六自由度大臂機(jī)器人設(shè)計(jì)【并聯(lián)機(jī)器人】【說明書+CAD+PROE】
六自由度大臂機(jī)器人設(shè)計(jì)【并聯(lián)機(jī)器人】【說明書+CAD+PROE】,并聯(lián)機(jī)器人,說明書+CAD+PROE,六自由度大臂機(jī)器人設(shè)計(jì)【并聯(lián)機(jī)器人】【說明書+CAD+PROE】,自由度,機(jī)器人,設(shè)計(jì),并聯(lián),說明書,仿單,cad,proe
哈爾濱理工大學(xué)畢業(yè)設(shè)計(jì)(論文)任務(wù)書
學(xué)生姓名: 李佳男 學(xué)號:1101010812
學(xué) 院:機(jī)械動力工程學(xué)院 專業(yè):機(jī)械設(shè)計(jì)制造及其自動化
任務(wù)起止時(shí)間: 2015年 03月 02 日至 2015年 06月 19 日
畢業(yè)設(shè)計(jì)(論文)題目:六自由度電動并聯(lián)機(jī)器人結(jié)構(gòu)設(shè)計(jì)
畢業(yè)設(shè)計(jì)工作內(nèi)容:
1、熟悉畢業(yè)設(shè)計(jì)題目,調(diào)研收集設(shè)計(jì)資料,準(zhǔn)備開題報(bào)告。其中翻譯外文資料一篇(不少于5000字符,內(nèi)容完整)(3.2~3.18)
2、掌握六自由度電動并聯(lián)機(jī)器人的工作原理,確定總體設(shè)計(jì)方案(3.19~3.31)
3、六自由度電動并聯(lián)機(jī)器人結(jié)構(gòu)設(shè)計(jì)繪制電機(jī)外殼零件圖,絲杠螺母副部件圖,直線電機(jī)部件圖,萬向鉸鏈部件圖(4.1~4.20)
4、熟悉三維建模軟件,完成六自由度電動并聯(lián)機(jī)器人三維建模(4.21~5.11)
5、完成六自由度電動并聯(lián)機(jī)器人三維裝配設(shè)計(jì)(5.12~6.1)
6、繪制六自由度電動并聯(lián)機(jī)器人的二維工程圖(大行程六自由度并聯(lián)機(jī)器人裝配圖)(6.2~6.8)
7、撰寫論文,準(zhǔn)備答辯(6.9~6.19)
資料:
1 吳宗澤. 機(jī)械零件設(shè)計(jì)手冊. 機(jī)械工業(yè)出版社,2000
2 高峰. 并聯(lián)機(jī)器人設(shè)計(jì)理論及其關(guān)鍵應(yīng)用技術(shù)研究.河北工業(yè)大學(xué)學(xué)報(bào). 2004,33(2):83-86
3 趙慧,韓俊偉,張尚盈等. 六自由度并聯(lián)機(jī)器人運(yùn)動學(xué)分析和計(jì)算. 機(jī)床與液壓. 2003,3:70-72
4 陳峰,費(fèi)燕瓊,趙錫芳等. 六自由度并聯(lián)機(jī)器人的支鏈選取.機(jī)器人. 2005,27(5):396-399
5王霄, 劉會霞. Pro E典型機(jī)械零件設(shè)計(jì)手冊. 機(jī)械工業(yè)出版社,2007
6劉品, 李哲. 機(jī)械精度設(shè)計(jì)與檢測基礎(chǔ). 哈爾濱工業(yè)大學(xué)出版社,2005
指導(dǎo)教師意見:
簽名:
年 月 日
系主任意見:
簽名:
年 月 日
哈爾濱理工大學(xué)學(xué)士學(xué)位論文
本科畢業(yè)設(shè)計(jì)(論文)
六自由度大臂機(jī)器人
2015年 6 月
5
5
六自由度大臂機(jī)器人
摘 要
六自由度大臂機(jī)器人采用夾持機(jī)構(gòu)進(jìn)行設(shè)計(jì).夾持機(jī)構(gòu)具有剛度大、承載能力強(qiáng)、誤差小、精度高、自重負(fù)荷比小、動力性能好、控制容易等一系列優(yōu)點(diǎn)可以作為航天上的對接器、航海上的潛艇救援對接器;工業(yè)上可以作為大件的裝配機(jī)器人、精密操作的微動器;可以在汽車總裝線上自動安裝車輪部件;另外,醫(yī)用機(jī)器人,天文望遠(yuǎn)鏡等都利用了并聯(lián)技術(shù)。
本文夾持機(jī)構(gòu)的研究方向:
(1)六自由度大臂機(jī)器人組成原理的研究
研究夾持機(jī)構(gòu)自由度計(jì)算、運(yùn)動副類型、支鉸類型以及運(yùn)動學(xué)分析、建模與仿真等問題。
(2)六自由度大臂機(jī)器人運(yùn)動空間的研究
(3)六自由度大臂機(jī)器人結(jié)構(gòu)設(shè)計(jì)的研究
夾持機(jī)構(gòu)的結(jié)構(gòu)設(shè)計(jì)包括很多內(nèi)容,如機(jī)構(gòu)的總體布局、安全機(jī)構(gòu)設(shè)計(jì)。
由于本人水平有限,文中的錯(cuò)誤和不足在所難免,懇請各位老師給予批評和指正。
關(guān)鍵詞:機(jī)械手;虛擬樣機(jī);夾持機(jī)構(gòu)
Six Degrees of Freedom Robot Arm
Abstract
Six degrees of freedom robot arm with clamping mechanism design. The clamping mechanism has high rigidity, strong bearing capacity, small error, high precision, load / weight ratio, good dynamic performance, easy control and a series of advantages can be used as a submarine rescue docking docking, space navigation on the industry; as for micro robot assembly, large precision operation; can automatically install the wheel parts in the automobile assembly line; in addition, medical robots, astronomical telescope using parallel technology etc..
The research direction of clip holding mechanism:
(1) on the principle of six degrees of freedom robot arm
Study on the clamping mechanism, the calculation of degree of freedom motion type, hinge type and kinematics analysis, modeling and simulation etc..
(2) six degrees of freedom robot arm motion space
(3) study the structure design of the robot arm with six degrees of freedom
The structure design of clip holding mechanism includes a lot of contents, such as the design of the overall layout, mechanism of safety mechanism.
Because of my limited ability, mistakes and shortcomings in this paper and ask teachers to give the criticism and correction.
Key words: manipulator; virtual prototype; clamping mechanism
目 錄
1 前 言 1
1.1 課題研究背景意義 1
1.2 國內(nèi)外研究現(xiàn)狀 2
2 六自由度大臂機(jī)器人的結(jié)構(gòu)及工作原理 6
2.1 并聯(lián)運(yùn)動機(jī)構(gòu)概述 6
2.2 機(jī)械手總體結(jié)構(gòu)原理 7
2.3六自由度大臂機(jī)器人的總體結(jié)構(gòu) 8
2.4 控制系統(tǒng)結(jié)構(gòu)及工作原理 9
2.5 夾持機(jī)構(gòu)工作空間的分析 10
2.6三維空間分析原理 12
2.7 臂部結(jié)構(gòu)設(shè)計(jì)的基本要求 16
3 六自由度大臂機(jī)器人主要部件的設(shè)計(jì) 19
3.1 電動機(jī)選型 19
3.2電機(jī)的分類 19
3.3選擇步進(jìn)電機(jī)的計(jì)算 20
3.4傳動結(jié)構(gòu)形式的選擇 23
3.5 軸承的壽命校核 25
3.6 手爪夾持器結(jié)構(gòu)設(shè)計(jì)與校核 27
3.6.1手爪夾持器種類 27
3.6.2夾持器設(shè)計(jì)計(jì)算 28
3.7 夾持裝置氣缸設(shè)計(jì)計(jì)算 29
3.7.1 初步確系統(tǒng)壓力 29
3.7.2氣缸計(jì)算 30
3.7.3 活塞桿的計(jì)算校核 32
3.7.4 氣缸工作行程的確定 33
3.7.5 活塞的設(shè)計(jì) 33
3.7.6 導(dǎo)向套的設(shè)計(jì)與計(jì)算 33
3.7.7 端蓋和缸底的計(jì)算校核 34
3.7.8 缸體長度的確定 35
3.7.9 緩沖裝置的設(shè)計(jì) 35
3.8 氣壓元件選取及工作原理 35
3.8.1 氣源裝置 35
3.8.2 執(zhí)行元件 36
3.8.3 控制元件 36
3.8.4 輔助元件 38
3.8.5 真空發(fā)生器 38
4 夾持機(jī)構(gòu)機(jī)夾持機(jī)構(gòu)空間分析 39
4.1夾持機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)的運(yùn)動學(xué)約束 39
4.1.1 連桿桿長約束 39
4.1.2 運(yùn)動副轉(zhuǎn)角約束 39
4.1.3 連桿桿間干涉 40
4.2 確定夾持機(jī)構(gòu)空間的基本方法 40
總 結(jié) 41
參 考 文 獻(xiàn) 42
致 謝 43
1 前 言
1.1 課題研究背景意義
并聯(lián)機(jī)器人與已經(jīng)用的很好、很廣泛的串聯(lián)機(jī)器人相比往往使人感到它并不適合用作機(jī)器人,它沒有那么大的活動空間,它活動上平臺遠(yuǎn)遠(yuǎn)不如串聯(lián)機(jī)器人手部來得靈活。的確這種6-TPS結(jié)構(gòu)的夾持機(jī)構(gòu)其工作空間只是一個(gè)厚度不大的蘑菇形空間,位于機(jī)構(gòu)的上方,而表示靈活度的末端件3維轉(zhuǎn)動的活動范圍一般只在60°上下,角度最大也達(dá)不到±90°??墒呛褪澜缟先魏问挛镆粯佣际且环譃槎模粲貌⒙?lián)式的優(yōu)點(diǎn)比串聯(lián)式的缺點(diǎn),也同樣令人吃驚。首先,并聯(lián)式結(jié)構(gòu)其末端件上平臺同時(shí)經(jīng)由6根桿支承,與串聯(lián)的懸臂梁相比,剛度大多了,而且結(jié)構(gòu)穩(wěn)定;第二,由于剛度大,并聯(lián)式較串聯(lián)式在相同的自重或體積下有高得多的承載能力;第三,串聯(lián)式末端件上的誤差是各個(gè)關(guān)節(jié)誤差的積累和放大,因而誤差大而精度低,并聯(lián)式?jīng)]有那樣的積累和放大關(guān)系,誤差小而精度高;第四,串聯(lián)式機(jī)器人的驅(qū)動電動機(jī)及傳動系統(tǒng)大都放在運(yùn)動著的大小臂上,增加了系統(tǒng)的慣性,惡化了動力性能,而并聯(lián)式則很容易將電動機(jī)置于機(jī)座上,減小了運(yùn)動負(fù)荷;第五,在位置求解上,串聯(lián)機(jī)構(gòu)正解容易,但反解十分困難,而夾持機(jī)構(gòu)正解困難反解卻非常容易。由于機(jī)器人的在線實(shí)時(shí)計(jì)算是要計(jì)算反解的,這就對串聯(lián)式十分不利,而并聯(lián)式卻容易實(shí)現(xiàn)。
夾持機(jī)構(gòu)實(shí)質(zhì)上是機(jī)器人技術(shù)與機(jī)構(gòu)結(jié)構(gòu)技術(shù)結(jié)合的產(chǎn)物,與實(shí)現(xiàn)等同功能的傳統(tǒng)五坐標(biāo)數(shù)控機(jī)構(gòu)相比,夾持機(jī)構(gòu)具有如下優(yōu)點(diǎn):
剛度重量比大:因采用并聯(lián)閉環(huán)靜定或非靜定桿系結(jié)構(gòu),且在準(zhǔn)靜態(tài)情況下,傳動構(gòu)件理論上為僅受拉壓載荷的二力桿,故傳動機(jī)構(gòu)的單位重量具有很高的承載能力。
響應(yīng)速度快:運(yùn)動部件慣性的大幅度降低有效地改善了伺服控制器的動態(tài)品質(zhì),允許動平臺獲得很高的進(jìn)給速度和加速度,因而特別適于各種高速數(shù)控作業(yè)。
環(huán)境適應(yīng)性強(qiáng):便于可重組和模塊化設(shè)計(jì),且可構(gòu)成形式多樣的布局和自由度組合。在動平臺上安裝刀具可進(jìn)行多坐標(biāo)銑、鉆、磨、拋光,以及異型刀具刃磨等加工。裝備機(jī)械手腕、高能束源或CCD攝像機(jī)等末端執(zhí)行器,還可完成精密裝配、特種加工與夾持機(jī)構(gòu)等作業(yè)。
技術(shù)附加值高:夾持機(jī)構(gòu)具有“硬件”簡單,“軟件”復(fù)雜的特點(diǎn),是一種技術(shù)附加值很高的機(jī)電一體化產(chǎn)品,因此可望獲得高額的經(jīng)濟(jì)回報(bào)。
目前,國際學(xué)術(shù)界和工程界對研究與開發(fā)夾持機(jī)構(gòu)非常重視,并于90年代中期相繼推出結(jié)構(gòu)形式各異的產(chǎn)品化樣機(jī)。1994年在芝加哥國際機(jī)構(gòu)博覽會上,美國Ingersoll銑床公司、Giddings&Lewis公司和Hexal公司首次展出了稱為“六足蟲”(Hexapod)和“變異型”(VARIAX)的數(shù)控機(jī)構(gòu)與加工中心,引起轟動。此后,英國Geodetic公司,俄羅斯Lapik公司,挪威Multicraft公司,日本豐田、日立、三菱等公司,瑞士ETZH和IFW研究所,瑞典NeosRobotics公司,丹麥Braunschweig公司,德國亞琛工業(yè)大學(xué)、漢諾威大學(xué)和斯圖加特大學(xué)等單位也研制出不同結(jié)構(gòu)形式的數(shù)控銑床、激光加工和水射流機(jī)構(gòu)、夾持機(jī)構(gòu)機(jī)和加工中心。與之相呼應(yīng),由美國Sandia國家實(shí)驗(yàn)室和國家標(biāo)準(zhǔn)局倡議,已于1996年專門成立了Hexapod用戶協(xié)會,并在國際互聯(lián)網(wǎng)上設(shè)立站點(diǎn)。近年來,與夾持機(jī)構(gòu)和并聯(lián)機(jī)器人操作機(jī)有關(guān)的學(xué)術(shù)會議層出不窮,例如第47~49屆CIRP年會、1998~1999年CIRA大會、ASME第25屆機(jī)構(gòu)學(xué)雙年會、第10屆TMM世界大會均有大量文章涉及這一領(lǐng)域。由美國國家科學(xué)基金會動議,1998年在意大利米蘭召開了第一屆國際并聯(lián)運(yùn)動學(xué)機(jī)器專題研討會,并決定第二屆研討會于2000年在美國密執(zhí)安大學(xué)舉行。1994~1999年期間,在歷次大型國際機(jī)構(gòu)博覽會上均有這類新型機(jī)構(gòu)參展,并認(rèn)為可望成為21世紀(jì)高速輕型數(shù)控加工的主力裝備。
我國已將夾持機(jī)構(gòu)的研究與開發(fā)列入國家“九五”攻關(guān)計(jì)劃和863高技術(shù)發(fā)展計(jì)劃,相關(guān)基礎(chǔ)理論研究連續(xù)得到國家自然科學(xué)基金和國家攀登計(jì)劃的資助。部分高校還將夾持機(jī)構(gòu)的研發(fā)納入教育部211工程重點(diǎn)建設(shè)項(xiàng)目,并得到地方政府部門的支持且吸引了機(jī)構(gòu)骨干企業(yè)的參與。在國家自然科學(xué)基金委員會的支持下,中國大陸地區(qū)從事這方面研究的骨干力量,于1999年6月在清華大學(xué)召開了我國第一屆并聯(lián)機(jī)器人與夾持機(jī)構(gòu)設(shè)計(jì)理論與關(guān)鍵技術(shù)研討會,對夾持機(jī)構(gòu)的發(fā)展現(xiàn)狀、未來趨勢以及亟待解決的問題進(jìn)行了研討。
1.2 國內(nèi)外研究現(xiàn)狀
夾持機(jī)構(gòu)具有高剛度、高承載能力、高速度、高精度、重量輕、機(jī)械結(jié)構(gòu)簡單、標(biāo)準(zhǔn)化程度高和模塊化程度高等優(yōu)點(diǎn),在要求精密加工的航空航天、兵器、船舶、電子等領(lǐng)域得到了成功的應(yīng)用。
(1)串聯(lián)結(jié)構(gòu)中的橫梁部件很容易受到彎曲扭矩的作用而產(chǎn)生扭曲變形,從而產(chǎn)生動態(tài)誤差;
(2)由于采用串聯(lián)的方法,因而整個(gè)運(yùn)動誤差是每個(gè)坐標(biāo)軸運(yùn)動誤差的累加;(3)由于運(yùn)動部件質(zhì)量較重,從而使的運(yùn)動慣性增大,運(yùn)動速度收到限制,因而直接影響了夾持機(jī)構(gòu)效率;
(4)不滿足夾持機(jī)構(gòu)的基本原理——阿貝原理;
(5)由于受X,Y,Z相互垂直導(dǎo)軌的約束,測頭的空間位姿不夠靈活。
圖1.1 普通笛卡爾式串聯(lián)結(jié)構(gòu)示意圖
從整個(gè)發(fā)展進(jìn)程不難看出,夾持機(jī)構(gòu)技術(shù)是為滿足日益進(jìn)步的制造技術(shù)的需求而不斷向前發(fā)展的,是為先進(jìn)制造技術(shù)而服務(wù)的。近幾年,隨著精益生產(chǎn)、敏捷制造、虛擬制造、并行工程和逆向工程等各種先進(jìn)制造思想和理論的不斷提出,對夾持機(jī)構(gòu)機(jī)的夾持機(jī)構(gòu)精度、夾持機(jī)構(gòu)效率及靈活性等相應(yīng)的技術(shù)指標(biāo)又提出了更高的要求,而傳統(tǒng)的具有笛卡兒坐標(biāo)系結(jié)構(gòu)的三夾持機(jī)構(gòu)機(jī)因其自身結(jié)構(gòu)的限制已很難達(dá)到這一要求,于是,各種非笛卡兒式夾持機(jī)構(gòu)技術(shù)應(yīng)運(yùn)而生并迅速發(fā)展起來[13]。
圖1.2 幾種非笛卡爾串聯(lián)機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)結(jié)構(gòu)示意圖
當(dāng)今國際市場需求快速變化的特點(diǎn)和21世紀(jì)更加個(gè)性化的市場趨勢,促進(jìn)了快速設(shè)計(jì)和制造技術(shù)的發(fā)展。并聯(lián)夾持機(jī)構(gòu)機(jī)是近30年發(fā)展起來的一種高效率的新型精密夾持機(jī)構(gòu)儀器,克服了傳統(tǒng)串聯(lián)夾持機(jī)構(gòu)機(jī)結(jié)構(gòu)布局的固有缺陷,有效地降低重量和提高對生產(chǎn)環(huán)境的適應(yīng)性,滿足了快速多變的市場需求。與常用的串聯(lián)夾持機(jī)構(gòu)機(jī)相比,它的優(yōu)點(diǎn)是:
(1)并聯(lián)中的可動平臺同時(shí)經(jīng)由3根可沿各自軸向伸縮的連桿支撐,從而使整個(gè)系統(tǒng)的剛度較串聯(lián)機(jī)構(gòu)相比有較大程度的提高;
(2)各并聯(lián)桿件只承受沿軸向的線性調(diào)節(jié)力的作用,因而其運(yùn)動誤差小,不易變形;
(3)夾持機(jī)構(gòu)中,各桿件間不存在誤差累積和放大關(guān)系,容易實(shí)現(xiàn)高精度夾持機(jī)構(gòu);
(4)并聯(lián)運(yùn)動機(jī)構(gòu)中運(yùn)動部件的慣性質(zhì)量小,剛度大,因而有望實(shí)現(xiàn)高速、高效率夾持機(jī)構(gòu);
(5)可以將夾持機(jī)構(gòu)點(diǎn)放置在測長裝置的延長線上,從而減小阿貝誤差對夾持機(jī)構(gòu)結(jié)果的影響;
(6)并聯(lián)夾持機(jī)構(gòu)機(jī)測頭的空間位姿靈活,可從任何角度進(jìn)入工作表面,因而對表面形狀復(fù)雜,孔隙方位多的零件夾持機(jī)構(gòu)比較方便;
(7)夾持機(jī)構(gòu)結(jié)果不易受空氣波動、溫度變化等因素的影響;
(8)不需要復(fù)雜的跟蹤機(jī)構(gòu)、控制裝置等;
(9)夾持機(jī)構(gòu)具有“硬件”簡單,“軟件”復(fù)雜的特點(diǎn),是一種技術(shù)附加值很高的機(jī)電一體化產(chǎn)品,因而渴望獲得高額的經(jīng)濟(jì)回報(bào)。
由此可以看出,夾持機(jī)構(gòu)恰好能夠?qū)Υ?lián)機(jī)構(gòu)的應(yīng)用局限進(jìn)行恰當(dāng)?shù)难a(bǔ)充,這無疑為新一代夾持機(jī)構(gòu)機(jī)的開發(fā)與研制帶來了希望,從而為拓寬夾持機(jī)構(gòu)機(jī)的應(yīng)用領(lǐng)域,促進(jìn)產(chǎn)品的多樣化,提高產(chǎn)品的市場競爭力奠定了堅(jiān)實(shí)的理論基礎(chǔ)。
近年來,以夾持機(jī)構(gòu)學(xué)為理論依據(jù)的智能機(jī)器人技術(shù)及計(jì)算機(jī)數(shù)控加工技術(shù)的研究引起了各國學(xué)者的極大興趣,現(xiàn)已成為新的研究熱點(diǎn),并認(rèn)為是21世界極具發(fā)展前景的先進(jìn)技術(shù)[14-15]。由于并聯(lián)運(yùn)動機(jī)構(gòu)具有結(jié)構(gòu)剛性大、運(yùn)動速度高、誤差不疊加等獨(dú)特特性,因而若將其應(yīng)用于夾持機(jī)構(gòu)機(jī)中,將有可能使夾持機(jī)構(gòu)機(jī)的夾持機(jī)構(gòu)精度及夾持機(jī)構(gòu)效率等綜合性能得到很大程度的改善。由此可以看出,并聯(lián)運(yùn)動機(jī)構(gòu)理論及應(yīng)用研究的興起也為新型夾持機(jī)構(gòu)機(jī)的開發(fā)提供了機(jī)遇,所以,開展并聯(lián)運(yùn)動機(jī)構(gòu)的研究工作是非常必要的。
2 六自由度大臂機(jī)器人的結(jié)構(gòu)及工作原理
2.1 并聯(lián)運(yùn)動機(jī)構(gòu)概述
從夾持機(jī)構(gòu)的結(jié)構(gòu)特點(diǎn)不難看出,夾持機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)屬于一種新型非笛卡兒式夾持機(jī)構(gòu)系統(tǒng)。傳統(tǒng)的笛卡兒式夾持機(jī)構(gòu)系統(tǒng)對空間位置坐標(biāo)的夾持機(jī)構(gòu)是直接通過三個(gè)相互垂直的長度基準(zhǔn)來實(shí)現(xiàn)的,也就是說,這種夾持機(jī)構(gòu)機(jī)的夾持機(jī)構(gòu)模型是直接建立在直角坐標(biāo)系基礎(chǔ)之上的,因而該夾持機(jī)構(gòu)機(jī)具有夾持機(jī)構(gòu)建模容易,夾持機(jī)構(gòu)結(jié)果直觀、數(shù)據(jù)處理簡單、符合大多數(shù)工件夾持機(jī)構(gòu)的需要等優(yōu)點(diǎn)。而對于由并聯(lián)閉環(huán)機(jī)構(gòu)所組成的并聯(lián)夾持機(jī)構(gòu)機(jī)來說,其測頭處的空間位置坐標(biāo)是有若干個(gè)并聯(lián)調(diào)節(jié)器的長度基準(zhǔn)和連接上下平臺的球形副(或轉(zhuǎn)動副)的角度基準(zhǔn)來表述的,由于這些變量參數(shù)之間的關(guān)系是非線性,所以與普通直角型夾持機(jī)構(gòu)機(jī)相比夾持機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)的夾持機(jī)構(gòu)建模問題就變得十分復(fù)雜。
并聯(lián)運(yùn)動機(jī)構(gòu)是指上、下平臺用2個(gè)或2個(gè)以上分支相連,機(jī)構(gòu)具有2個(gè)或2個(gè)以上自由度,且以并聯(lián)方式驅(qū)動的空間閉環(huán)運(yùn)動機(jī)構(gòu)。由于并聯(lián)運(yùn)動機(jī)構(gòu)具有剛度重量比大,運(yùn)行速度高、末端執(zhí)行器位姿靈活、誤差不疊加、結(jié)構(gòu)簡單、易于模塊化設(shè)計(jì)等優(yōu)點(diǎn) ,因而在許多領(lǐng)域都已得到廣泛的應(yīng)用。例如:德國漢諾威、斯圖加特大學(xué)及不倫瑞克大學(xué)等已先后將并聯(lián)運(yùn)動機(jī)構(gòu)應(yīng)用于激光加工、機(jī)構(gòu)、普通裝配及醫(yī)學(xué)等領(lǐng)域中。國內(nèi)一些知名大學(xué),如清華大學(xué)、天津大學(xué)、東北大學(xué)、燕山大學(xué)和哈爾濱工業(yè)大學(xué)等等,也正在開展夾持機(jī)構(gòu)方面的研究工作。
實(shí)際上,夾持機(jī)構(gòu)建模問題就是夾持機(jī)構(gòu)的正運(yùn)動求解問題。所謂正運(yùn)動求解,就是在已知夾持機(jī)構(gòu)中各運(yùn)動副的位置參數(shù)及各并聯(lián)調(diào)節(jié)器桿長變化量的情況下,來計(jì)算末端執(zhí)行器(如測頭)出的空間位置坐標(biāo)。由空間機(jī)構(gòu)學(xué)理論可知并聯(lián)閉環(huán)機(jī)構(gòu)的位置反解比較容易,但其位置正解卻相當(dāng)復(fù)雜,到目前為止,也只能給出其數(shù)值解,且明顯存在多解現(xiàn)象。
我們通過對夾持機(jī)構(gòu)機(jī)的布局結(jié)構(gòu)進(jìn)行優(yōu)化,即將連接上下活動平臺的運(yùn)動副以等邊三角形的方式進(jìn)行排列,從而使個(gè)運(yùn)動副之間的相互關(guān)系簡潔化,然后充分利用機(jī)構(gòu)的運(yùn)動約束和集合約束關(guān)系,建立由對應(yīng)機(jī)構(gòu)組成的并聯(lián)夾持機(jī)構(gòu)機(jī)的夾持機(jī)構(gòu)模型。
2.2 機(jī)械手總體結(jié)構(gòu)原理
本文所研究的夾持機(jī)構(gòu)的結(jié)構(gòu)見圖2-1[16]。由圖2.2.1可以看出,該主要由上下2個(gè)平臺和連桿組成。
從機(jī)構(gòu)的連接方式不難看出,三個(gè)中間連桿的運(yùn)動是相互關(guān)聯(lián)和制約的,而不是相互分立的,因此,這種機(jī)構(gòu)屬于并聯(lián)運(yùn)動機(jī)構(gòu)。夾持機(jī)構(gòu)的工作原理十分簡單,它是通過移動副的調(diào)節(jié)器來控制移動副的伸縮,使連桿長度發(fā)生變化,從而使測頭移動至測點(diǎn)位置,然后再由安裝在移動副內(nèi)的長度夾持機(jī)構(gòu)裝置測出桿長的變化量,并以此為依據(jù),計(jì)算出測點(diǎn)處的空間坐標(biāo)。
圖2.1 夾持機(jī)構(gòu)結(jié)構(gòu)簡圖
自工業(yè)機(jī)器人問世以來,采用串聯(lián)機(jī)構(gòu)的機(jī)器人占主導(dǎo)位置。串聯(lián)機(jī)器人具有結(jié)構(gòu)簡單、操作空間大,因而獲得廣泛應(yīng)用。由于串聯(lián)機(jī)器人自身的限制,研究人員逐漸把研究方向轉(zhuǎn)向并聯(lián)機(jī)器人。和串聯(lián)機(jī)器人相比,并聯(lián)機(jī)器人有以下特點(diǎn):
1. 并聯(lián)結(jié)構(gòu)其末端件上同時(shí)由6根桿支撐,與串聯(lián)的懸臂梁相比剛度大,結(jié)構(gòu)穩(wěn)定。
2. 由于剛度大,并聯(lián)結(jié)構(gòu)較串聯(lián)結(jié)構(gòu)在相同的自重或體積下,有高的多的承載能力大。
3. 串聯(lián)機(jī)構(gòu)末端件上的誤差是各個(gè)關(guān)節(jié)誤差的積累和放大,因而誤差大、精度低,并聯(lián)式則沒有那樣的誤差積累和放大關(guān)系,微動精度高。
4. 串聯(lián)機(jī)器人的驅(qū)動電機(jī)及傳動系統(tǒng)大都放在運(yùn)動著的大小臂上,增加了系統(tǒng)的慣量,惡化了動力性能,而并聯(lián)機(jī)器人將電機(jī)置于機(jī)座上,減小了運(yùn)動負(fù)荷。
5. 在位置求解上,串聯(lián)機(jī)構(gòu)正解容易,但反解困難。而并聯(lián)機(jī)構(gòu)正解困難,反解非常容易,而機(jī)器人在線實(shí)時(shí)計(jì)算是要計(jì)算反解的。
2.3六自由度大臂機(jī)器人的總體結(jié)構(gòu)
六自由度大臂機(jī)器人的組成及各部分關(guān)系概述:
它主要由機(jī)械系統(tǒng)(執(zhí)行系統(tǒng)、驅(qū)動系統(tǒng))、控制檢測系統(tǒng)及智能系統(tǒng)組成。
(1) 執(zhí)行系統(tǒng):執(zhí)行系統(tǒng)是六自由度大臂機(jī)器人完成關(guān)節(jié)工件,實(shí)現(xiàn)各種運(yùn)動所必需
的機(jī)械部件,它包括手部、腕部、機(jī)身等。
(a) 末端執(zhí)行器:機(jī)械手為了進(jìn)行作業(yè)而配置的操作機(jī)構(gòu),直接噴漆工件。
(b) 腕部:又稱手腕,是連接手部和臂部的部件,其作用是調(diào)整或改變末端執(zhí)行器的工作方位。
(c) 臂部:聯(lián)接機(jī)座和手部的部分,是支承腕部的部件,作用是承受工件的管理管理荷重,改變手部的空間位置,滿足機(jī)械手的作業(yè)空間,將各種載荷傳遞到機(jī)座。
(d) 機(jī)身:機(jī)械手的基礎(chǔ)部分,起支撐作用,是支撐手臂的部件,其作用是帶動臂部自轉(zhuǎn)、升降或俯仰運(yùn)動。
(2) 驅(qū)動系統(tǒng):為執(zhí)行系統(tǒng)各部件提供動力,并驅(qū)動其動力的裝置。常用的有
機(jī)械傳動、機(jī)電傳動、氣壓傳動和電傳動。
(3) 控制系統(tǒng):通過對驅(qū)動系統(tǒng)的控制,使執(zhí)行系統(tǒng)按照規(guī)定的要求進(jìn)行工作,當(dāng)發(fā)生錯(cuò)誤或故障時(shí)發(fā)出報(bào)警信號。
(4) 檢測系統(tǒng):作用是通過各種檢測裝置、傳感裝置檢測執(zhí)行機(jī)構(gòu)的運(yùn)動情況,根據(jù)需 要反饋給控制系統(tǒng),與設(shè)定進(jìn)行比較,以保證運(yùn)動符合要求。 實(shí)踐證明,六自由度大臂機(jī)器人可以代替人手的繁重勞動,顯著減輕工人的勞動強(qiáng)度,改善勞動條件,提高勞動生產(chǎn)率和自動化水平。工業(yè)生產(chǎn)中經(jīng)常出現(xiàn)的笨重工件的搬運(yùn)和長期頻繁、單調(diào)的操作,采用機(jī)械手是有效的。此外,它能在高溫、低溫、深水、宇宙、放射性和其他有毒、污染環(huán)境條件下進(jìn)行操作,更顯示其優(yōu)越性,有著廣闊的發(fā)展前途[4-8]。
2.4 控制系統(tǒng)結(jié)構(gòu)及工作原理
夾持機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)的控制與夾持機(jī)構(gòu)系統(tǒng)結(jié)構(gòu)示意圖如圖2-2所示:
由圖可以看出來,該夾持機(jī)構(gòu)夾持機(jī)構(gòu)機(jī)的控制與夾持機(jī)構(gòu)系統(tǒng)主要由三個(gè)基本單元組成,它們是:PC處理器單元,伺服電機(jī)控制單元和夾持機(jī)構(gòu)數(shù)據(jù)采集與存儲單元。PC處理單元主要完成數(shù)據(jù)處理、數(shù)據(jù)顯示、幾何尺寸計(jì)算和三維形體的重建等,同時(shí)還負(fù)責(zé)向其他兩個(gè)單元發(fā)送控制指令,以便協(xié)調(diào)整個(gè)系統(tǒng)的工作。伺服電機(jī)控制單元則主要是依據(jù)PC計(jì)算機(jī)所發(fā)送的控制指令對三個(gè)伺服電機(jī)的運(yùn)行狀態(tài)進(jìn)行控制,從而確保他們按實(shí)際要求正常運(yùn)轉(zhuǎn)。夾持機(jī)構(gòu)數(shù)據(jù)采集與存儲單元主要用于完成對三個(gè)線性刻度尺(例如光柵尺、激光干涉儀等)輸出的脈沖信號進(jìn)行記數(shù),并將計(jì)數(shù)結(jié)果存儲到對應(yīng)的三個(gè)存儲器中,以便于PC計(jì)算機(jī)進(jìn)行讀取。
圖2.2 控制與夾持機(jī)構(gòu)系統(tǒng)框圖
上述控制與夾持機(jī)構(gòu)系統(tǒng)的工作原理可簡述如下:
當(dāng)操作人員通過計(jì)算機(jī)鍵盤(或其他鍵控開關(guān))向計(jì)算機(jī)發(fā)出控制命令后,PC處理器則通過I/O控制器接口向三個(gè)交流伺服電機(jī)分別發(fā)出相應(yīng)的運(yùn)行控制指令。當(dāng)三個(gè)伺服電機(jī)接受到正確的指令信息后,即驅(qū)動各自的滾珠絲杠進(jìn)行旋轉(zhuǎn),從而帶動相應(yīng)的移動副按實(shí)際要求進(jìn)行伸縮,使測頭向目標(biāo)點(diǎn)移動;同時(shí),隨著移動副的伸縮,與之相連的線性長度記錄儀(如光柵尺等)開始輸出計(jì)數(shù)脈沖,并由三個(gè)32位的計(jì)數(shù)器分別進(jìn)行計(jì)數(shù)。若測頭移動過程中,連桿或運(yùn)動副出現(xiàn)干涉現(xiàn)象,則驅(qū)動系統(tǒng)將立即向計(jì)算機(jī)反饋信息,以便通知計(jì)算機(jī)及時(shí)調(diào)整三個(gè)伺服電機(jī)的運(yùn)行狀態(tài),及時(shí)修正測頭的運(yùn)行軌跡,從而確保測頭安全、柔性地到達(dá)夾持機(jī)構(gòu)點(diǎn)位置。
當(dāng)測頭與被測目標(biāo)點(diǎn)接觸的一剎那,測頭的微動開關(guān)將產(chǎn)生一觸發(fā)脈沖,并將其反饋給PC計(jì)算機(jī)作為采樣觸發(fā)信號。PC計(jì)算機(jī)接收到該采樣指令后,則向32位計(jì)數(shù)器發(fā)出讀數(shù)指令,隨后便將計(jì)數(shù)器中的三個(gè)脈沖計(jì)數(shù)值讀入處理器,經(jīng)相應(yīng)處理軟件計(jì)算后,得到該夾持機(jī)構(gòu)點(diǎn)處的實(shí)際空間坐標(biāo)值,從而完成一次坐標(biāo)采樣過程。
2.5 夾持機(jī)構(gòu)工作空間的分析
工作空間(Workplace):設(shè)給定參考點(diǎn)C是動平臺執(zhí)行器的端點(diǎn),工作空間是該端點(diǎn)在空間可以達(dá)到的所有點(diǎn)的集合。
完全工作空間(Complete workplace):動平臺上執(zhí)行器端點(diǎn)可從任何方向(位姿)到達(dá)的點(diǎn)的集合。
定向工作空間(Constant workplace):動平臺在固定位姿時(shí)執(zhí)行器端點(diǎn)可以到達(dá)的點(diǎn)的集合。
最大工作空間(Maximal workplace):動平臺執(zhí)行器端點(diǎn)可到達(dá)的點(diǎn)的最大集合,并考慮其具體位姿。
完全工作空間和定向工作空間都是最大工作空間的子集.
另外,工作空間是夾持機(jī)構(gòu)的重要特性,影響它的大小和形狀的因素主要有以下三個(gè):
① 桿長的限制,桿件長度的變化是受到其結(jié)構(gòu)限制的,每一桿件的長度必須小于最大桿長,大于最小桿長。
② 轉(zhuǎn)動副轉(zhuǎn)角的限制,各種鉸鏈,包括球鉸接和萬向鉸接的轉(zhuǎn)角都受到結(jié)構(gòu)研制的,每一鉸鏈的轉(zhuǎn)角都應(yīng)小于最大轉(zhuǎn)角。
③ 桿件的尺寸干涉,連接動平臺和固定平臺的桿件都具有幾何尺寸,因此各桿件之間在運(yùn)動過程中可能發(fā)生相互干涉。設(shè)桿件是直徑為D的圓柱體,兩相鄰桿件軸線之間的距離為Di,則Di>D。
并聯(lián)機(jī)器人構(gòu)型設(shè)計(jì)原則
1、在進(jìn)行機(jī)構(gòu)形式設(shè)計(jì)時(shí),除了要滿足規(guī)定的運(yùn)動形式、運(yùn)動規(guī)律或運(yùn)動軌跡外,還應(yīng)該遵循下面幾項(xiàng)準(zhǔn)則:
(l)機(jī)構(gòu)的運(yùn)動鏈要盡可能的短。完成同樣的動作要求,應(yīng)該優(yōu)先選用機(jī)構(gòu)構(gòu)件數(shù)和運(yùn)動副數(shù)少的機(jī)構(gòu),以簡化其結(jié)構(gòu)從而減輕重量、降低成本、減少由于零件的制造誤差而形成的運(yùn)動鏈的累積誤差,運(yùn)動鏈短有利于提高機(jī)構(gòu)的剛度,減少振動。
(2)在運(yùn)動副的選擇上,優(yōu)先選用低副。低副機(jī)構(gòu)的運(yùn)動元素加工方便,容易保證配合的精度以及有較高的承載能力。
(3)適當(dāng)選擇原動機(jī),使機(jī)構(gòu)有好的動力學(xué)性能。
并聯(lián)機(jī)器人的尺度設(shè)計(jì)原則
以往,我們在設(shè)計(jì)階段為了確定機(jī)器人操作手機(jī)構(gòu)的尺寸和確定機(jī)器人操作手在工作空間內(nèi)部的位置和姿態(tài)時(shí)多數(shù)是靠經(jīng)驗(yàn)和直覺?,F(xiàn)在,為了開發(fā)出高精度、高速度和高效率的并聯(lián)機(jī)器人,我們在機(jī)構(gòu)的綜合設(shè)計(jì)時(shí)要考慮到它的工作空間的體積和形狀、奇異位形、輸出的各向同性等條件。但是,在全局最優(yōu)的機(jī)構(gòu)尺度綜合設(shè)計(jì)中,顧全到上述的所有條件是十分困難的。國內(nèi)外的學(xué)者提出了許多機(jī)構(gòu)綜合的標(biāo)準(zhǔn),以便在滿足指定的設(shè)計(jì)指標(biāo)下,機(jī)構(gòu)的性能達(dá)到最優(yōu)。由于并聯(lián)機(jī)器人與串聯(lián)機(jī)器人相比,工作空間小。因此為實(shí)現(xiàn)作業(yè)要求,在設(shè)計(jì)時(shí)要先確定能夠滿足性能指標(biāo)的工作空間是至關(guān)重要的。
另外,在并聯(lián)機(jī)構(gòu)的設(shè)計(jì)過程中必須要考慮要避免構(gòu)型奇異。與串聯(lián)機(jī)器人不同的是,并聯(lián)機(jī)器人不僅有運(yùn)動學(xué)奇異,還有由構(gòu)型所導(dǎo)致的構(gòu)型奇異。即奇異區(qū)域通常都擴(kuò)張到整個(gè)工作空間或一些顯著的子空間,而且是實(shí)際操作中最常用的區(qū)域。0.M給出了判定并聯(lián)機(jī)構(gòu)發(fā)生構(gòu)型奇異的條件:
(l)如果動平臺和定平臺是相似的正多邊形,則整個(gè)工作空間內(nèi)雅戈比矩陣都是奇異的;
(2)如果動平臺和定平臺是相似的非正多邊形,并且每一對相應(yīng)的頂點(diǎn)通過一條連桿相連,則雅戈比矩陣在工作空間內(nèi)的大部分區(qū)域都是奇異的。
這種設(shè)計(jì)上的奇異的存在,將使并聯(lián)機(jī)器人由于無法平衡施加在動平臺上的負(fù)載而不能工作。在構(gòu)型奇異附近的區(qū)域,即使沒有發(fā)生構(gòu)型奇異,也有可能出現(xiàn)雅戈比矩陣條件數(shù)很大的情況,同樣會導(dǎo)致運(yùn)動和力的傳遞性能變的很差,我們稱這種區(qū)域?yàn)椴B(tài)條件區(qū)域。因此,進(jìn)行并聯(lián)機(jī)構(gòu)尺度綜合設(shè)計(jì)時(shí)必須考慮在滿足工作空間要求、運(yùn)動可傳遞性的要求以及負(fù)載能力要求的情況下,要避開構(gòu)型奇異點(diǎn)及奇異點(diǎn)附近的病態(tài)區(qū)域
2.6三維空間分析原理
首先,運(yùn)動參數(shù)的平衡條件下出現(xiàn)的子集必須被確定為系統(tǒng)的總勢能不變的任何配置,即,在勢能的表達(dá)依賴于配置項(xiàng)系數(shù)等于零。額外的標(biāo)量和矢量變量出現(xiàn)在(2)中圖3定的相關(guān)術(shù)語中。設(shè)計(jì)中出現(xiàn)的變量之間的(2),分別計(jì)算設(shè)計(jì)過程中的第一階段,只有關(guān)節(jié)lir的鏈接和向量bi的組件會影響工作空間形狀和機(jī)構(gòu)的奇異位置的長度。這些參數(shù)被確定為該機(jī)構(gòu)的靜平衡是完成的,他們被認(rèn)為是恒定的輸入數(shù)據(jù)(其值在表II中給出)。因此,在平衡條件下的完整性將在隨后的優(yōu)化程序保存在。然后,我們得確定剩余的運(yùn)動學(xué)參數(shù),不影響平衡條件下的最大子集。將這些參數(shù)作為優(yōu)化參數(shù)提高的工作空間和運(yùn)動特性的機(jī)制。隨后,平衡條件不依賴于關(guān)節(jié)的連接點(diǎn)Pi0的位置。假設(shè)這些點(diǎn)位于一個(gè)以r為半徑O為圓心的圓上,r以被視為一個(gè)優(yōu)化參數(shù)。此外,讓成為連接第i關(guān)節(jié)流動錐對稱軸的球形接頭。
圖3.1關(guān)節(jié)相關(guān)設(shè)計(jì)參數(shù)
對于移動框架軸的方向,用角度和表示,不影響平衡的條件。在這個(gè)方向上表示,角度是軸和軸上移動平面投影之間的夾角。軸的投影用矢量角來表示。至于大多數(shù)并聯(lián)機(jī)器人機(jī)構(gòu)的商業(yè)應(yīng)用程序是可實(shí)現(xiàn)對稱的機(jī)構(gòu)設(shè)計(jì)。因此我們對非限制性的附加條件:。我們的優(yōu)化參數(shù)組最后由向量表示。
III基于恒定位第一優(yōu)化程序工作區(qū)
在本節(jié)中,我們考慮的第一個(gè)應(yīng)用程序的機(jī)制作為定位和定向裝置的重物。在這樣的背景下,我們提出了一個(gè)過程,即:恒定方向的工作區(qū)是自由臨界奇異性體積最大三維區(qū)域。幾種方法是目前文獻(xiàn)中的并聯(lián)機(jī)器人定姿態(tài)工作空間計(jì)算(見,例如,[ 26 ]一個(gè)詳細(xì)的這些方法分類)。在第一類方法中最有代表性的是[ 13 ]和[ 15 ]提出的純幾何方法,并在[ 26 ]中擴(kuò)展到機(jī)械約束與被動關(guān)節(jié)的運(yùn)動范圍。
第二類方法被稱為離散化 技術(shù)(例如,[ 1 ],[ 8 ],和[ 25 ])。最基本的,一個(gè)足夠大的立方區(qū)域在笛卡爾空間中是完全離散的。然后,對這三次網(wǎng)格中的每個(gè)節(jié)點(diǎn),解決了逆運(yùn)動學(xué)和一套機(jī)械約束測試。有可能是最復(fù)雜的和最快的離散化方法,工作空間的邊界是在球面坐標(biāo)系統(tǒng)確定的離散范圍內(nèi)的方位角和高度角[ 8 ]。盡管這樣的方法是計(jì)算密集型的,提供的工作空間邊界的幾何性質(zhì)的信息很少,他們可以很容易地應(yīng)用到任何類型的并聯(lián)機(jī)器人的幾乎任何的機(jī)械約束。除了所有常規(guī)的機(jī)械限制,它的目的是在這里將封閉形式的方程轉(zhuǎn)化為運(yùn)動約束集的三條關(guān)節(jié)的6-DOF并聯(lián)機(jī)構(gòu)的奇異軌跡。固有的復(fù)雜性原因,離散化算法[ 8 ]被發(fā)現(xiàn)是用于以下設(shè)計(jì)程序最合適的方法。
A 常規(guī)機(jī)械約束
本節(jié)總結(jié)了傳統(tǒng)的機(jī)械限制的機(jī)制定姿態(tài)工作空間。作為一個(gè)初步的,我們要精確,平臺的定位將代表本節(jié)中歐拉角的定義,首先是由第一旋轉(zhuǎn)移動框架的基軸的角度所表示,然后與通過角度的新軸有關(guān),最后轉(zhuǎn)化為通過角度的移動軸。對于歐拉角的選擇,其突變發(fā)生在處。旋轉(zhuǎn)矩陣定義為:
其中
隨后,主要存在著四個(gè)基本的機(jī)械約束以限制二關(guān)節(jié)并聯(lián)機(jī)構(gòu)的定位空間,即:1)關(guān)節(jié)的長度2);三球形關(guān)節(jié)運(yùn)動的范圍;3)關(guān)節(jié)的干涉;4)機(jī)械設(shè)計(jì)相關(guān)的附加約束。
1)限制關(guān)節(jié)的長度:讓移動平臺的定位是由(3,3)的正交旋轉(zhuǎn)矩陣組成。對于一個(gè)給定位置(矢量)和方向(矩陣)的移動平臺,所需關(guān)節(jié)的長度,用表示,如下式:
然后,五連桿結(jié)構(gòu)的關(guān)節(jié)施加一個(gè)長度約束如下式:
對于移動平臺的大多數(shù)配置,只有關(guān)節(jié)的支撐段pi2pi3和i關(guān)節(jié)的pi3pi5與j關(guān)節(jié)的關(guān)節(jié)部之間的碰撞是一個(gè)問題。因此,采用3桿機(jī)構(gòu)對二關(guān)節(jié)機(jī)構(gòu)的結(jié)構(gòu)設(shè)置一組約束,如下:
這些約束實(shí)現(xiàn)的校驗(yàn)方程需要兩個(gè)線段之間距離是最小的,這需要一個(gè)實(shí)現(xiàn)多步算法的計(jì)算。由于空間的限制,我們這里不清楚這樣的算法,但我們建議讀者參考一中[25]提出的方法。4)附加約束:考慮到基礎(chǔ)平臺原型的具體設(shè)計(jì)提出了以下限制:
B 奇異軌跡和內(nèi)在的運(yùn)動約束
在這一部分中,對二關(guān)節(jié)并聯(lián)機(jī)構(gòu)奇異軌跡進(jìn)行了總結(jié),本結(jié)構(gòu)方程是在封閉的形式下提出被納入在下面離散化算法的運(yùn)動約束。在[ 29 ]利用格拉斯曼線幾何確定了機(jī)構(gòu)的奇異位形。五個(gè)系列的奇異性進(jìn)行鑒定。
1)i的關(guān)節(jié)兩個(gè)節(jié)是一致的,即,對于每一段i,定義最小和最大的球體半徑分別為和,坐標(biāo)中心,構(gòu)成機(jī)制的定位工作空間的邊界。用以約束(5)所涉及的例子。
2)當(dāng)移動和基礎(chǔ)平臺是平行的,即,一個(gè)奇點(diǎn)發(fā)生在當(dāng)軸z平臺上的旋轉(zhuǎn)角等于0或)。
圖4 關(guān)節(jié)的機(jī)制(頂視圖)
3)在移動平臺的一個(gè)任意方向的情況下,一個(gè)單一的配置發(fā)生時(shí),它的末端位于一個(gè)用笛卡爾排列所表示的二次曲面上。
2)對于定位工作空間離散化技術(shù)的綜述:在[ 8 ]中提出的離散化技術(shù)是基于以下兩個(gè)算法的完整實(shí)現(xiàn)。
球面搜索算法:讓我們假設(shè)一個(gè)近似的中心點(diǎn)Oc的位置是由一個(gè)給定平臺的方向確定的。通過該算法進(jìn)行推斷從而得到一個(gè)工作空間邊界,該邊界以O(shè)c為中心點(diǎn)以為球面坐標(biāo)系。檢查整個(gè)空間的過程是通過離散的方位角和天頂角和來完成。對于每一對,在被檢測出違背約束之前它們的半徑逐漸遞增,。當(dāng)被發(fā)現(xiàn)位于工作區(qū)之外時(shí),工作空間邊界的位置沿球形線構(gòu)成了第一個(gè)近似值,第二算法,稱為工作空間邊界的算法,用于驗(yàn)算結(jié)果。
工作空間邊界的算法:對于每個(gè)方位角和天頂角,該算法都在檢查過程中的最后階段。它是基于以區(qū)間折半搜索技術(shù)來保證在工作空間邊界的之內(nèi),其中是一個(gè)給定的誤差范圍。
2.7 臂部結(jié)構(gòu)設(shè)計(jì)的基本要求
臂部部件是六自由度大臂機(jī)器人的主要部件。它的作用是支承手部,并帶動它們做空間運(yùn)動。臂部運(yùn)動的目的:把手部送到空間運(yùn)動范圍內(nèi)的任意一點(diǎn)。如果改變手部的姿態(tài)(方位)關(guān)節(jié),則臂部自由度加以實(shí)現(xiàn)。因此,一般來說臂部設(shè)計(jì)基本要求:
(1)臂部應(yīng)承載能力大、剛度好、自重輕
臂部通常即受彎曲(而且不僅是一個(gè)方向的彎曲),也受扭轉(zhuǎn),應(yīng)選用彎和抗扭剛度較高的截面形狀。很明顯,在截面積和單位重量基本相同的情況下,鋼管、工
字鋼和槽鋼的慣性矩要比圓鋼大得多。所以,六自由度大臂機(jī)器人常采用無縫鋼管作為導(dǎo)向桿,用工字鋼(如圖4.1和4.2所示)或槽鋼作為支撐鋼,這樣既提高了手臂的剛度,又大大減輕了手臂的自重,而且空心的內(nèi)部還可以布置驅(qū)動裝置、傳動裝置以及管道,這樣就使結(jié)構(gòu)緊湊、外形整齊。
(2)臂部運(yùn)動速度要高,慣性要小
在一般情況下,手臂的要求勻速運(yùn)動,但在手臂的啟動和終止瞬間,運(yùn)動是變化的,為了減少沖擊,要求啟動時(shí)間的加速度和終止前減速度不能太大,否則引起沖擊和振動。
為減少轉(zhuǎn)動慣量,應(yīng)采取以下措施:
(a) 減少手臂運(yùn)動件的重量,采用鋁合金等輕質(zhì)高強(qiáng)度材料;
(b) 減少手臂運(yùn)動件的輪廓尺寸
(c) 減少回轉(zhuǎn)半徑
(d) 驅(qū)動系統(tǒng)中設(shè)有緩沖裝置
(3)手臂動作應(yīng)靈活。
為減少手臂運(yùn)動件之間的摩擦阻力,盡可能用滾動摩擦代替滑動摩擦。
(4)位置精度要高。
一般來說,直角和圓柱坐標(biāo)系六自由度大臂機(jī)器人位置精度高;關(guān)節(jié)式六自由度大臂機(jī)器人的位置最難控制,故精度差;在手臂上加設(shè)定位裝置和檢測機(jī)構(gòu),能較好的控制位置精度。
本文采用鋁合金材料設(shè)計(jì)成薄壁件,一方面保證機(jī)械臂的剛度,另一方面可減小機(jī)械臂的重量,減小基座關(guān)節(jié)電機(jī)的載荷,并且提高了機(jī)械臂的動態(tài)響應(yīng)。砂型鑄造鑄件最小壁厚的設(shè)計(jì)。最小壁厚:每種鑄造合金都有其適宜的壁厚,不同鑄造合金所能澆注出鑄件的“最小壁厚”也不相同,主要取決于合金的種類和鑄件的大小,見表4.1所示:
鑄件尺寸
鑄鋼
灰鑄鐵
球墨鑄鐵
可鍛鑄鐵
鋁合金
銅合金
<200×200
200×200~500×500
>500×500
5~8
10~12
15~20
3~5
4~10
10~15
4~6
8~12
12~20
3~5
6~8
—
3~3.5
4~6
—
3~5
6~8
—
表4.1 砂型鑄造鑄件最小壁厚計(jì)(mm)
以上介紹的只是砂型鑄造鑄件結(jié)構(gòu)設(shè)計(jì)的特點(diǎn),在特種鑄造方法中,應(yīng)根據(jù)每種不同的鑄造方法及其特點(diǎn)進(jìn)行相應(yīng)的鑄件結(jié)構(gòu)設(shè)計(jì)。本文機(jī)械臂殼體采用鑄造鋁合金。具體尺寸見總裝配圖。
46
3 六自由度大臂機(jī)器人主要部件的設(shè)計(jì)
3.1 電動機(jī)選型
1.按工作電源分類根據(jù)電動機(jī)工作電源的不同,可分為直流電動機(jī)和交流電動機(jī)。其中交流電動機(jī)還分為單相電動機(jī)和三相電動機(jī)。
2.按結(jié)構(gòu)及工作原理分類電動機(jī)按結(jié)構(gòu)及工作原理可分為異步電動機(jī)和同步電動機(jī)。
同步電動機(jī)還可分為永磁同步電動機(jī)、磁阻同步電動機(jī)和磁滯同電動機(jī)。
異步電動機(jī)可分為感應(yīng)電動機(jī)和交流換向器電動機(jī)。感應(yīng)電動機(jī)又分為三相異步電動機(jī)、單相異步電動機(jī)和罩極異步電動機(jī)。交流換向器電動機(jī)又分為單相串勵電動機(jī)、交直流兩用電動機(jī)和推斥電動機(jī)。
直流電動機(jī)按結(jié)構(gòu)及工作原理可分為無刷直流電動機(jī)和有刷直流電動機(jī)。有刷直流電動機(jī)可分為永磁直流電動機(jī)和電磁直流電動機(jī)。電磁直流電動機(jī)又分為串勵直流電動機(jī)、并勵直流電動機(jī)、他勵直流電動機(jī)和復(fù)勵直流電動機(jī)。永磁直流電動機(jī)又分為稀土永磁直流電動機(jī)、鐵氧體永磁直流電動機(jī)和鋁鎳鈷永磁直流電動機(jī)。
3.按起動與運(yùn)行方式分類電動機(jī)按起動與運(yùn)行方式可分為電容起動式電動機(jī)、電容盍式電動機(jī)、電容起動運(yùn)轉(zhuǎn)式電動機(jī)和分相式電動機(jī)。
3.2電機(jī)的分類
按用途分類電動機(jī)按用途可分為驅(qū)動用電動機(jī)和控制用電動機(jī)。
驅(qū)動用電動機(jī)又分為電動工具(包括鉆孔、拋光、磨光、開槽、切割、擴(kuò)孔等工具)用電動機(jī)、家電(包括洗衣機(jī)、電風(fēng)扇、電冰箱、空調(diào)器、錄音機(jī)、錄像機(jī)、影碟機(jī)、吸塵器、照相機(jī)、電吹風(fēng)、電動剃須刀等)用電動機(jī)及其它通用小型機(jī)械設(shè)備(包括各種小型、小型機(jī)械、醫(yī)療器械、電子儀器等)用電動機(jī)。
控制用電動機(jī)又分為電動機(jī)和伺服電動機(jī)等。
按轉(zhuǎn)子的結(jié)構(gòu)分類電動機(jī)按轉(zhuǎn)子的結(jié)構(gòu)可分為籠型感應(yīng)電動機(jī)(舊標(biāo)準(zhǔn)稱為鼠籠型異步電動機(jī))和繞線轉(zhuǎn)子感應(yīng)電動機(jī)(舊標(biāo)準(zhǔn)稱為繞線型異步電動機(jī))。
按運(yùn)轉(zhuǎn)速度分類電動機(jī)按運(yùn)轉(zhuǎn)速度可分為高速電動機(jī)、低速電動機(jī)、恒速電動機(jī)、調(diào)速電動機(jī)。低速電動機(jī)又分為齒輪減速電動機(jī)、電磁減速電動機(jī)、力矩電動機(jī)和爪極同步電動機(jī)等。
調(diào)速電動機(jī)除可分為有級恒速電動機(jī)、無級恒速電動機(jī)、有級變速電動機(jī)和無極變速電動機(jī)外,還可分為電磁調(diào)速電動機(jī)、直流調(diào)速電動機(jī)、PWM變頻調(diào)速電動機(jī)和開關(guān)磁阻調(diào)速電動機(jī)。
3.3選擇步進(jìn)電機(jī)的計(jì)算
機(jī)構(gòu)工作時(shí),需要克服摩擦阻力矩、工件負(fù)載阻力矩和啟動時(shí)的慣性力矩。
根據(jù)轉(zhuǎn)矩的計(jì)算公式[15]:
(3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
式中:
—偏轉(zhuǎn)所需力矩(N·m);
—摩擦阻力矩(N·m);
—負(fù)載阻力矩(N·m);
—啟動時(shí)慣性阻力矩(N·m);
—工件負(fù)載對回轉(zhuǎn)軸線的轉(zhuǎn)動慣量(kg·m2);
—對回轉(zhuǎn)軸線的轉(zhuǎn)動慣量(kg·m2);
—偏轉(zhuǎn)角速度(rad/s);
—質(zhì)量(kg);
—負(fù)載質(zhì)量(kg);
—啟動時(shí)間(s);
—部分材料密度(kg/m3);
—手腕偏轉(zhuǎn)末端的線速度(m/s)。
根據(jù)已知條件:kg,m/s,m,m,m,s,采用的材料假定為鑄鋼,密度kg/m3。
將數(shù)據(jù)代入計(jì)算得:
kg
r/s
kg·m2
kg·m2
N·m
N·m
N·m
因?yàn)閭鲃邮峭ㄟ^減速器實(shí)現(xiàn)的,所以查取手冊[15]得:
彈性聯(lián)軸器傳動效率;
滾動軸承傳動效率(一對);
減速器傳動效率;
計(jì)算得傳動的裝置的總效率。
電機(jī)在工作中實(shí)際要求轉(zhuǎn)矩 N·m (3.9)
根據(jù)計(jì)算得出的所需力矩,結(jié)合北京和利時(shí)電機(jī)技術(shù)有限公司生產(chǎn)的90系列的五相混合型步進(jìn)電機(jī)的技術(shù)數(shù)據(jù)和矩頻特性曲線,如圖3.3和圖3.4所示,選擇90BYG5200B-SAKRML-0301型號的步進(jìn)電機(jī)。
圖3.1 90BYG步進(jìn)電機(jī)技術(shù)數(shù)據(jù)
圖3.2 90BYG5200B-SAKRML-0301型步進(jìn)電機(jī)矩頻特性曲線
3.4傳動結(jié)構(gòu)形式的選擇
考慮到軸的載荷較大,材料選用45,熱處理調(diào)質(zhì)處理,取材料系數(shù)
所以,有該軸的最小軸徑為:
考慮到鍵槽的影響,所以dmin取值為17MM,具體結(jié)構(gòu)如下:
圖3.3軸的受力模型簡化(見圖7)及受力計(jì)算
圖3.4 軸的受力分析
知:
3.5 軸承的壽命校核
鑒于調(diào)整間隙的方便,軸承均采用正裝.預(yù)設(shè)軸承壽命為3年即12480h.
校核步驟及計(jì)算結(jié)果見下表:
表.3.1 軸承壽命校核步驟及計(jì)算結(jié)果
計(jì)算步驟及內(nèi)容
計(jì)算結(jié)果
6014
A端
B端
由手冊查出Cr、C0r及e、Y值
Cr=98.5kN
C0r=86.0kN
e=0.68
計(jì)算比值Fa/Fr
FaA /FrA e
確定X、Y值
XA=1 YA =0
查載荷系數(shù)fP
1.2
計(jì)算當(dāng)量載荷
P=Fp(XFr+YFa)
PA=5796.24 PB=6759.14
計(jì)算軸承壽命
763399h
大于
12480h
由計(jì)算結(jié)果可見軸承6014AC、6007均合格,最終選用軸承6014。
四、軸的強(qiáng)度校核
經(jīng)分析知C、D兩處為可能的危險(xiǎn)截面,
現(xiàn)來校核這兩處的強(qiáng)度:
(1)、合成彎矩
(2)、扭矩T圖
(3)、當(dāng)量彎矩
(4)、校核
由手冊查材料45的強(qiáng)度參數(shù)
C截面當(dāng)量彎曲應(yīng)力:
由計(jì)算結(jié)果可見C截面安全。
各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯(lián)結(jié)均為靜聯(lián)結(jié),因此只需進(jìn)行擠壓應(yīng)力的校核.
一、 電機(jī)鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯(lián)結(jié)處的材料分別為: 45鋼(鍵) 、40Cr(軸)
(1) 剛輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯(lián)結(jié)處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時(shí), 鍵聯(lián)結(jié)合格.
(2)輸出軸處鍵: 按照聯(lián)軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯(lián)結(jié)處的材料分別為: 45鋼 (聯(lián)軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強(qiáng)度最低,因此按其許用應(yīng)力進(jìn)行校核,查手冊其
該鍵聯(lián)結(jié)合格.
3.6 手爪夾持器結(jié)構(gòu)設(shè)計(jì)與校核
3.6.1手爪夾持器種類
1.連桿杠桿式手爪
這種手爪在活塞的推力下,連桿和杠桿使手爪產(chǎn)生夾緊(放松)運(yùn)動,由于杠桿的力放大作用,這種手爪有可能產(chǎn)生較大的夾緊力。通常與彈簧聯(lián)合使用。
2.楔塊杠桿式手爪
利用楔塊與杠桿來實(shí)現(xiàn)手爪的松、開,來實(shí)現(xiàn)抓取工件。
3.齒輪齒條式手爪
這種手爪通過活塞推動齒條,齒條帶動齒輪旋轉(zhuǎn),產(chǎn)生手爪的夾緊與松開動作。
4.滑槽式手爪
當(dāng)活塞向前運(yùn)動時(shí),滑槽通過銷子推動手爪合并,產(chǎn)生夾緊動作和夾緊力,當(dāng)活塞向后運(yùn)動時(shí),手爪松開。這種手爪開合行程較大,適應(yīng)抓取大小不同的物體。
5.平行杠桿式手爪
不 需要導(dǎo)軌就可以保證手爪的兩手指保持平行運(yùn)動采用平行四邊形機(jī)構(gòu),因此,比帶有導(dǎo)軌的平行移動手爪的摩擦力要小很多
結(jié)合具體的工作情況,采用連桿杠桿式手爪。驅(qū)動活塞 往復(fù)移動,通過活塞桿端部齒條,中間齒條及扇形齒條 使手指張開或閉合。手指的最小開度由加工 工件的直徑來調(diào)定。本設(shè)計(jì)按照所要捆綁的重物最大使用 的鋼絲繩直徑為50mm來設(shè)計(jì)。
a.有適當(dāng)?shù)膴A緊力
手部在工作時(shí),應(yīng)具有適當(dāng)?shù)膴A緊力,以保證夾持穩(wěn)定可靠,變形小,且不損壞工件的已加工表面。對于剛性很差的工件夾緊力大小應(yīng)該設(shè)計(jì)得可以調(diào)節(jié),對于笨重的工件應(yīng)考慮采用自鎖安全裝置。
b.有足夠的開閉范圍
工作時(shí),一個(gè)手指開閉位置以最大變化量稱為開閉范圍。夾持類手部的手指都有張開和閉合裝置??捎瞄_閉角和手指夾緊端長度表示。于回轉(zhuǎn)型手部手指開閉范圍,手指開閉范圍的要求與許多因素有關(guān)
c.力求結(jié)構(gòu)簡單,重量輕,體積小
作時(shí)運(yùn)動狀態(tài)多變,其結(jié)構(gòu),重量和體積直接影響整個(gè)氣壓機(jī)械手的結(jié)構(gòu),抓重,定位精度,運(yùn)動速度等性能。手部處于腕部的最前端,工因此,在設(shè)計(jì)手部時(shí),必須力求結(jié)構(gòu)簡單,重量輕,體積小。
d.手指應(yīng)有一定的強(qiáng)度和剛度
因此送料,采用最常用的外卡式兩指鉗爪,夾緊方式用常閉式彈簧夾緊,夾緊氣壓機(jī)械手,根據(jù)工件的形狀,松開時(shí),用單作用式氣壓缸。此種結(jié)構(gòu)較為簡單,制造方便。
氣壓缸右腔停止進(jìn)油時(shí),氣壓缸右腔進(jìn)油時(shí)松開工件。
3.6.2夾持器設(shè)計(jì)計(jì)算
手爪要能抓起工件必須滿足:
(3-6)
式中,-----為所需夾持力;
-----安全系數(shù),通常取1.2~2;
-----為動載系數(shù),主要考慮慣性力的影響可按估算,為機(jī)械手在搬運(yùn)工件過程的加速度,,為重力加速度;
-----方位系數(shù),查表選??;
-----被抓持工件的重量 20;
帶入數(shù)據(jù),計(jì)算得: ;
理論驅(qū)動力的計(jì)算: (3-7)
式中,----為柱塞缸所需理論驅(qū)動力;
----為夾緊力至回轉(zhuǎn)支點(diǎn)的垂直距離;
-----為扇形齒輪分度圓半徑;
-----為手指夾緊力;
---齒輪傳動機(jī)構(gòu)的效率,此處選為0.92;
其他同上。帶入數(shù)據(jù),計(jì)算得
計(jì)算驅(qū)動力計(jì)算公式為:
(3-8)
式中,-----為計(jì)算驅(qū)動力;
---安全系數(shù),此處選1.2;
---工作條件系數(shù),此處選1.1;
而氣壓缸的工作驅(qū)動力是由缸內(nèi)油壓提供的,故有
(3-9)
式中,---為柱塞缸工作油壓;
----為柱塞截面積;選取缸內(nèi)徑為40mm
3.7 夾持裝置氣缸設(shè)計(jì)計(jì)算
3.7.1 初步確系統(tǒng)壓力
表3.2 按負(fù)載選擇工作壓力[1]
負(fù)載/ KN
<5
5~10
10~20
20~30
30~50
>50
工作壓力/MPa
< 0.8~1
1.5~2
2.5~3
3~4
4~5
≥5
表3.3 各種機(jī)械常用的系統(tǒng)工作壓力[1]
機(jī)械類型
機(jī) 床
農(nóng)業(yè)機(jī)械
小型工程機(jī)械
建筑機(jī)械
氣鑿巖機(jī)
氣機(jī)
大中型挖掘機(jī)
重型機(jī)械
起重運(yùn)輸機(jī)械
磨床
組合
機(jī)床
龍門
刨床
拉床
工作壓力/MPa
0.8~2
3~5
2~8
8~10
10~18
20~32
由表3.2和表3.3可知,初選氣缸的設(shè)計(jì)壓力P1=1MPa
3.7.2氣缸計(jì)算
估算要驅(qū)動的負(fù)載大小為300N,考慮到氣缸未加載時(shí)實(shí)際所能輸出的力,受氣缸活塞和缸筒之間的摩擦、活塞桿與前氣缸之間的摩擦力的影響,并考慮到機(jī)械爪的質(zhì)量。在研究氣缸的性能和確定氣缸的缸徑時(shí),常用到負(fù)載率β:
由《液壓與氣壓傳動技術(shù)》表3.4:
表3.4 氣缸的運(yùn)動狀態(tài)與負(fù)載率
阻性負(fù)載(靜負(fù)載)
慣性負(fù)載的運(yùn)動速度v
運(yùn)動的速度v=50mm/s,取β=0.60,所以實(shí)際的氣缸缸負(fù)載的大小為:F=F0/β=500N
(2) 氣缸內(nèi)徑的確定
表3.5 氣缸內(nèi)徑確定公式
項(xiàng)目
計(jì)算公式
缸
徑
雙作用氣缸
推力
拉力
表1 氣缸內(nèi)徑系列GB/T2348-1980mm
8
10
12
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
按GB/T2348-1980,取標(biāo)準(zhǔn)值D=40mm;本來可以取32的,考慮不可預(yù)測的超載等因素,故在這取的略微大一些。
查《氣傳動與控制手冊》根據(jù)桿徑比d/D,一般的選取原則是:當(dāng)活塞桿受拉時(shí),一般選取d/D=0.3-0.5,當(dāng)活塞桿受壓時(shí),一般選取d/D=0.5-0.7。
活塞桿直徑d=0.45D=18mm 取d=18(標(biāo)準(zhǔn)直徑)
表2 活塞桿直徑系列
4
5
6
8
10
12
14
16
18
20
22
25
28
32
36
40
45
50
56
63
70
80
90
100
110
125
140
160
180
200
220
250
280
320
360
400
(1) 氣缸缸體厚度計(jì)算
缸體是氣缸中最重要的零件,當(dāng)氣缸的工作壓力較高和缸體內(nèi)經(jīng)較大時(shí),必須進(jìn)行強(qiáng)度校核。缸體的常用材料為20、25、35、45號鋼的無縫鋼管。在這幾種材料中45號鋼的性能最為優(yōu)良,所以這里選用45號鋼作為缸體的材料。
式中,——實(shí)驗(yàn)壓力,MPa。當(dāng)氣缸額定壓力Pn5.1 MPa時(shí),Py=1.5Pn,當(dāng)Pn16MPa時(shí),Py=1.25Pn。
[]——缸筒材料許用應(yīng)力,N/mm。[]=,為材料的抗拉強(qiáng)度。
注:1.額定壓力Pn
額定壓力又稱公稱壓力即系統(tǒng)壓力,Pn=1MPa
2.最高允許壓力Pmax
Pmax1.5Pn=1.251=1.25MPa
氣缸缸筒材料采用45鋼,則抗拉強(qiáng)度:σb=600M
收藏