外文文獻翻譯--基于80t起重機回轉(zhuǎn)系統(tǒng)的動態(tài)模擬實驗研究【中文2250字】 【PDF+中文WORD】
外文文獻翻譯--基于80t起重機回轉(zhuǎn)系統(tǒng)的動態(tài)模擬實驗研究【中文2250字】 【PDF+中文WORD】,中文2250字,PDF+中文WORD,外文文獻翻譯,基于80t起重機回轉(zhuǎn)系統(tǒng)的動態(tài)模擬實驗研究【中文2250字】,【PDF+中文WORD】,外文,文獻,翻譯,基于,80,起重機,回轉(zhuǎn),系統(tǒng),動態(tài),模擬
基于80t起重機回轉(zhuǎn)系統(tǒng)的動態(tài)模擬實驗研究
CHEN Jinshi , LIU Xinhui , Zhang Cui , DONG Quan , ZHAO Feng
摘要:本文模型研究80t汽車起重機回轉(zhuǎn)系統(tǒng)的動態(tài)特性。分析的組成及液壓系統(tǒng)的工作原理,建立回轉(zhuǎn)系統(tǒng)基于AMESim模型,然后測試模型。仿真分析結(jié)果表明,影響動態(tài)的因素
系統(tǒng)的特點,提出了改進措施。結(jié)果表明,采用旁路電路使沖擊壓力降低百分之18系統(tǒng)運行;此外,改變系統(tǒng)的控制策略和安裝單向節(jié)流提高制動穩(wěn)定性明顯。
關(guān)鍵詞:汽車起重機 回轉(zhuǎn)液壓系統(tǒng) 動態(tài)仿真 壓力沖擊
1簡介
最近,港口,地鐵,高速公路等因國家投資迅速擴大,和發(fā)電站,冶煉設(shè)備,橋梁工程和高層建筑逐年增加,起重機行業(yè)進入快速發(fā)展期?;剞D(zhuǎn)系統(tǒng)是一個汽車起重機的重要組成部分。然而,回轉(zhuǎn)機構(gòu)的轉(zhuǎn)動慣量和摩擦阻力大扭矩之間的機制,導(dǎo)致大液壓系統(tǒng)工作時,回轉(zhuǎn)系統(tǒng)啟動的影響或停止使旋轉(zhuǎn)穩(wěn)定性差。因此,對回轉(zhuǎn)系統(tǒng)的動態(tài)性能非常重要。傳統(tǒng)的依靠經(jīng)驗和類比不滿足要求高性能的液壓系統(tǒng)。本文建立了基于AMESim模型模擬回轉(zhuǎn)系統(tǒng),研究通過仿真分析和動態(tài)穩(wěn)定性實驗測試。
2回轉(zhuǎn)系統(tǒng)的組成和原理
80t汽車起重機回轉(zhuǎn)系統(tǒng)屬于開放泵控制馬達回路。圖1顯示系統(tǒng)由主電路和控制電路組成。對壓力補償閥4使用組合方向控制閥5的主電路,消除了外部負載對系統(tǒng)的影響,使流進電機10是開放成正比閥5。閥9具有緩沖和填充油的功能。泵18提供了一個穩(wěn)定的控制壓力3MPa控制回路,整個控制回路電子優(yōu)先閥門控制電路。蓄電池12可以消除補油壓力瞬時脈動 [1-2]。圖1
圖1。汽車起重機回轉(zhuǎn)液壓系統(tǒng)
回轉(zhuǎn)系統(tǒng)的工作原理如下:
1)旋轉(zhuǎn)時,主控制閥13不發(fā)電上,回轉(zhuǎn)機構(gòu)鎖緊,和旋轉(zhuǎn)電機10不工作。
2)當閥13通電,系統(tǒng)控制電路連接到壓力油。第一,油經(jīng)制動控制閥15,打開制動11,回轉(zhuǎn)剎車解除。然后,如果回油控制閥Y5,Y6是同時通電換向控制閥6沒有電,回轉(zhuǎn)系統(tǒng)是一個自調(diào)整狀態(tài)。如果換向閥Y3是5通閥連接到左,而閥Y6通連接回油閥8,電機10的主回路連接,然后實現(xiàn)旋轉(zhuǎn)平臺旋轉(zhuǎn)。如果閥Y4、Y5有權(quán)限的同時,將旋轉(zhuǎn)平臺逆轉(zhuǎn)。
3)當操作裝置需要停止轉(zhuǎn)動時,這閥5處于中間狀態(tài),閥8關(guān)閉,并電機10的電源被切斷。同時制動控制閥15失去權(quán)限,制動開始?;剞D(zhuǎn)機構(gòu)的慣性力被緩沖器填充閥制動,最后裝置停止。
3建立回轉(zhuǎn)系統(tǒng)的AMESIM模型
根據(jù)組成及工作原理80t汽車起重機回轉(zhuǎn)系統(tǒng),建立仿真基于AMESim模型如圖2所示。該模型由液壓,信號,控制,機械和動力總成。在建模的過程中,一些液壓元件是等價的,并簡化了一定模型。更換液壓控制閥和制動的電氣控制模型,忽略了控制油路和通過組合電磁閥替代方向控制閥該模型的主要參數(shù)見表1。
泵容量 48
電機容量 28
電機軸等效轉(zhuǎn)動慣量 0.0012
壓力安全閥 23
緩沖補油閥壓力 18
發(fā)動機轉(zhuǎn)速 850~2200
方向控制閥的額定流量 120
額定流量的回油閥 120
制動力矩 250
減速器傳動比 105.7
4仿真和實驗結(jié)果分析
起重機的回轉(zhuǎn)過程中,轉(zhuǎn)動慣量和對回轉(zhuǎn)機構(gòu)的摩擦阻力矩的變化隨著重配置,舉重,繁榮角度和臂長,同時,轉(zhuǎn)換靜態(tài)和動態(tài)、變速轉(zhuǎn)動時將也帶來了他們[ 3-4 ]效果顯著。據(jù)在實際條件下,模擬模型4.75t的重量,條件無負載,5m回轉(zhuǎn)半徑旋轉(zhuǎn)控制手柄推快,分析該方向控制閥的進口壓力。仿真結(jié)果顯示在圖3和實驗結(jié)果如圖4所示。比較圖4發(fā)現(xiàn)
仿真和實驗的趨勢是一致的。兩旋轉(zhuǎn)任務(wù)周期期間,系統(tǒng)穩(wěn)定壓力和啟動壓力沖擊6.2mpa。因此,模型的建立是正確的。
汽車起重機回轉(zhuǎn)液壓系統(tǒng)的AMESim模型
圖為方向控制閥的入口壓力的仿真結(jié)果
圖為方向控制閥的入口壓力的實驗結(jié)果
通過分析,增加液壓系統(tǒng)阻尼比可以降低啟動壓力的影響,回轉(zhuǎn)機構(gòu)[ 5 ]具有大慣性。各種速度控制回路比較,旁通回路具有增加系統(tǒng)阻尼比[ 6 ]特別的效果。當原系統(tǒng)旋轉(zhuǎn),方向控制閥和相應(yīng)的回油閥通電構(gòu)成回油回路,形成循環(huán)回路如果另一個回油閥打開。相同的參數(shù)設(shè)置下的系統(tǒng),原來的系統(tǒng)回路和旁通回路有不同的結(jié)果。圖5顯示的結(jié)果兩個循環(huán)馬達進口壓力。表示輸入相同的信號方向控制閥,與原系統(tǒng)相比,該系統(tǒng)的循環(huán)開始滯后,該旁路回路壓力降低2.5MPa,0.46s。
原系統(tǒng)的壓力和循環(huán)的仿真結(jié)果環(huán)
當回轉(zhuǎn)機構(gòu)停止轉(zhuǎn)動,這實驗結(jié)果示于圖6。該圖顯示了起重機,猛地一震,需要趨于10S穩(wěn)定,整個系統(tǒng)的穩(wěn)定性很差。這是因為方向控制閥在卸荷位置時間和制動關(guān)閉過早,然后兩端該電機沒有壓力脈動和液壓系統(tǒng)無法消耗掉平臺的動能。
圖為制動控制壓力和電機的壓力端口的實驗結(jié)果
基于上述分析結(jié)果,優(yōu)化回轉(zhuǎn)系統(tǒng)參數(shù)下的仿真模型,提出了改進,如圖7所示,修改原有系統(tǒng)的控制策略,增加了旁路回路和延遲剎車,控制信號外,安裝了單向節(jié)流閥回油口
該制動器。測試系統(tǒng)的改進,其結(jié)果示于圖8。如圖所示,改進后的系統(tǒng)比原系統(tǒng)的沖擊壓力下2MPa和剎車關(guān)閉延遲時停止旋轉(zhuǎn)。液壓系統(tǒng)吸收平臺的動能,因此整個系統(tǒng)的運動穩(wěn)定。
改進后的系統(tǒng)的實驗結(jié)果
5總結(jié)
(1)建立了基于AMESim的80t汽車起重機回轉(zhuǎn)系統(tǒng)的仿真模型,并通過實驗測試模型。然后,模擬和分析在啟動和停止條件的回轉(zhuǎn)系統(tǒng)的動態(tài)特性。
(2)旁路回路可以減小回轉(zhuǎn)系統(tǒng)的慣性阻力矩和摩擦力矩大的啟動壓力的影響。它可有效的提高啟動回轉(zhuǎn)系統(tǒng)的穩(wěn)定性。
(3)增加時間控制信號和安裝單向節(jié)流閥液壓制動回路可以保證制動延遲時停止旋轉(zhuǎn)。因此,對回轉(zhuǎn)機構(gòu)的動能可以由液壓系統(tǒng)充分吸收,和回轉(zhuǎn)制動系統(tǒng)的穩(wěn)定性可以得到改善。根據(jù)仿真分析結(jié)果,提高實車回轉(zhuǎn)系統(tǒng)和測試系統(tǒng)。結(jié)果表明,回轉(zhuǎn)系統(tǒng)的工作穩(wěn)定性明顯增強。
參考文獻
[1] IMAGINE SA: Hydraulic Component Design Library version 8.0A
[S], June 2008.
[2] IMAGINE SA: AMESim version 8.0A [S], June 2008.
[3] GAO Shunde, ZHANG Minghui, WANG Xin, LI Xihong.
Simulation research of slewing hydraulic system on large crawler
cranes [J]. Construction Machinery, 2007(7): 47-51.
[4] ZHANG Minghui. Simulation research of slewing hydraulic system
on large crawler crane [D].Dalin University of Technology, 2006.
[5] YUE Liming. Dynamic analysis and design of hydraulic circuit for
rotating mechanism in hydraulic crane [J]. Construction Machinery
and Equipment, 1991(10):27-30.
[6] HUANG Xiaojiang,BI Long. Dynamic Characteristics Simulation
of Throttling Speed Control Circuit on Hydraulic System [J].
Machine Tool & Hydraulics, 2006(12):214-218.
Dynamic Simulation and Experimental Study of Slewing System on 80T Crane CHEN Jinshi1,LIU Xinhui1,2,Zhang Cui1,DONG Quan3,ZHAO Feng1(1.College of Mechanical Science and Engineering,Jilin University,Changchun,130025 2.State Key Laboratory of Automobile Dynamics Simulation,Jilin University,Changchun,130025,China 3.Xuzhou Heavy Machinery Co.,Ltd.Xuzhou,221002,China)C AbstractThis paper models and studies the dynamic characteristics of slewing system of 80T truck crane.Analyzing the composition and working principle of the hydraulic system,and building the model of slewing system based on AMESim,then testing the model.And the simulation analysis results indicate the factors which affect the dynamic characteristics of the system and propose the measures to improve them.The results show that adopting the bypass circuit makes the shock pressure reduced 18 percent when the system operates;besides,changing the system s control strategy and installing one-way throttle enhance the stability of braking obviously.Keywords:truck crane slewing system dynamic simulation pressure shock I.INTRODUCTION Recently,as the country investment of ports,subway,highways and so on expanding rapidly,and power station,smelting equipment,bridge engineering and high-rise building increasing year by year,the crane industry has entered a rapid development period.Slewing system is an important part of truck crane.However,the slewing mechanism s moment of inertia and frictional resisting torque between mechanisms is large,which result in great impact on hydraulic system when the slewing system starts or stops and make the rotary stability badly.Therefore,analyzing the dynamic performance of slewing system is very important.Analyzing and designing the dynamic characteristics of hydraulic systems,the traditional methods of relying on experience and analogy haven t satisfied the requirements of high-performance systems.This paper builds the simulation model of slewing system based on AMESim,and studies the dynamic stability through simulation analysis and experimental testing.II.COMPOSITION AND PRINCIPLE OF SLEWING SYSTEM The slewing system of 80T truck crane belongs to open loop of pump-controlled motor.Fig.1 shows the system is composed of the main circuit and control circuit.The combination using of the pressure compensation valve 4 and the direction control valve 5 of the primary circuit eliminates the impact of external load on the system,so that the flow into the motor 10 is directly proportional to the opening of the valve 5.The valve 9 has buffer and filling oil functions.Pump 18 provides a stable control pressure 3Mpa to the control loop and the whole control loop is electronic priority valve control circuit.The accumulator 12 can eliminate pressure pulsation and fill oil transiently 1-2.1.pump 2.safety valve 3.shuttle valve 4.pressure compensation valve 5.direction control valve 6.reversing control valve 7.oil return control valve 8.oil return valve 9.oil fill valve 10.rotary motor 11.brake 12.accumulator 13.rotary main control valve 14.priority relief valve 15.brake control valve pression release valve 17.relief valve 18.pilot control pump 19.tank Figure 1.Hydraulic slewing system of truck crane Slewing system works as follows:1)When the rotary main-control valve 13 does not power up,the slewing mechanism is locked,and the rotary motor 10 does not work.2)When the valve 13 is electrified,the system control circuit connects to pressure oil.First,the oil through the brake control valve 15 and open the brake 11,the slewing brake is relieved.Then,if the oil return control valve Y5,Y6 was electrified simultaneously and the reversing control valve 6 did not power up,the slewing system is in a self-regulating state.If the reversing control valve Y3 was electrified and the valve 5 connected to the left,while the 2011 Third International Conference on Measuring Technology and Mechatronics Automation978-0-7695-4296-6/11$26.00 2011 IEEEDOI 10.1109/ICMTMA.2011.2821129valve Y6 was electrified and connected to the oil return valve 8,the main loop of the motor 10 is connected,and then realizing the rotary platform turning.If the valve Y4 and Y5 had power simultaneously,the rotary platform will turn reversed.3)When the operating device needs to stop turning,the valve 5 is in the middle state and the valve 8 is closed,and the power of the motor 10 is cut off.Meanwhile the brake control valve 15 loses of power and the brake starts to work.The inertia force of the slewing mechanism is absorbed by the buffer-fill valve and the brake,and the device stops finally.III.THE ESTABLISH OF SLEWING SYSTEM AMESIM MODEL According to the composition and working principle of 80T truck crane slewing system,establish the simulation model based on AMESim shown in Fig.2.The model consists of Hydraulic,Signal,Control,Mechanical and Powertrain.In the modeling process,some hydraulic components were equivalent,and the model was simplified necessarily.Such as replace the hydraulic control valves and the brake by electricity control model,neglect the control oil circuit and replace the direction control valve by a combination solenoid valve.The main parameters of the model are shown in table 1.Figure 2.AMESim model of truck crane slewing system TABLE I.MAIN PARAMETERS OF THE SLEWING SYSTEM MODEL pump capacity/(mlr-1)motor capacity/(mlr-1)equivalent moment of inertia of motor shaft/(kgm2)pressure of relief valve/MPa pressure of buffer fill valve/MPa rotational speed of engine/?r?min-1?rated flow of direction control valve/(L/min)rated flow of oil return valve/(L/min)torque of brake/Nm reducer transmission ratio teeth number of gear/module of gear/mm teeth number of tooth ring/module of tooth ring/mm 48 28 0.0012 23 18 850?2200 120 120 250 105.7 14/12 149/12 IV.SIMULATION AND EXPERIMENT RESULTS ANALYSIS During the crane slewing process,moment of inertia and frictional resistance torque of the slewing mechanism change along with the weight configuration,lifting weights,boom angle and boom length,meanwhile,transforming between static and dynamic and the speed changing when turning will also bring about significant effect to them 3-4.According to the actual conditions,simulate the model under the conditions of the weight 4.75t,no load,rotation radius of 5m and rotary controlling handle pushed quickly,and analyze the inlet pressure of the direction control valve.The simulation result is shown in Fig.3 and the experiment result is shown in Fig.4.Comparing Fig.3 and Fig.4 find that the simulation and the experimental trends are consistent.During the two rotating duty circle,the stable system pressure are 6.2Mpa and starting pressure shock are 10.8Mpa.Therefore,the model establish is correct.?Figure 3.Simulation result of inlet pressure of direction control valve Figure 4.Experimental result of inlet pressure of direction control valve 1130Through analysis,increasing the damping ratio of hydraulic system can reduce the starting pressure impact of the slewing mechanism which has large inertia 5.Comparison of various speed control loop,bypass loop has particular effect on increasing system damping ratio 6.When the original system rotates,the direction control valve and the corresponding oil return valve electrified constitutes a return oil circuit,which forms the bypass loop if another oil return valve is open.Under the same parameter settings of the system,the original system loop and the bypass loop have different simulation result.Fig.5 shows the results of motor inlet pressure of both loops.And the Fig.represents that input the same signal to direction control valve,comparing with the original system loop,the system pressure of the bypass loop reduces 2.5Mpa and has 0.46s hysteresis at the beginning.Figure 5.Simulation results of system pressure of the original and bypass loop When the slewing mechanism stops turning,the experimental results are shown in Fig.6.The figure presents that the crane shakes fiercely and needs 10s to tend stably and the whole system s stability is very poor.This is because the direction control valve is in the unloading position at this time and the brake shuts down prematurely,then both ends of the motor have not pressure fluctuation and the hydraulic system can t consume the platform s kinetic energy.Figure 6.Experimental results of brake control pressure and both ports of motor s pressure Figure 7.Improvements of the system Based on the above analysis results,optimize the parameters of the slewing system under the simulation model and put forward the improvements as shown in Fig.7,which modifies the original system s control strategy,adds the bypass loop and delays the control signal of the brake,besides,installs one-way throttle valve to the oil return port of the brake.Test the improved system,and the results are shown in Fig.8.As shown in the figure,the shock pressure of improved system is 2Mpa lower than the original system and the brake shuts down delay when rotation stops.The hydraulic system absorbs the kinetic energy of the platform,so the whole system motion stably.Figure 8.Experimental results of the improved system V.CONCLUSION (1)Establish the simulation model of the 80T truck crane slewing system based on AMESim,and test the model through experiments.Then,simulate and analyze the dynamic characteristics of the slewing system under the starting and stopping conditions.(2)Bypass loop can reduce the starting pressure impact of the slewing system which has large moment of inertia and frictional resistance torque.It can improve the starting stability of the slewing system effectively.1131(3)Increasing the time control signal and install the one-way throttle valve to the hydraulic brake loop can ensure braking delay when rotation stops.Therefore,the kinetic energy of the slewing mechanism can be absorbed by hydraulic system sufficiently,and the brake stability of the slewing system can be improved.According to the simulation and analysis results,improve the real vehicle slewing system and test the system.And the results show that the working stability of the slewing system is enhanced evidently.ACKNOWLEDGE This work is partly supported by the National 863 Project(2007AA04Z208).REFERENCES 1 IMAGINE SA:Hydraulic Component Design Library version 8.0A S,June 2008.2 IMAGINE SA:AMESim version 8.0A S,June 2008.3 GAO Shunde,ZHANG Minghui,WANG Xin,LI Xihong.Simulation research of slewing hydraulic system on large crawler cranes J.Construction Machinery,2007(7):47-51.4 ZHANG Minghui.Simulation research of slewing hydraulic system on large crawler crane D.Dalin University of Technology,2006.5 YUE Liming.Dynamic analysis and design of hydraulic circuit for rotating mechanism in hydraulic crane J.Construction Machinery and Equipment,1991(10):27-30.6 HUANG Xiaojiang,BI Long.Dynamic Characteristics Simulation of Throttling Speed Control Circuit on Hydraulic System J.Machine Tool&Hydraulics,2006(12):214-218.1132
收藏