
院(系)名稱
工學(xué)院機(jī)械系
專業(yè)名稱
機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)生姓名
指導(dǎo)教師
2012年3月7日
黃河科技學(xué)院畢業(yè)設(shè)計(jì)(文獻(xiàn)翻譯) 第 16 頁(yè)
組合機(jī)床設(shè)計(jì)的模塊化建模方法
圖爾加·埃薩爾
美國(guó)密歇根大學(xué)研究生研究助理機(jī)械工程系
杰弗里L(fēng)·斯坦
美國(guó)密歇根大學(xué)機(jī)械工程學(xué)系
盧卡斯·盧卡
塞浦路斯大學(xué)機(jī)械與制造工程講師部
摘要
在市場(chǎng)需求訊息萬(wàn)變的情況下,為提升工業(yè)競(jìng)爭(zhēng)力,稱為組合機(jī)床(RMTs)的新一代機(jī)床應(yīng)運(yùn)而生。為這些機(jī)床的高效設(shè)計(jì),則須提出新的方法和工具。這是本文提出組合機(jī)床伺服軸模塊化建模方法的目的,而這也只是努力發(fā)展集成的組合機(jī)床設(shè)計(jì)和控制環(huán)境的一部分。該機(jī)床的組件被模塊化,這樣就可以將相應(yīng)的組件基于機(jī)床拓?fù)鋵W(xué)裝配起來(lái)得到任何特定的配置模型。組件模型使用內(nèi)置的圖形代碼以促進(jìn)所需模塊庫(kù)的直接發(fā)展。這些機(jī)床模塊可用于評(píng)估,設(shè)計(jì)和機(jī)床伺服軸的控制。這種方法已有實(shí)踐證明,人們對(duì)其優(yōu)缺也有一定認(rèn)識(shí)。結(jié)果表明,該方法是實(shí)現(xiàn)自動(dòng)化和集成的機(jī)床設(shè)計(jì)環(huán)境很有希望的一步。人們對(duì)完成這個(gè)目標(biāo)所要面對(duì)的挑戰(zhàn)也進(jìn)行了探討。
引言
不斷增長(zhǎng)的競(jìng)爭(zhēng)迫使制造商更快速地響應(yīng)需求的變化。因此,制造商必須面對(duì)產(chǎn)品市場(chǎng)周期短,過(guò)渡時(shí)期短,型號(hào)和量變化頻繁的情形,而且不能影響產(chǎn)品質(zhì)量和成本。
作為制造系統(tǒng)的核心,改進(jìn)的機(jī)床在滿足上面提到的需求上把握著關(guān)鍵技術(shù)。傳統(tǒng)的機(jī)床在專用和柔性上的缺點(diǎn)今更勝昔:因其設(shè)計(jì)的重點(diǎn)在單一部件,使專用設(shè)備缺乏柔性機(jī)床所具備的靈活性和可擴(kuò)展性。另一方面,柔性機(jī)床無(wú)法實(shí)現(xiàn)魯棒性,高的成本效益和專用設(shè)備所有的生產(chǎn)量水平[1]。
新一代機(jī)床在美國(guó)密歇根大學(xué)工程技術(shù)研究中心由Ann Arbor主持開(kāi)發(fā),為的是克服現(xiàn)有生產(chǎn)系統(tǒng)的不足部分為可重構(gòu)制造系統(tǒng)而開(kāi)發(fā)。這些機(jī)床稱為組合機(jī)床(RMTs)[2],它們結(jié)合了專業(yè)和靈活的優(yōu)點(diǎn)。它們圍繞一個(gè)零件族和他們的結(jié)構(gòu)設(shè)計(jì),在硬件和軟件方面,可以快速的改變,經(jīng)濟(jì)有效地實(shí)現(xiàn)精確的功能和滿足設(shè)備需求 [3] 。含多種配置,提供所需柔性和可擴(kuò)展性,RMTs本質(zhì)上導(dǎo)致了更復(fù)雜的機(jī)床設(shè)計(jì)問(wèn)題。幫助促進(jìn)RMTs設(shè)計(jì)的方法和工具將很大的促進(jìn)可重構(gòu)制造系統(tǒng)的應(yīng)用[4-6]。RMTs設(shè)計(jì)問(wèn)題的一個(gè)重要方面是發(fā)展動(dòng)態(tài)模型的設(shè)計(jì),伺服軸的控制和賦值。使RMTs建模問(wèn)題獨(dú)特的 是,即使僅有一臺(tái)機(jī)床,也和存在幾種不同的配置,且單獨(dú)的模式,必須開(kāi)發(fā)。為所有可能的配置開(kāi)發(fā)動(dòng)態(tài)模型可能是一個(gè)繁瑣和費(fèi)時(shí)的任務(wù),即使利用了特別的方法。而且,沒(méi)有系統(tǒng)的方法建模將需要大量的專業(yè)知識(shí),并容易出錯(cuò),從而降低了設(shè)計(jì)中使用模型的效率。
本文提出了一種方法,可以有助于減少RMTs建模的時(shí)間,出錯(cuò)和麻煩。這一方法的核心思想是利用RMTs的模塊化結(jié)構(gòu)的優(yōu)勢(shì),采取RMTs模塊化建模方法的建模概念。首先,RMTs的物理組件的模塊化建模方式是使用鍵合圖建模工具[7]。該鍵合圖模型被封裝在一個(gè)定義的連接端口的示意圖中。然后,原理組件模型按照給定的配置拓?fù)鋪?lái)組裝獲取配置模型。配置模型很容易與非動(dòng)部件如插補(bǔ)器和控制器結(jié)合,這可用條形圖方便體現(xiàn);但是這超出了本文的范圍。
背景
RMTs概念是由科倫和哥打[2]提出,從那時(shí)起,RMTs的設(shè)計(jì)就是一個(gè)活躍的研究領(lǐng)域。設(shè)計(jì)RMTs[4]的方法、工具以及評(píng)價(jià)結(jié)構(gòu)剛度[5]和提示錯(cuò)誤[6]設(shè)計(jì)的替代工具已經(jīng)開(kāi)發(fā)出來(lái)。然而,開(kāi)發(fā)一個(gè)系統(tǒng)級(jí)建模方法的問(wèn)題還沒(méi)有解決。傳統(tǒng)上,機(jī)床模型描繪伺服電機(jī)和驅(qū)動(dòng)裝置為第一或第二階系統(tǒng)[8,9 ]。然而,陳和特盧斯季認(rèn)為一旦采用了高速機(jī)床伺服驅(qū)動(dòng)的結(jié)構(gòu)動(dòng)力可能會(huì)影響系統(tǒng)性能 [10]。許多研究人員認(rèn)定需要配合結(jié)構(gòu)動(dòng)力學(xué)在高速機(jī)床上使用高階模型,以便能夠成功設(shè)計(jì)其控制系統(tǒng) [11-13]。這些論述清楚地表明,機(jī)床建模不是一項(xiàng)簡(jiǎn)單的任務(wù)和考慮復(fù)雜模型時(shí)必須要細(xì)心,但他們沒(méi)有提供系統(tǒng)的建模方法,因此,仍然得應(yīng)用特殊方法。
為有助于設(shè)計(jì)和控制機(jī)床伺服驅(qū)動(dòng),仍有人努力做自動(dòng)仿真模型的研究。威爾遜和斯坦開(kāi)發(fā)了一個(gè)叫建模助手的軟件程序能在一個(gè)給定的影響范圍內(nèi)自動(dòng)創(chuàng)成機(jī)床驅(qū)動(dòng)系統(tǒng)微型模型(FROI)[14]。該模型包括飛輪、一個(gè)扭轉(zhuǎn)軸、一滾珠絲杠、一滾珠直流電動(dòng)機(jī)、一個(gè)扭轉(zhuǎn)連接鍵、帶驅(qū)動(dòng)和齒輪副的組成部分,其復(fù)雜性自動(dòng)增加,直至超過(guò)規(guī)定FROI的特征值。這項(xiàng)工作僅是一個(gè)概念模型推演法則的證明,不能適用于任何真正的機(jī)床系統(tǒng)。不過(guò),這種方法可以用來(lái)確定發(fā)展系統(tǒng)模型時(shí)其復(fù)雜性是否適當(dāng)。
戈蒂埃等已經(jīng)開(kāi)發(fā)出一種名為SICOMAT的軟件包(仿真與控制的機(jī)床分析),這有助于建模,仿真,模態(tài)分析和控制器的一倍或兩倍減震或兩個(gè)機(jī)床軸耦合[15]。他們的模型由大量的模塊和彈簧描述機(jī)械系統(tǒng)的動(dòng)態(tài)特性。這項(xiàng)工作使得機(jī)床的建模過(guò)程更加系統(tǒng),因此對(duì)建模工程師來(lái)講是很有價(jià)值的工具,但它缺乏RMTs設(shè)計(jì)方式所要求的普遍性、模塊性和柔性。RMTs建模方法如圖1顯示了所設(shè)想的RMTs建模環(huán)境。這對(duì)于實(shí)現(xiàn)RMTs建模任務(wù)自動(dòng)化是理想的,而特定的RMTs的配置模型自動(dòng)從標(biāo)準(zhǔn)組件模塊庫(kù)組裝。這樣所有人工或自動(dòng)產(chǎn)生的候選設(shè)計(jì)都可以快速模擬,而其模型可用于就它們的伺服軸動(dòng)態(tài)性能和幫助設(shè)計(jì)方面評(píng)價(jià)候選方案,如圖一所示,模塊化組件模型庫(kù)是一個(gè)自動(dòng)的RMT建模環(huán)境的重要組成部分。因此,擬議方式的第一步就是為了開(kāi)發(fā)用于生成RMT配置組件的標(biāo)準(zhǔn)模型。本文將重點(diǎn)放在機(jī)械零件上,并討論了它們模塊化的建模方法。因?yàn)闄C(jī)械部件之間相互影響,促成它們的模塊化,更有趣的造型。只交流如插補(bǔ)器和控制器信號(hào)的模塊化建模的組件,提出了一種比較簡(jiǎn)單的問(wèn)題,這兒不再討論。為促進(jìn)模塊化和使組件與環(huán)境之間的能量交流更容易,鍵合圖被作為了建模語(yǔ)言。鍵合圖提供電力的物理系統(tǒng)的圖形表示。此外,鍵合圖用統(tǒng)一的方式描述了不同的能源領(lǐng)域,這對(duì)RMTs建模是相應(yīng)的優(yōu)勢(shì),因?yàn)樗麄兊乃欧S可能包括來(lái)自不同領(lǐng)域如機(jī)械、電氣或液壓的組件。鍵合圖只是用在這項(xiàng)工作中模型體現(xiàn)分級(jí)結(jié)構(gòu)中的一級(jí)。鍵合圖下一水平的數(shù)學(xué)方程式代表鍵合圖體現(xiàn)的物理現(xiàn)象,這種數(shù)學(xué)體現(xiàn)只是層次結(jié)構(gòu)中的最低水平。最高級(jí)別的鍵合圖都被封裝在一個(gè)示意圖中,這不僅表現(xiàn)緊湊,而且還顯示與環(huán)境融合的連接端口。圖2說(shuō)明了這種層次模式體現(xiàn)。
這篇論文所有的模型顯示在原理層次,因?yàn)楸疚牡哪康牟皇怯懻撍麄兊膩?lái)歷,而是想一旦得到這些模型能夠做些什么。本文所用模型的詳細(xì)描述在[16]中都可以找到。為了能夠應(yīng)付任何經(jīng)歷不同配置的機(jī)械部件的空間運(yùn)動(dòng),使用了捕捉三維動(dòng)態(tài)的模型。此外,最初的假設(shè)是,在機(jī)械領(lǐng)域范圍內(nèi)所有組成部分都可作為剛體充分體現(xiàn)。
圖3所示的有N連接端口的一般剛體是模塊庫(kù)中的一個(gè)主要模塊。對(duì)應(yīng)于剛體上興趣點(diǎn)的端口,與環(huán)境發(fā)生物理上的交互。關(guān)系用于指示端口是原子端口,如主要部分能通過(guò)端口與所處環(huán)境交換能量。而現(xiàn)行的關(guān)系則指出了信號(hào)端口。只有信息通過(guò)這些端口傳輸。模型庫(kù)還包含三維連接模塊可用于描述構(gòu)件模型的相關(guān)運(yùn)動(dòng)。這些聯(lián)合模塊和端口也以標(biāo)準(zhǔn)開(kāi)發(fā),這樣他們可以連接到其他模型模塊。該庫(kù)提供了兩種方法來(lái)表達(dá)制約因素:(1)硬的彈簧和減震器可以用來(lái)實(shí)現(xiàn)更現(xiàn)實(shí)的限制,或近似理想的限制;(2)拉格朗日乘數(shù)可以引進(jìn)來(lái)表達(dá)理想約束。對(duì)于聯(lián)合模塊的論述讀者也被稱為[16]。一旦模型庫(kù)由一些基本的模塊化剛體和模型組建,建模過(guò)程可以進(jìn)行如下:RMT構(gòu)件被分解成單件,每個(gè)單件與庫(kù)中的模型相關(guān)。如果庫(kù)中的模型模塊都不能完全描述這個(gè)單件,那么必須開(kāi)發(fā)一個(gè)新的相關(guān)模塊并添加到庫(kù)中。然后,模型根據(jù)構(gòu)件拓?fù)洳⑹褂帽匾慕Y(jié)合塊組裝。一旦獲得組件模型,它可以存儲(chǔ)在庫(kù)中備用。最后,組件模型按照給定的配置拓?fù)浍@得該配置模型的組裝。這個(gè)過(guò)程可以用圖4的流程圖及以下部分的例子給予證明。
實(shí)例
下面兩個(gè)例子給提議的建模方法一個(gè)概述。第一個(gè)例子顯示了一個(gè)幻燈片建模和第二個(gè)例子采用該幻燈片模式發(fā)展為RMTs模式。這些例子的目的是提供一個(gè)關(guān)于組件的模塊化如何用在建模流程中的總體思路,而不是解釋每個(gè)(子)組件如何識(shí)別和建模的詳細(xì)信息。因此,該模型模塊的細(xì)節(jié)如它們的復(fù)雜程度都沒(méi)有討論。
滑動(dòng)體建模是大多數(shù)機(jī)床工具基本組成部分,包括RMTs。不同的RMTs配置可以通過(guò)添加/刪除滑動(dòng)體獲得或重新配置現(xiàn)有結(jié)構(gòu)中的滑動(dòng)體。因此演示一個(gè)滑動(dòng)體建模流程是有益的。參看圖5所示的滑動(dòng)體。這是假設(shè)的構(gòu)成部分即如圖所示。本示例的目的,所有除電機(jī)外的子構(gòu)件可以像剛體與各連接點(diǎn)樣建模。電動(dòng)機(jī)的動(dòng)力可分為兩個(gè)用途:三維架構(gòu)剛體動(dòng)力和驅(qū)動(dòng)轉(zhuǎn)子和定子之間旋轉(zhuǎn)運(yùn)動(dòng)的機(jī)電動(dòng)力。電動(dòng)機(jī)獲取雙領(lǐng)域動(dòng)力的模型也已經(jīng)開(kāi)發(fā)出來(lái),其示意圖由圖6給出。
弓形RMT的模型是由美國(guó)國(guó)家科學(xué)基金會(huì)工程研究中心可重構(gòu)制造系統(tǒng)在密歇根大學(xué)開(kāi)發(fā)的,是世界上第一個(gè)完整規(guī)模的RMTs。這是一個(gè)3軸機(jī)床,其設(shè)計(jì)圍繞著具有五個(gè)不同表面族,這些表面傾角變化范圍從-15 °至45 °,一次增量15 °。它還具有如磨削、鉆削加工任意角度的柔性。弓形RMT的可重構(gòu)性來(lái)自于主軸單元,它可通過(guò)弓形模塊的彎曲導(dǎo)向槽移動(dòng)從而在上面提到的5個(gè)角度得到配置,然后在任意一個(gè)位子上由機(jī)械擋塊固定。為了舉例假設(shè)基本模塊是完全相同的,并對(duì)機(jī)床沒(méi)有動(dòng)力的影響。該工作臺(tái)、圓柱、主軸基本上都是滑動(dòng)體,其模型都以上述滑動(dòng)體模型為基礎(chǔ)。該拱被建模為剛體并帶有與每個(gè)機(jī)械擋塊連接的端口。最后,該拱式RMT模型按實(shí)際機(jī)器的拓?fù)浣Y(jié)構(gòu)組裝。要注意這個(gè)數(shù)字顯示的模型只是配置之一。其他配置的模型可通過(guò)改變拱模型連接端口得到。
既然模型已組裝,運(yùn)動(dòng)方程可以自動(dòng)從圖形模式得出,并執(zhí)行仿真。盡管數(shù)學(xué)模型準(zhǔn)備好了,由于當(dāng)前缺乏好的系統(tǒng)參數(shù)估計(jì),我們不能在本文中提供任何仿真結(jié)果。一旦參數(shù)值可用仿真就很容易進(jìn)行。
討論
本文中標(biāo)準(zhǔn)建模和分級(jí)建模概念被確定為RMTs建模方法的主要特點(diǎn)。RMTs的模塊化結(jié)構(gòu)使這種建模方法很有益處,因?yàn)檫@些模型包含了所有可重構(gòu)的重要特征[17]:
1.模塊化:(子)組件建模模塊化
2.可集成:該模塊可以通過(guò)其連接端口與其他模塊集成
3.定制:詳細(xì)程度包括了模型模塊都可為單個(gè)組件進(jìn)行定制
4.可重構(gòu)性:模型可以很容易地從一個(gè)配置轉(zhuǎn)換到另一個(gè)
5.診斷性:可方便地進(jìn)行模塊的模型驗(yàn)證
本文介紹的方法可以將建模任務(wù)分為兩個(gè)步驟:(1)開(kāi)發(fā)組件模型;(2)裝配配置模型。雖然第一步仍然需要大量的建模知識(shí),第二步更系統(tǒng),甚至將來(lái)要實(shí)現(xiàn)自動(dòng)化。此外,兩個(gè)步驟各有側(cè)重:第一步的重點(diǎn)是組件內(nèi)動(dòng)態(tài),而第二個(gè)步驟重點(diǎn)是組件之間的動(dòng)態(tài)。
相對(duì)于伺服軸建?,F(xiàn)有的方法,各個(gè)不同的RMTs配置都是一個(gè)潛在的新建模問(wèn)題,本文提出的方法允許配置模式更快的發(fā)展。配置可以使用庫(kù)中的模型模塊快速組裝,假若如此,使用在給定配置的所有組件在模庫(kù)中都有對(duì)應(yīng)的模塊。因此,一個(gè)完善的模型庫(kù)對(duì)這一方法的有效性是必不可少的。
對(duì)機(jī)床的機(jī)械部件三維多體建模方法推動(dòng)了機(jī)械領(lǐng)域的模塊化。因此,機(jī)床滑動(dòng)模型可用于任何配置,例如在一個(gè)滑臺(tái)移動(dòng)有更多約束的環(huán)境下而不需要特別的滑臺(tái)模型。以多體的方法,開(kāi)發(fā)通用組件模型可以沒(méi)有組件接口的先驗(yàn)知識(shí)。然而三維多體方法的一個(gè)缺點(diǎn)是通用模型可能比某一實(shí)際配置的需求更復(fù)雜。例如,在給定的配置中一個(gè)組件可能只是被限制在一個(gè)平面運(yùn)動(dòng)中,在這種情況下,三維模型就過(guò)復(fù)雜了。該模型應(yīng)該簡(jiǎn)化,否則模型中不必要的復(fù)雜性降低了模型的計(jì)算效率。擬議的模塊化建模方法將從集成模型降階算法中受益。這將是今后工作的重點(diǎn)。
目前,該機(jī)構(gòu)被認(rèn)為是剛性,這并不總是很接近。為了能夠研究結(jié)構(gòu)動(dòng)力學(xué)的影響,柔性的機(jī)構(gòu)模式也應(yīng)開(kāi)發(fā)并添加到模庫(kù)內(nèi)。
最后,值得注意的是商業(yè)可用軟件包如ADAMS,、DADS、 EASY5、 Dymola 等也可用于RMTs建模的目的。
然而,采取統(tǒng)一強(qiáng)大的鍵合圖提供的功能
基礎(chǔ)方法,并簡(jiǎn)化未來(lái)的模式使其更易于實(shí)施,那么鍵合圖就被選為建模語(yǔ)言。
概要和結(jié)論
模塊化建模方法被提議作為組合機(jī)床建模方法。這些部件在標(biāo)準(zhǔn)方式下建模,這么做的目的就是為了在組建給定的機(jī)床配置模型時(shí)只需將相應(yīng)的模塊組裝就可以了。本文給出了兩個(gè)例子來(lái)說(shuō)明這種方法,并且討論了這種方法的優(yōu)劣。
這項(xiàng)工作的結(jié)果表明,RMTs的模塊化建模問(wèn)題可以使建模過(guò)程系統(tǒng)化,這樣對(duì)于在職工程師來(lái)講要獲得自動(dòng)的設(shè)計(jì)建模環(huán)境有潛在的用處。但是如在討論中所強(qiáng)調(diào)的那樣,仍然有很多挑戰(zhàn)需要在自動(dòng)化建模環(huán)境切實(shí)執(zhí)行之前落實(shí)。
致謝
這項(xiàng)工作是在歐洲經(jīng)濟(jì)共同體9529125授權(quán)下由國(guó)家科學(xué)基金會(huì)可重構(gòu)制造系統(tǒng)工程技術(shù)研究中心支持的。
A MODULAR MODELING APPROACH FOR THE DESIGN OF RECONFIGURABLE MACHINE TOOLS
Tulga Ersal
Graduate Student Research Assistant Department of Mechanical Engineering University of Michigan
Jeffrey L. Stein
Professor Department of Mechanical Engineering University of Michigan
Loucas . Louca
Lecturer Department of Mechanical and Manufacturing Engineering University of Cyprus
ABSTRACT
A new generation of machine tools called Reconfigurable Machine Tools (RMTs) is emerging as a means for industry to be more competitive in a market that experiences frequent changes in demand. New methodologies and tools are necessary for the efficient design of these machine tools. It is the purpose of this paper to present a modular approach for RMT servo axis modeling, which is part of a larger effort to develop an integrated RMT design and control environment. The components of the machine tool are modeled in a modular way, such that the model of any given configuration can be obtained by assembling the corresponding component models together based on the topology of the machine. The component models are built using the bond graph language that enables the straightforward development of the required modular library. These machine tool models can be used for the evaluation, design and control of the RMT servo axes. The approach is demonstrated through examples, and the benefits and drawbacks of this approach are discussed. The results show that the proposed approach is a promising step towards an automated and integrated RMT design environment, and the challenges in order to complete this goal are discussed.
INTRODUCTION
The ever-growing competition forces manufacturers to respond more quickly to changes in demand. As a result, manufacturers have to deal with short product life cycles, short ramp-up times and frequent changes in product mix and volumes, without compromising product quality and cost.
Being the heart of a manufacturing system, improved machine tools hold the key in meeting the above mentioned requirements. The shortcomings of conventional machine tools, which can be classified as dedicated and flexible, are being felt more today than in the past: With their design focus being a single part, dedicated machines lack the flexibility and scalability that the flexible machines offer. On the other hand, flexible machines cannot achieve the robustness, the cost-effectiveness and the throughput levels of dedicated machines[1].
A new generation of machine tools is being developed in the Engineering Research Center for Reconfigurable Manufacturing Systems at the University of Michigan, Ann Arbor, as part of an effort to overcome the insufficiencies of current manufacturing systems. These machine tools are called ‘Reconfigurable Machine Tools (RMTs)’ [2], and they combine the advantages of their dedicated and flexible counterparts. They are designed around a part family and their structure, in terms of both hardware and software, can be changed quickly and cost-effectively to achieve the exact functionality and capacity desired [3]. Containing several configurations to provide the needed flexibility and scalability, RMTs intrinsically lead to more complex machine tool design problems. Methodologies and tools that would help facilitate the design of RMTs could highly benefit and encourage the employment of reconfigurable manufacturing systems [4-6]. One important aspect of the RMT design problem is developing dynamic models for the design, evaluation and control of servo axes. What makes the problem of modeling RMTs unique is that even though there is a single machine tool, there exist several configurations, which separate models have to be developed for. Developing dynamic models for all possible configurations could be a cumbersome and time-consuming task if ad hoc methods are utilized. Moreover, without a systematic methodology modeling would require a lot of expertise and would be prone to errors, which would degrade the efficiency of using models in the design.
In this paper we present a methodology that could help make the RMT modeling task less time demanding, less error-prone and less challenging. The key idea of this methodology is to take advantage of the modular structure of the RMTs and adopt modular modeling concepts into the RMT modeling methodology. First, the physical components of an RMT are modeled in a modular way using the bond graph modeling tool [7]. The bond graph model is encapsulated in a schematic representation with defined connection ports. Then, the schematic component models are assembled by following the topology of a given configuration to obtain the model of the configuration. The configuration model can be easily integrated with the modules of non-energetic components such as interpolators and controllers, which can be conveniently represented with block diagrams; however this is beyond the scope of this paper.
BACKGROUND
The RMT concept was introduced by Koren and Kota [2], and since their introduction, the design of RMTs has been an active research area. Methodologies and tools for designing RMTs [4] as well as evaluating structural stiffnesses [5] and tool tip errors [6] of de sign alternatives have been developed. However, the problem of developing a system level modeling methodology for RTMs has not been addressed yet. Traditionally, machine tool models depict the machine tool as a group of servomotor and feed drive assemblies that aremodeled as first or second order systems [8,9]. Chen and Tlusty, however, showed that the structural dynamics of the feed drive could affect the system performance once high-speed machine tools are considered [10]. Many researchers identified the necessity to use higher order models for high-speed machine tools to cope with structural dynamics in order to be able to design the control system successfully [11-13].These publications clearly indicate that modeling a machine tool is not a trivial task and care must be taken when deciding on the complexity of the model, but they do not provide a systematic way of modeling and, therefore, remain application specific approaches.
There have been research efforts to help the design and control of machine tool feed drives by automatically providing simulation models. Wilson and Stein developed a software program called Model-Building Assistant to automatically synthesize a minimum order model of the machine tool drive system for a given frequency range of interest (FROI) [14]. The complexity of the model, which includes a flywheel, a torsional shaft, a ballscrew , a ballnut, a DC motor, a torsional coupling, a belt-drive and a gear-pair as components, is automatically
increased until the eigenvalues of the system fall beyond the specified FROI. This work was a proof of concept for a model deduction algorithm and can not be applied to any real machine tool system. However, such algorithm can be used to determine the appropriate model complexity after the development of the system model.
Gautier et al. have developed a software package called SICOMAT (Simulation and Control analysis of Machine Tools) which helps with the modeling, simulation, modal analysis and controller tuning of one or two decoupled or two coupled machine tool axes [15]. Their models describe the dynamics of the mechanical system by a number of masses and springs. This work makes the modeling of a machine tool process more systematic, and is therefore a valuable tool to the modeling engineer; however, it lacks the generality, modularity and flexibility that the RMT design methodology demands. The RMT modeling methodology Figure1 shows the envisioned RMT modeling environment. It is desired to automate the task of RMT modeling, where the model of a given RMT configuration is automatically assembled from a library of modular component models. This way, all the candidate designs, which are generated either manually or automatically [4], can be modeled quickly and the models can be used to evaluate the candidates in terms of their servo axis dynamic performance and help with their design. As Figure1 also implies, the modular component model library is a key part for the automated RMT modeling environment. Therefore, the first step of the proposed methodology is to develop modular models for the components that are used to generate the RMT configurations. This paper puts the emphasis on mechanical parts and discusses their modeling in a modular way, because the energy interaction between the mechanical components makes their modular modeling more intriguing. Modular modeling of components that only exchange signals, e.g. interpolators and controllers, presents a relatively simpler problem and are not discussed here. To promote modularity and to be able to deal with the energy interactions between the components and their environment rather easily, bond graphs are utilized as the modeling language. Bond graphs provide a power-based graphical representation of a physical system. Moreover, bond graphs describe different energy domains in a unified way, which is a relevant advantage for RMT modeling, since their servo axes may include components from different energy domains, such as mechanical, electrical or hydraulic. Bond graphs are only one level in the hierarchy of model representations used in this work. Underneath the bond graph level the mathematical equations represent the physical phenomena captured by the bond graph and this mathematical representation is the lowest level in the hierarchy. In the highest level bond graphs are encapsulated in a schematic representation, which not only allows for a compact representation, but also shows the connection ports where the model can interact with its environment. Figure 2 illustrates this hierarchy of model representations.
In this paper all the models are shown in the schematic level, because the goal of this paper is not to discuss their derivation, but rather to show what can be done once those models are obtained. A detailed description of the models used in this paper can be found in [16].In order to be able to cope with any spatial motion that the mechanical components may go through in different configurations, models that capture the three-dimensional dynamics are used. Moreover, the initial assumption is made that in the mechanical domain all components can be adequately represented as rigid bodies.
Figure 3 shows the schematic representation of a generic rigid body with N connection ports, which is one of the main model modules in the library. The ports correspond to points of interest on the rigid body, where the physical interactions with the environment occur. Bonds (lines with half arrows) are used to indicate that a port is a power port, i.e. the body can exchange energy with its environment through those ports, whereas active bonds (lines with full arrows) indicate signal ports, i.e. only information is transferred through these ports. The model library also contains three-dimensional joint models that can be used to describe the relative motions between the component models. These joint models are also developed in a modular way with ports, where they can be connected to other model modules. The library offers two ways to express the constraints: (1) stiff springs and dampers can be used to implement more realistic constraints or to approximate ideal constraints;(2) Lagrange multipliers can be introduced to express the constraints ideally. For a discussion of joint models the reader is also referred to [16].Once the model library is populated with some basic modular rigid body and joint models, the modeling procedure can be carried out as follows: The RMT components are broken down into subcomponents and each subcomponent is associated with a model in the library. If none of the model modules in the library can describe the subcomponent adequately, a new model has to be developed for that subcomponent and added to the library. Then, the models are assembled by following the topology of the components and using the necessary joint models. Once a component model is obtained, it can be stored in the library for reuse. Finally, the component models are assembled by following the topology of a given configuration to obtain the model of that configuration. The process is illustrated in Figure 4 as a flowchart and demonstrated in the following section through examples.
EXAMPLES
The following two examples give an overview of the proposed modeling methodology. The first example shows the modeling of a slide and the second example employs that slide model to develop a model for a RMT. The purpose of these examples is to give a general idea about how the modularity of the components can be exploited in the modeling procedure, rather than to explain the details of how each (sub)component can be identified and modeled. Therefore, the details of the model modules, such as their level of complexity, are not discussed.
Modeling a Slide A slide is a basic component of most machine tools, including RMTs. Different RMT configurations can beobtained by adding/removing slides to/from the configuration or by rearranging the existing slides in the configuration. Therefore, it is useful to demonstrate the modeling procedure of a slide. Consider the slide shown in Figure 5. It is assumed that the components are identified as shown in the figure. For the purposes of this example, all the subcomponents except the motor can be modeled as rigid bodies with various number of connection points. The motor dynamics can be broken down into two domains: the three-dimensional rigid body dynamics of the housing and the electromechanical dynamics that drive the relative rotational motion between the rotor and the stator. A model has been developed for the motor that captures the dynamics in both domains and its schematic representation is given in Figure 6.
Modeling the Arch-type RMT, which was developed by the NSF Engineering Research Center for Reconfigurable Manufacturing Systems at the University of Michigan, is the world’s first full scale RMT. It is a three-axis machine tool that is designed around a part family with five different surface inclinations ranging from -15° to 45° at 15° increments and has the flexibility of doing machining operations such as milling and drilling at any of those angles. The reconfigurability of the Arch-type RMT comes from the spindle unit, which can be configured at the five angles mentioned above by moving it along the curved guide way of the arch module and fixing it at any of the five locations on the arch module that are defined by mechanical stops. For the purposes of this example the base module is assumed to be identical to the ground and it has no effect on the dynamics of the machine tool. The worktable, the
收藏