自動(dòng)茶葉包裝機(jī)設(shè)計(jì)【含CAD圖紙+文檔】
資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請(qǐng)放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
Research and Development of Automatic Control System on Material Split Packing and Packaging Integrated Machine Kai Yang1, a, Zhongshen Li1, b and Lei Zhang1, c 1College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, 361021, China , , Keywords: Automatic Control System, Split Packing, Packaging Machine, LPC2478, C/OS-II. Abstract. In order to meet the high speed, high precision, high reliability of the packaging machine, a novel control system is provided. In the hardware, the main circuits consisted of main processor module, memory module, temperature measurement and control module, input signal detection module, material split packing module, output driver module, human-machine interface module, system monitor module, power module and JTAG debug module, etc. In the software, the multi-tasking operating system C/OS-II and the graphical user interface C/GUI were successfully transplanted into LPC2478. Then an experimental platform was established. And many control tasks, including automatic measurement, making bags, loading, transferring, pumping vacuum, sealing and data display, were automatically and continuously executed on the platform. Finally the results show: the machine can package 30 packets (5 g per packet) in a minute; the packaging errors 0.2 g; the packaging qualified rates 93%. In conclusion, the system performance is good. Introduction With peoples living standards improving, higher requirements on material packaging are put forward. Some materials, such as food, medicines, not only require precise split packing, but also need vacuum packaging 1, 2. However, in the traditional mode of split packing and packaging, the work is very heavy, materials are easily contaminated, the packaging quality is not good, and the packaging efficiency is also low 3-5. To realize the integration of the automatic split packing and packaging and to meet the high speed, high precision and high reliability, a novel control system is urgently needed. Therefore, research and development of control system on the split packing and packaging integrated machine is of great significance. And an automatic control system of that machine based on ARM is provided in this paper. The overall design of the control system According to market demands and the split packing and packaging features of small granular materials, packaging processes, containing automatic measurement, making bags, pumping vacuum and sealing, are researched. The control system structure is designed as shown in Fig. 1. When the split packing and packaging machine is running, materials are precisely weighed by material split packing module, and then they are loaded into a ready made inner bag. After that, the bag is put into an outer bag and the whole bag is transferred into a vacuum chamber by manipulators,where air in the bag would be evacuated by air pump. Finally, the whole bag is sealed. During those processes, many solenoid valves are used to control various actuators. And, many sensors are used to detect the weight of the materials and location information.Thus, a complete closed-loop system is formed, and the system stability is improved. Hardware Design of the control system The hardware circuits are composed of main processor module, memory module, temperature measurement and control module, input signal detection module, material split packing module, Applied Mechanics and Materials Vol. 533 (2014) pp 294-297Online available since 2014/Feb/27 at (2014) Trans Tech Publications, Switzerlanddoi:10.4028/ rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,. (ID: 61.175.244.117, University of California, San Diego, La Jolla, United States of America-18/05/14,08:44:26) output driver module, human machine interface module, system monitor module, power module and JTAG debug module, etc. Some of them are selected to introduce as follows. Main processor module. NXP Semiconductors designed the LPC2478 microcontroller, powered by the ARM7TDMI-S core, to be a highly integrated microcontroller for a wide range of applications that require advanced communications and high quality graphic displays. The LPC2478 can execute both 32-bit ARM and 16-bit Thumb instructions at the maximum 72 MHz system clock rate 6. The LPC2478 inputs signals from photoelectric sensors, magnetic switches, position sensors and infrared sensors. And control signals are output to control electromotors, solenoid valves, LCD, LED and buzzers, etc. Temperature measurement and control module. In this machine, molding inner bag and sealing outer bag are both operated in high temperature. The temperature is measured by K-type thermocouple and controlled by LPC2478. Circuits are shown in Fig. 2. The thermocouple reference function is given as follows: ()()2190-126.96869000niatiiEKta e=+ (1) And its inverse function is: ( )900niiitD E= (2) Where 90t () is the centigrade degree of the thermocouple, and E (mV) is the corresponding electromotive force, 0a, 1a, iK and iDare conversion coefficients 7. The heating resistor temperature is detected by thermocouples mounted thereon and amplified by operational amplifier OP07. Then the signals are converted from analog to digital. In accordance with the temperature control rules in LPC2478, the processed results are output to ULN2003 to control the start of the heating solid state relay YJGX-3FA. TH1+TH1-ADC123_IN10V5C15104R16100R145.1kR115.6kR10100W1200R13100R710MV5R81kR91k6-2+374V-V+U8OP07V5V-5TH1+R122kR15 100kTH1-Thermocouple 1+C1610uC18104D31N414812CN2HEADER 2+C1710uD01D12D23D34D45D56D67GND8RC9D610D511D412D313D214D115D016U14ULN2003YOUT8OUT8YOUT9OUT9V33YOUT8L220Y8Heating resistor 112-3+4SSR4YJGX-3FAR59200OUT8.9OUT8.9 Fig. 1 Control system structure Fig. 2 Temperature measurement and control circuits Material split packing module. The small granular materials are transferred into weighing hoppers with vibrating feeder, where their weight is detected by 3 Kg weighing sensors. Then the signals are converted by A/D converter CS5532. After that, the converted data is transferred to LPC2478 through SPI bus. The weighing module circuits are shown in Fig. 3. As a result of the differences between current weight and set weight and the change rates of them, LPC2478 outputs different frequency to control vibrating feeders. R274.7KV2.5V33C24104JC28104JC26104JL2100uHL3100uHC23104JC27104JC25104JC35223JC36104C37104R284.7KR294.7KR304.7KV33CY34.9152MPS1+PS1-PS2+PS2-12345678910CN4HEADER 10PS1+PS1-PS2+PS2-V2.5C30104JC34104JC32104JL4100uHL5100uHC29104JC33104JC31104JWeighing sensor 1Weighing sensor 2SPI_SSELSPI_SCKSPI_MISOSPI_MOSIM1+M1-M2-M2+V-2.5V-2.5SPI_SSELSPI_SCKSPI_MISOSPI_MOSISPI_SSELSPI_MOSISPI_MISOSPI_SCKAIN1+1AIN1-2AIN2-19AIN2+20C13C24VA+5VA-6A07A18OSC29OSC110SCLK11SDO12SDI13CS14VD+15DGND16VREF-17VREF+18U10CS5532BSZ SPI_SSELOUT25.28SPI_MOSISPI_MISOSPI_SCKsheet4weight.SchDocOUT0.24sheet5Youtput.SchDocsheet6power.SchDocADC123_IN10.11sheet3temperature.SchDocIN10.16IN1.7sheet2Xinput.SchDocOUT25.28SPI_SSELADC123_IN10.11IN10.16OUT0.24IN1.7LCD_R0.4LCD_G0.5LCD_B0.4LCD_CKLCD_FPLCD_ENLCD_LPTP_DITP_CKTP_DOTP_CSTP_IRQnDISPOffSPI_MOSISPI_MISOSPI_SCKsheet1main.SchDocLCD_R0.4LCD_G0.5LCD_B0.4LCD_CKLCD_FPLCD_ENLCD_LPnDISPOffTP_IRQTP_CSTP_CKTP_DITP_DOsheet7LCD.SchDoc Fig. 3 Weighing module circuits Fig. 4 Modules cascade chart ARM human-machine interface module input signal detection module material split packing module temperature measurement and control module and control module output driver module system monitor module memory module power module JTAG debug module Applied Mechanics and Materials Vol. 533295 Module cascade. Most of signals are connected through direct coupling cascade, but signals among external sensors, actuators and module circuits are connected by photoelectric isolation coupling cascade to improve the stability and security of the control system. All module schematics and the overall schematic of the control system are drawn through professional drawing software. And modules cascade is shown in Fig. 4. Software Design of the control system The real-time multi-tasking operating system C/OS-II is introduced to design the control system software which is based on top-down structure model and modular design. At first, the system C/OS-II and the graphical user interface C/GUIare successfully transplanted into LPC2478 and well initialized 8, 9. Then the main program starts to create tasks. The control tasks are mainly made up of automatic measurement, making bags, loading, pumping vacuum, sealing and data display, etc. They are conducted by LCD program, touch screen program, the split packing program, temperature control program, packaging control program, the general input and output program, etc. Some of them are selected to introduce as follows. LCD program. The LPC2478 has its own LCD controller. The TFT true color LCD is used to display packaging information, such as packaging parameter adjustment interface, manual operation interface, material real-time weight, molding inner bag temperature, sealing outer bag temperature and fault message windows. The graphical user interface C/GUI runs in the system C/OS-II, and the human-machine interface is beautiful. The LCD control flow is shown in Fig. 5. Packaging control program. In the light of packaging control requirements, there are a lot of input and output signals to process. Input data, comprising various switching signals and sensor outputs, are used to detect in which packaging process the machine runs. Then corresponding control signals would be generated to open solenoid valve or to start electromotor by LPC2478. Finally materials will be packaged into packets. The packaging process flow is shown in Fig. 6. Fig. 5 LCD control flow chart Fig. 6 Packaging process flow chart Test experiments The hardware and the software were integrated into an automatic control system prototype as shown in Fig. 7(a). An experimental platform of the split packing and packaging integrated machine was established as shown in Fig. 7(b). In the main interface, the control system can display two groups of material real-time weight, molding inner bag temperature, sealing outer bag temperature and the settings of them. Users can adjust the settings through + - buttons. Besides, there are manual operation, packaging parameter adjustment, date and time display, etc. In the test experiments, packaging begin put inner bag into outer bag transfer inner bag outer bag ready? open outer bag pusher ready? chamber ready? rotate vacuum chamber put whole bag into chamber vacuum pumping seal the whole bag end YNYNYNinitialize coordinate, size NLCD begin draw pixel color under a width? calculate bitmap addresses under a height? get memory addresses end YYN296Modern Tendencies in Engineering Sciences packaging weight and amount were measured in the settings of 5 g, 7 g and 15 g respectively in a minute. And each packet was weighed as shown in Fig. 7(c). Then, the material weight of all packets was calculated and recorded. Measurement points and weighing results were shown in Fig. 7(d). The long-term statistical results show: the machine can package 30 packets (5 g per packet) in a minute; the packaging errors 0.2 g; the packaging qualified rates 93%. 0510152025300246810121416Weight (g)Measurement point (a) (b) (c) (d) Fig.7 (a) Circuit board of the automatic control system, (b) experimental platform, (c) weighing packaged materials, (d) measurement point and weighing result chart Conclusions In compliance with the split packing and packaging requirements of small granular materials, an automatic control system is researched and developped. The main conclusions are: a) the hardware and the software of the control system are designed, the real-time multi-tasking operating system C/OS-II and the graphical user interface C/GUI are researched and successfully transplanted into LPC2478. b) an experimental platform of the split packing and packaging integrated machine is established. Many control tasks are automatically and continuously implemented on the platform. c) the inner bag packaging and the outer bag packaging are completed by the machine. And the appearance of the packaged products is consistent. The performance of the whole control system is good. Acknowledgements This work was supported by the Fundamental Research Funds for the Central Universities (JB-ZR1107) and the Jimei Science & Technology Plan Project of Xiamen, China (20137C01). References 1 H.K. Tonshoff, C. Soehner and G. Isensee: Robotics and Computer-Integrated Manufacturing Vol. 13 (1997), p. 1 - 7 2 M.K. Shivhare, D.P. Rao and N. Kaistha: Chemical Engineering and Processing: Process Intensification Vol. 71 (2013), p. 115 - 124 3 J. Boersma and J. Molenaar: Siam Review Vol. 37 (1995), p. 406 - 422 4 R.M. Wu, D. Liu, J.H. Yu and Y.Z. Xiao: Advanced Materials Research Vol. 80-81 (2011), p. 1315 - 1319 5 Z.Y. Peng, H.Z. Li and J.M. Liu: Advanced Materials Research Vol. 320 (2011), p. 487 - 491 6 Information on http:/ 7 T.Y. Wang, C.Q. Hua: Microcomputer Information Vol. 19 (2003), p. 62 63 (In Chinese) 8 J.J. Labrosse: MicroC /OS - The Real-Time kernel, Second Edition (CMP Books, USA 2002). 9 B.B. Guan, L.G Tian, Z.Z. Cheng, Z.L. Chen and X.L. Wu: Applied Mechanics and Materials Vol. 303 - 306 (2013), p. 1485 1488 Applied Mechanics and Materials Vol. 533297Modern Tendencies in Engineering Sciences 10.4028/ Research and Development of Automatic Control System on Material Split Packing and PackagingIntegrated Machine 10.4028/
理工學(xué)院
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
姓 名: xxx
學(xué) 號(hào): xxxxx
外文出處:Applied Mechanics and Materials
Vol.533 (2014) pp 294-297
附 件: 1.外文資料翻譯譯文;2.外文原文。
指導(dǎo)教師評(píng)語:
簽名:
年 月 日
研究和自動(dòng)化控制系統(tǒng)的材料拆分包裝開發(fā)和包裝一體機(jī)
楊凱、李忠申和張磊
機(jī)械工程與自動(dòng)化學(xué)院、華僑大學(xué),廈門,361021,中國 yangkai1@hqu.edu.cn,lzscyw@hqu.edu.cn,zllxj@vip.163.com
關(guān)鍵詞:自動(dòng)控制系統(tǒng)、分包裝、包裝機(jī)、LPC2478、μC/OS-II。
文摘
為了滿足高速度、高精度、高可靠性的包裝機(jī),提供了一種新穎的控制系統(tǒng)。在硬件方面, 主電路由主處理器模塊、存儲(chǔ)器模塊、溫度測(cè)量和控制模塊、輸入信號(hào)檢測(cè)模塊、材料拆分包裝模塊,輸出驅(qū)動(dòng)模塊、人機(jī)界面模塊,系統(tǒng)監(jiān)控模塊,電源模塊,通過JTAG調(diào)試模塊等組成。在軟件方面,多任務(wù)操作系統(tǒng)μC/OS-II和圖形用戶界面μC/GUI被成功移植到LPC2478。然后建立了一個(gè)實(shí)驗(yàn)平臺(tái)。另外還有許多控制任務(wù),包括自動(dòng)計(jì)量、制袋、加載、轉(zhuǎn)讓、抽真空、封口、數(shù)據(jù)顯示、自動(dòng)并持續(xù)地在平臺(tái)上執(zhí)行。最后結(jié)果顯示:機(jī)器在一分鐘內(nèi)可以包30包(每5 g),包裝誤差≤0.2 g;包裝合格率≥93%??傊?系統(tǒng)性能良好。
介紹
隨著人民生活水平的提高,人們對(duì)材料包裝提出了更高的要求。一些材料,如食品、藥品包裝不僅需要精確的分割,但還需要真空包裝。然而,在傳統(tǒng)的分割包裝和包裝方式上,工作很重,材料很容易污染,包裝質(zhì)量不好,包裝效率也低。為了實(shí)現(xiàn)集成的自動(dòng)拆分包裝和包裝,以滿足高速度、高精度和高可靠性,迫切需要新型控制系統(tǒng)。因此,研究和開發(fā)拆分包裝和包裝上的控制系統(tǒng)集成機(jī)器具有十分重要的意義。那臺(tái)機(jī)器的自動(dòng)控制系統(tǒng)提供基于ARM。
控制系統(tǒng)的總體設(shè)計(jì)
根據(jù)市場(chǎng)需求和小顆粒材料的拆分包裝和包裝特點(diǎn),包裝流程,包含自動(dòng)測(cè)量,使袋、抽真空和密封的研究??刂葡到y(tǒng)結(jié)構(gòu)設(shè)計(jì),如圖1所示。當(dāng)拆分包裝和包裝機(jī)運(yùn)行時(shí),包裝材料由材料巧妙地被分割模塊,然后他們被放入到一個(gè)現(xiàn)成的內(nèi)袋。之后,袋放入一個(gè)外袋,整個(gè)包被操縱者轉(zhuǎn)移到一個(gè)真空室,那里的空氣袋將由氣泵疏散。最后,整個(gè)袋子被密封。在這些過程中,許多電磁閥被用來控制各種執(zhí)行機(jī)構(gòu)。還有許多傳感器用于檢測(cè)材料的重量和位置信息。因此,一個(gè)完整的閉環(huán)系統(tǒng)的形成,提高了系統(tǒng)的穩(wěn)定性。
控制系統(tǒng)的硬件設(shè)計(jì)
硬件電路由主處理器模塊、存儲(chǔ)器模塊、溫度測(cè)量和控制模塊、輸入信號(hào)檢測(cè)模塊、材料拆分包裝模塊、 輸出驅(qū)動(dòng)模塊、人機(jī)接口模塊、系統(tǒng)監(jiān)控模塊,電源模塊,通過JTAG調(diào)試模塊等構(gòu)成。其中一些人介紹如下。
主處理器模塊:由NXP半導(dǎo)體設(shè)計(jì)而成的LPC2478單片機(jī),以ARM7TDMI-S為核心,它是一個(gè)高度集成的單片機(jī),用于一個(gè)需要先進(jìn)通信和高質(zhì)量圖形顯示的廣泛的應(yīng)用程序。
溫度測(cè)量和控制模塊:在這臺(tái)機(jī)器中,成型內(nèi)袋和密封外袋都是在高溫操作。溫度由K-type熱電偶來衡量和LPC2478來控制。電路是圖2所示。熱電偶參考函數(shù)給出如下:
E= (1)
它的逆函數(shù)是: (2)
是攝氏溫度的熱電偶,,和E(mV)是相應(yīng)的電動(dòng)勢(shì),和E是轉(zhuǎn)換系數(shù)。[7]。
熱電阻的溫度通過安裝在上面的熱電偶被探測(cè)到,并放大了運(yùn)算放大器OP07。然后這個(gè)信號(hào)從模擬到數(shù)字信號(hào)轉(zhuǎn)換。按照LPC2478溫度控制規(guī)則,處理結(jié)果被輸出到ULN2003,來控制固態(tài)熱繼電器YJGX-3FA的開始。
圖1控制系統(tǒng)結(jié)構(gòu) 圖2溫度測(cè)量和控制電路
包裝材料分割模塊:小顆粒材料通過振動(dòng)給料機(jī)轉(zhuǎn)移到重儲(chǔ)料器,他們通過稱重傳感器探測(cè)到的重量是3公斤。這些信號(hào)通過A / D轉(zhuǎn)換器CS5532進(jìn)行轉(zhuǎn)換。之后,轉(zhuǎn)換后的數(shù)據(jù)通過SPI總線轉(zhuǎn)移到LPC2478。稱重模塊電路圖3所示。由于當(dāng)前的重量和設(shè)置重量之間的差異和改變利率,LPC2478控制振動(dòng)供料器所輸出的頻率不同。
圖3稱重模塊電路 圖4模塊級(jí)聯(lián)圖
模塊級(jí)聯(lián):大部分信號(hào)通過直接耦合級(jí)聯(lián)連接,但在外部傳感器、執(zhí)行器和模塊電路的信號(hào)通過光電隔離耦合級(jí)聯(lián)連接,以提高控制系統(tǒng)的穩(wěn)定和安全。所有模塊示意圖和整體控制系統(tǒng)的原理通過專業(yè)繪圖軟件被繪制。模塊級(jí)聯(lián)如圖4所示。
控制系統(tǒng)的軟件設(shè)計(jì)
實(shí)時(shí)多任務(wù)操作系統(tǒng)μC/OS-II的介紹,是為了設(shè)計(jì)基于自上而下的結(jié)構(gòu)模型和模塊化設(shè)計(jì)的控制系統(tǒng)軟件。首先,系統(tǒng)μC/OS-II和圖形用戶界面μC/GUI成功移植到LPC2478并且初始化好。然后主程序開始創(chuàng)建任務(wù)??刂迫蝿?wù)主要由自動(dòng)測(cè)量、制袋、加載、抽真空、封口和數(shù)據(jù)顯示等,它們通過液晶顯示程序,觸摸屏程序,拆分包裝程序,溫度控制程序、包裝控制程序、通用輸入和輸出程序等進(jìn)行。其中一些人介紹如下。
液晶顯示程序:LPC2478有自己的LCD控制器。TFT真彩液晶用于顯示包裝的信息,如包裝參數(shù)調(diào)整界面,手動(dòng)操作界面,實(shí)時(shí)重量,材料成型內(nèi)包溫度、密封外袋溫度和錯(cuò)誤消息窗口。圖形用戶界面μC/GUI在系統(tǒng)μC/OS-II中運(yùn)行,另外人機(jī)互交界面非常漂亮。LCD控制流程如圖5所示。
包裝控制程序:根據(jù)包裝的控制要求,有很多輸入和輸出信號(hào)的過程。輸入數(shù)據(jù)包括各種開關(guān),傳感器輸出信號(hào),用于檢測(cè)包裝機(jī)運(yùn)行過程。然后將產(chǎn)生相應(yīng)的控制信號(hào)通過LPC2478打開電磁閥或啟動(dòng)電動(dòng)機(jī)。最后的材料將被打包成包。包裝過程流程如圖6所示。
圖5液晶控制流程圖 圖6包裝過程流程圖
測(cè)試實(shí)驗(yàn)
硬件和軟件集成到一個(gè)如圖7(a)所示的自動(dòng)控制系統(tǒng)原型。一個(gè)拆分包裝和包裝集成的實(shí)驗(yàn)平臺(tái)被建立,如圖7所示(b)。在主界面,控制系統(tǒng)可以顯示兩組材料的實(shí)時(shí)重量,成型溫度內(nèi)袋,密封外袋溫度和它們的設(shè)置。用戶可以通過“+ -”按鈕調(diào)整設(shè)置。此外,這里有手工操作、包裝參數(shù)調(diào)整,日期和時(shí)間顯示等。在測(cè)試實(shí)驗(yàn)中,一分鐘里包裝重量和數(shù)量被測(cè)量的設(shè)置分別是5克,7 g和15 g。每個(gè)包被稱重如圖7(c)所示。然后,所有袋的材料重量被計(jì)算和記錄。測(cè)量點(diǎn)和稱重結(jié)果如圖7(d)所示。長期的統(tǒng)計(jì)結(jié)果顯示:機(jī)器可以在一分鐘內(nèi)包30包(每包5 g),包裝誤差≤0.2 g;包裝合格率≥93%。
(a) (b)
(c) (d)
圖7(a)電路板的自動(dòng)控制系統(tǒng),(b)實(shí)驗(yàn)平臺(tái),(c)包裝材料稱重,(d)測(cè)量點(diǎn)、稱重結(jié)果圖表
結(jié)論
按照小顆粒材料的拆分包裝和包裝要求,一個(gè)自動(dòng)控制系統(tǒng)被研究和開發(fā)。主要結(jié)論有:a)控制系統(tǒng)的硬件和軟件被設(shè)計(jì),研究了實(shí)時(shí)多任務(wù)操作系統(tǒng)μC/OS-II和圖形用戶界面μC/GUI,并成功地移植到LPC2478。b)拆分包裝和包裝一體機(jī)的實(shí)驗(yàn)平臺(tái)被建立。許多控制任務(wù)是自動(dòng)的,并不斷在平臺(tái)上實(shí)現(xiàn)。c)包裝內(nèi)袋和外袋包裝在機(jī)器上被完成。包裝產(chǎn)品的外觀是一致的。整個(gè)控制系統(tǒng)的性能很好。
感謝
這項(xiàng)工作得到了中央大學(xué)基礎(chǔ)研究基金(JB-ZR1107)和廈門集美科技計(jì)劃項(xiàng)目的支持,中國(20137C01)。
參考文獻(xiàn)
[1] H.K.Tonshoff,C.Soehner and G.Isensee: Robotics and Computer-Integrated Manufacturing Vol.13 (1997),p.1-7
[2] M.K.Shivhare,D.P.Rao and N.Kaistha:Chemical Engineering and Processing: Process Intensification Vol.71 (2013),p.115-124
[3] J.Boersma and J.Molenaar:Siam Review Vol.37 (1995),p.406-422
[4] R.M.Wu,D.Liu,J.H.Yu and Y.Z.Xiao: Advanced Materials Research Vol.80-81 (2011),p.1315-1319
[5] Z.Y.Peng, H.Z.Li and J.M.Liu:Advanced Materials Research Vol.320 (2011), p.487-491
[6] Information on http://www.cn.nxp.com/documents/data_sheet/LPC2478.pdf
[7] T.Y.Wang,C.Q.Hua: Microcomputer Information Vol.19 (2003),p.62–63(In Chinese)
[8] J.J.Labrosse:MicroC/OS -Ⅱ The Real-Time kernel, Second Edition (CMP Books, USA 2002).
[9] B.B.Guan,L.G Tian,Z.Z.Cheng,Z.L.Chen and X.L.Wu:Applied Mechanics and Materials Vol.303-306 (2013),p.1485–1488
— 45 —
收藏