果實(shí)采摘機(jī)械手的設(shè)計(jì)
果實(shí)采摘機(jī)械手的設(shè)計(jì),果實(shí),采摘,機(jī)械手,設(shè)計(jì)
本科畢業(yè)論文(設(shè)計(jì))
本科畢業(yè)論文(設(shè)計(jì))
題 目
果實(shí)采摘機(jī)械手的設(shè)計(jì)與仿真
果實(shí)采摘機(jī)械手的設(shè)計(jì)與仿真
摘要:果實(shí)采摘工作具有較強(qiáng)的復(fù)雜性和較低的自動(dòng)化程度,目前國(guó)內(nèi)水果的采摘工作主要靠手工完成。21世紀(jì)是農(nóng)用機(jī)械化向智能自動(dòng)化機(jī)械過(guò)渡的關(guān)鍵時(shí)期,工業(yè)智能自動(dòng)化對(duì)現(xiàn)代農(nóng)業(yè)發(fā)展規(guī)模化、多樣化和精確化十分重要。本文針對(duì)小型柑橘進(jìn)行采摘機(jī)械手的設(shè)計(jì),實(shí)現(xiàn)果實(shí)的全程自動(dòng)化采摘。
??本文通過(guò)對(duì)果實(shí)采摘機(jī)械手的采摘環(huán)境和采摘特點(diǎn)進(jìn)行分析,提出一種六自由度小型柑橘采摘串聯(lián)機(jī)械手。通過(guò)設(shè)計(jì)3種末端執(zhí)行器機(jī)械結(jié)構(gòu),使得機(jī)械手具有多用途作用,并將機(jī)械手與相關(guān)輔助裝置相結(jié)合,實(shí)現(xiàn)整個(gè)柑橘果園采摘過(guò)程的自動(dòng)化。本論文基于SolidWorks,建立機(jī)構(gòu)的三維模型與仿真分析。根據(jù)仿真與試驗(yàn)的結(jié)果得出機(jī)械手具有良好的采摘性能。該機(jī)構(gòu)解決了人們采摘高處果實(shí)難、果實(shí)采摘工作量大和人工采摘具有一定危險(xiǎn)性等缺點(diǎn),實(shí)現(xiàn)了小型柑橘等多種果實(shí)不受物理?yè)p傷的自動(dòng)化采摘。
關(guān)鍵詞:工業(yè)機(jī)器人;果實(shí)采摘機(jī)器人;機(jī)械手;運(yùn)動(dòng)學(xué)仿真;
Design and simulation of fruit picking manipulator
Abstract: Fruit picking work is full of a strong complexity and low degree of automation. Now, the harvest of fruit is mainly done by hand in China. The 21st century is the key period for the transition from agricultural mechanization to intelligent automation machinery, and industrial intelligent automation is very important for modern agricultural to develop large-scale, diversification and precision. In this paper, the design of picking manipulator for small citrus fruit is to realize the whole process of fruit picking.
This paper analyzes the environment of picking and characteristics of the fruit picking manipulator, and puts forwards to a six-degree-of-freedom small citrus picking series manipulator. Through the design of three kinds of end executor mechanical structure, making the manipulator has the utility function, and combines the manipulator and the related aided device, realizing the automation of the whole process of citrus orchard. This paper is based on SolidWorks, which establishes the model of three-dimensional and simulation analysis of the mechanism. According to the results of simulation and experiment, the mechanical hand, we’re sure that it has good picking performance. The agency has solved the fruit, fruit picking people picking high workload and artificial picking has some shortcomings, such as risk, realizing the small citrus and other fruit automatic picking is not subject to physical damage.
Keywords: Industrial robot; Fruit picking robot; Manipulator; Kinematics simulation
III
目 錄
摘要 I
目 錄 III
第1章 緒論 1
1.1 課題研究背景及意義 1
1.2 國(guó)外研究成果及現(xiàn)狀 1
1.2.1 國(guó)外采摘機(jī)器人成果及現(xiàn)狀 1
1.2.2 國(guó)外末端執(zhí)行器研制進(jìn)展情況 3
1.3 國(guó)內(nèi)研究成果及現(xiàn)狀 4
1.4 主要研究的內(nèi)容 4
第2章 柑橘采摘機(jī)器人機(jī)械手機(jī)構(gòu)設(shè)計(jì) 5
2.1 小型柑橘的生物學(xué)特征 5
2.2 采摘機(jī)器人選型原則 6
2.3 柑橘采摘機(jī)器人機(jī)械手的選型 7
2.4 本章小結(jié) 8
第3章 柑橘采摘機(jī)器人總體結(jié)構(gòu)方案設(shè)計(jì) 9
3.1 可移動(dòng)小車(chē)底盤(pán) 10
3.2 升降梯 10
3.3 柑橘采摘機(jī)械手臂 11
3.4 柑橘采摘執(zhí)行末端 12
3.5 電控系統(tǒng) 12
3.5.1 控制系統(tǒng) 12
3.5.2 視覺(jué)系統(tǒng) 12
3.6 本章小結(jié) 13
第4章 執(zhí)行末端的設(shè)計(jì) 14
4.1 柑橘采摘末端執(zhí)行器設(shè)計(jì)的總體原則 14
4.2 設(shè)計(jì)三維軟件Solidworks簡(jiǎn)介 14
4.3 連桿機(jī)構(gòu)設(shè)計(jì)方案 14
4.4 半球式設(shè)計(jì)方案 20
4.5 半齒設(shè)計(jì)方案 21
4.5.1 齒輪傳動(dòng)的計(jì)算載荷 22
4.6 三種方案的優(yōu)缺點(diǎn)分析 24
4.7本章小結(jié) 25
第5章 柑橘采摘機(jī)械手運(yùn)動(dòng)分析 26
5.1 柑橘采摘機(jī)器人機(jī)械手運(yùn)動(dòng)學(xué)分析 26
5.1.1 運(yùn)動(dòng)學(xué)正解 27
5.1.2 反解驗(yàn)證 28
5.1.3 機(jī)械手雅可比矩陣的求解 28
5.1.4 機(jī)械手速度和加速度正解分析 29
5.2 柑橘采摘機(jī)械手零件理論分析 30
5.2.1 機(jī)械零件疲勞極限的因素 30
5.2.2 帶傳動(dòng)分析 31
5.3 本章小結(jié) 32
第6章 機(jī)械手末端執(zhí)行器有限元分析 33
6.1 連桿機(jī)構(gòu)末端執(zhí)行器模態(tài)分析 33
6.2 半球式設(shè)計(jì)末端執(zhí)行器模態(tài)分析 35
6.3 半齒設(shè)計(jì)末端執(zhí)行器模態(tài)分析 37
6.4 模態(tài)分析總分析 39
6.5 本章小結(jié) 40
第7章 總結(jié)與展望 41
參考文獻(xiàn) 42
致謝 44
附錄A 圖紙 45
附錄B 外文文獻(xiàn)及翻譯 51
V
本科畢業(yè)論文(設(shè)計(jì))
第1章 緒論
1.1 課題研究背景及意義
21世紀(jì)是農(nóng)用機(jī)械化向智能自動(dòng)化機(jī)械過(guò)渡的關(guān)鍵時(shí)期,工業(yè)智能自動(dòng)化對(duì)現(xiàn)代農(nóng)業(yè)發(fā)展規(guī)模化、多樣化和精確化具有不可磨滅的重要性。隨著農(nóng)業(yè)生產(chǎn)要求的不斷提高,許多農(nóng)作物的采摘是一項(xiàng)勞動(dòng)密集型的工作,隨著采摘季節(jié)的要求,保證采摘質(zhì)量至關(guān)重要。
采摘機(jī)器人是農(nóng)業(yè)機(jī)器人的重要一部分,可充分利用機(jī)器人的信息感知能力,通過(guò)機(jī)器視覺(jué)識(shí)別被采對(duì)象的成熟度,從而保證果實(shí)的采摘質(zhì)量[1]。采摘機(jī)器人能夠在降低采摘成本的同時(shí)提高柑橘的采摘效率,并且水果采摘機(jī)器人有很大市場(chǎng)缺口,其未來(lái)發(fā)展?jié)摿薮?。摘果機(jī)械手作為采摘機(jī)器人的核心部件,在采摘機(jī)器人的發(fā)展中起著至關(guān)重要的作用。
我國(guó)柑橘種植歷史悠久,柑橘生產(chǎn)在世界柑橘產(chǎn)業(yè)中占有舉足輕重的地位。據(jù)統(tǒng)計(jì),我國(guó)柑桔種植面積達(dá)萬(wàn)公頃,產(chǎn)量萬(wàn)噸。但是到目前為止,柑橘的采摘工作都要靠人工完成。
我國(guó)是多種水果的生產(chǎn)大國(guó),由于缺乏有效可行的果實(shí)采摘自動(dòng)化機(jī)械,從而造成果實(shí)采摘效率低下也是一個(gè)重要原因[2]。因此急需提供一種輕巧靈便的果實(shí)摘采機(jī)械手,能夠在保障人身安全的同時(shí)保護(hù)果樹(shù)、果實(shí)不受損傷。將果實(shí)采摘機(jī)械手與機(jī)器人相結(jié)合,大大提高了農(nóng)業(yè)自動(dòng)化水平,使得果實(shí)的采摘更加高效便捷。
果實(shí)采摘機(jī)械手是一種實(shí)用新型機(jī)械手,其最終目標(biāo)是,確保人身不受傷害的前提下,提高果實(shí)的采摘質(zhì)量與采摘效率[3]。通過(guò)查閱相關(guān)資料與深入的調(diào)研,市場(chǎng)上相關(guān)產(chǎn)品較少且實(shí)用性不足,因此果實(shí)采摘機(jī)械手的市場(chǎng)前景廣闊。設(shè)計(jì)一款輕巧,靈便,滿(mǎn)足使用要求的水果采摘機(jī)械手變得十分迫切且意義重大[4]。
綜上所述,該課題具有很強(qiáng)的研究探索意義。
1.2 國(guó)外研究成果及現(xiàn)狀
1.2.1 國(guó)外采摘機(jī)器人成果及現(xiàn)狀
隨著計(jì)算機(jī)和電子控制技術(shù)的飛速發(fā)展,機(jī)器人逐漸趨向自動(dòng)化、智能化,并已應(yīng)用于許多領(lǐng)域,但在農(nóng)林領(lǐng)域還沒(méi)有達(dá)到實(shí)際應(yīng)用。從 20 世紀(jì) 80 年代中期開(kāi)始,很多國(guó)家都展開(kāi)了果蔬收獲機(jī)器人方面的研究工作,涉及到的研究對(duì)象主要有甜橙、葡萄、蘋(píng)果、西紅柿、櫻桃、西紅柿、草葛、蘑菇等多種果蔬[5]。
圖1.1 日本葡萄采摘末端執(zhí)行器 圖1.2 “CITRUS” 柑橘采摘機(jī)器人
西班牙和法國(guó)的合作項(xiàng)目,“CITRUS”是比較成功的柑橘采摘機(jī)器人,如圖1.2所示。該項(xiàng)目于1988年開(kāi)始啟動(dòng),研制的柑橘采摘機(jī)器人最高能達(dá)到80%的采摘率[6]。
蘋(píng)果采摘機(jī)器人在美國(guó)、法國(guó)、日本等國(guó)已有研究,其中Johan Baete和Sven Boedrij等人研制的蘋(píng)果采摘機(jī)器人,如圖1.3所示,利用工業(yè)機(jī)器人的六自由度手臂作為機(jī)械手主體,手臂整體可在架子上進(jìn)行水平和豎直方向的移動(dòng),在果園作業(yè)時(shí),機(jī)械手由一臺(tái)拖拉機(jī)牽引 [7]。
圖1.3 蘋(píng)果采摘機(jī)器人
圖1.4 荷蘭的黃瓜采摘機(jī)器人
1.2.2 國(guó)外末端執(zhí)行器研制進(jìn)展情況
從上世紀(jì)80年代開(kāi)始,日本、荷蘭等國(guó)都曾開(kāi)發(fā)出各種果實(shí)采摘末端執(zhí)行器,取得的不少研究成果,但普遍存在采摘質(zhì)量和采摘效率偏低,機(jī)器比較笨重,通用性較差等缺點(diǎn)[8]。下面介紹了幾種國(guó)外水果采摘機(jī)器人執(zhí)行末端。
美國(guó)佛羅里達(dá)大學(xué)研制了柑橘采摘末端執(zhí)行器,如圖1.5所示。其依靠置于末端執(zhí)行器的內(nèi)部的CCD攝像機(jī)和超聲波傳感器來(lái)探測(cè)水果的位置[8]。
圖1.5 柑橘采摘末端執(zhí)行器 圖1.6 蘋(píng)果采摘末端執(zhí)行器
Johan Baeten和Sven Boedrij等人研制了蘋(píng)果采摘機(jī)器人末端執(zhí)行器,如圖1.6所示。其前端樹(shù)脂管里裝有微型攝像頭,用于獲取末端執(zhí)行器正前方蘋(píng)果圖像,真空泵提供動(dòng)力,吸盤(pán)用于吸取蘋(píng)果[8]。
1.3 國(guó)內(nèi)研究成果及現(xiàn)狀
作為一個(gè)果蔬生產(chǎn)大國(guó),中國(guó)在農(nóng)業(yè)機(jī)械自動(dòng)化方面晚起步于其他發(fā)達(dá)國(guó)家,因此加快我國(guó)的農(nóng)業(yè)現(xiàn)代化機(jī)械化進(jìn)程,是實(shí)現(xiàn)我國(guó)農(nóng)業(yè)現(xiàn)代化的必經(jīng)之路[9]。農(nóng)業(yè)機(jī)器人的發(fā)展大大推動(dòng)機(jī)械手的發(fā)展,機(jī)械手的發(fā)展將大大提高機(jī)器人的實(shí)用性和高效性。我國(guó)在農(nóng)業(yè)采摘機(jī)器人方面的研究始于20世紀(jì)90年代中期,相對(duì)于發(fā)達(dá)國(guó)家起步較晚,但不少院校、研究所都在進(jìn)行采摘機(jī)器人和智能農(nóng)業(yè)機(jī)械相關(guān)的研究[10]。東北農(nóng)林大學(xué)陸懷民開(kāi)發(fā)了林木球果采摘機(jī)器人,浙江大學(xué)對(duì)番茄采摘機(jī)器人進(jìn)行了運(yùn)動(dòng)學(xué)分析,上海交通大學(xué)對(duì)黃瓜采摘機(jī)器人進(jìn)行了研究,浙江大學(xué)對(duì)番茄采摘機(jī)器人進(jìn)行了相應(yīng)的研究。
在這之中,東北林業(yè)大學(xué)的陸懷民研制的林木球果采摘機(jī)器人已經(jīng)進(jìn)行了采摘試驗(yàn),如圖1.7所示。
圖1.7林木球果采摘機(jī)器人原理圖
1.4 主要研究的內(nèi)容
本文主要對(duì)柑橘采摘機(jī)械手進(jìn)行結(jié)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)學(xué)分析,并對(duì)一些關(guān)鍵部位進(jìn)行優(yōu)化,并從實(shí)用智能的角度對(duì)柑橘采摘機(jī)器人的末端執(zhí)行器進(jìn)行了分析和仿真,以實(shí)現(xiàn)從機(jī)械本體的角度提高小型柑橘的采摘速度和合格率。并且對(duì)柑橘的生物學(xué)特征進(jìn)行了調(diào)查與研究,對(duì)柑橘采摘機(jī)械手提出相關(guān)設(shè)計(jì)要求,使其更好的應(yīng)用于實(shí)際生活中。
第2章 柑橘采摘機(jī)器人機(jī)械手機(jī)構(gòu)設(shè)計(jì)
機(jī)械臂機(jī)構(gòu)設(shè)計(jì)又稱(chēng)機(jī)構(gòu)綜合,本章通過(guò)對(duì)小型柑橘果實(shí)生長(zhǎng)、樹(shù)與樹(shù)之間的行距、樹(shù)冠基徑、樹(shù)冠高度、栽培方法等生物學(xué)特性數(shù)據(jù)采集,分析柑橘收獲作業(yè)的特點(diǎn),作為機(jī)器人機(jī)械手機(jī)構(gòu)設(shè)計(jì)的基本出發(fā)點(diǎn)。
2.1 小型柑橘的生物學(xué)特征
小型柑橘沙糖桔,如圖2.1所示。沙塘菊果實(shí)扁圓形,單果重62~160克,頂部有瘤狀突起,蒂部凹臍,桔黃色,果壁薄,易脫落。沙塘巨樹(shù)生長(zhǎng)勢(shì)強(qiáng),樹(shù)冠中等,圓頭,根系發(fā)達(dá),枝條細(xì),稍直立,毛發(fā)粗壯,葉橢圓形,深綠色,葉稍深鋸齒,葉片較小。花又小又滿(mǎn)。它是柑橘品種之一,產(chǎn)量穩(wěn)定、高。
圖2.1 小型柑橘實(shí)物圖
通過(guò)對(duì)小型柑橘園的調(diào)查發(fā)現(xiàn),果園的行與行之間通常留出作業(yè)通道,便于果樹(shù)的管理。果園的真實(shí)場(chǎng)景如圖2.3所示。果園地面比較平整, 果園行間距一般為3.5~4.5m, 柑橘樹(shù)與樹(shù)之間留有1.2~1.8的大間隙, 柑橘樹(shù)高一般不超過(guò)3m,果體直徑為30mm~55mm,果重62-160克不等。
柑橘樹(shù)的冠形特征與果樹(shù)的修建強(qiáng)度、樹(shù)齡、與基本樹(shù)形有較大關(guān)系。近年來(lái)隨著果樹(shù)的矮化和新品種堵塞培養(yǎng),果實(shí)的可采摘性得到提高,能夠更好的適應(yīng)未來(lái)的自動(dòng)采摘模式。
柑橘的采收不同于蘋(píng)果等果實(shí)表面較硬的水果,果體表面較軟,果皮易磕碰破壞,因此采摘時(shí)要嚴(yán)格控制好采摘力度,輕拿輕放,不可采摘時(shí)生拉硬拽,否則會(huì)將柑橘果梗處與皮一同拽開(kāi),嚴(yán)重影響果實(shí)的保存。這也是采摘機(jī)械手設(shè)計(jì)時(shí)尤為注意的一點(diǎn)。
圖2.2 柑橘采摘實(shí)景 圖2.3 柑橘果園實(shí)景
2.2 采摘機(jī)器人選型原則
本論文設(shè)計(jì)的采摘機(jī)械手遵循工業(yè)機(jī)械手的相關(guān)特點(diǎn),同時(shí)也要考慮到采摘小型柑橘的特殊性。經(jīng)調(diào)查,目前工業(yè)機(jī)械手主要有:直角坐標(biāo)型機(jī)械手、圓柱坐標(biāo)型機(jī)械手、極坐標(biāo)型機(jī)械手、關(guān)節(jié)坐標(biāo)型機(jī)械手四種,如下圖2.4、2.5、2.6、2.7所示。由于農(nóng)業(yè)采摘環(huán)境的復(fù)雜性、不確定性和果實(shí)分布的隨機(jī)性本論文采用關(guān)節(jié)坐標(biāo)來(lái)解決機(jī)械臂運(yùn)動(dòng)問(wèn)題[11]。
圖2.4 直角坐標(biāo)型 圖2.5 圓柱坐標(biāo)型
圖2.6 極坐標(biāo)型 圖2.7 關(guān)節(jié)坐標(biāo)型
2.3 柑橘采摘機(jī)器人機(jī)械手的選型
通過(guò)對(duì)小型柑橘采摘應(yīng)具備的特點(diǎn)進(jìn)行查閱相關(guān)資料,柑橘采摘機(jī)器人的機(jī)械手形式最適合選擇關(guān)節(jié)坐標(biāo)型,如圖2.8所示。其具體結(jié)構(gòu)包括旋轉(zhuǎn)底座、大臂、中臂和小臂四部分。并在其底部添加了升降結(jié)構(gòu), 在垂直方向上增加了機(jī)器人的作業(yè)空間,使得果實(shí)采摘機(jī)械手動(dòng)作靈活,工作空間大、占地面積小的優(yōu)點(diǎn),更加適合柑橘的采摘作業(yè),是一種六自由度串聯(lián)關(guān)節(jié)型柑橘采摘機(jī)械手。
圖2.8 柑橘采摘機(jī)械手機(jī)構(gòu)類(lèi)型
2.4 本章小結(jié)
本章對(duì)工業(yè)機(jī)器人的幾種重要類(lèi)型進(jìn)行了優(yōu)缺點(diǎn)分析,并通過(guò)對(duì)小型柑橘的生物特性、栽培技術(shù)、采摘方式與特點(diǎn)進(jìn)行了解,最終確定出以串聯(lián)關(guān)節(jié)類(lèi)型作為柑橘采摘機(jī)器人機(jī)械手的機(jī)械臂形式。通過(guò)本章機(jī)械手的選型,明確了后續(xù)設(shè)計(jì)的主要方向與設(shè)計(jì)任務(wù),提高設(shè)計(jì)效率。
第3章 柑橘采摘機(jī)器人總體結(jié)構(gòu)方案設(shè)計(jì)
為適應(yīng)多變開(kāi)放的柑橘園地面環(huán)境,選用裝有麥克納姆輪的移動(dòng)小車(chē)作為機(jī)械手在果園內(nèi)作業(yè)的移動(dòng)平臺(tái)。麥克納姆輪移動(dòng)小車(chē)靠純電力驅(qū)動(dòng),以達(dá)到節(jié)能環(huán)保的作用,在必要時(shí)可為其配備發(fā)電機(jī)。小車(chē)上安裝有升降平臺(tái),機(jī)械手整個(gè)部分安裝在升降臺(tái)上,以提高果實(shí)采摘機(jī)械手在垂直方向的運(yùn)動(dòng)范圍。
機(jī)械手底座和關(guān)節(jié)的運(yùn)動(dòng)采用交流伺服電機(jī)作為驅(qū)動(dòng)源,并使用行星齒輪減速器進(jìn)行減速,達(dá)到提高最終輸出扭矩的效果。中臂采用氣動(dòng)馬達(dá),使其能夠達(dá)到動(dòng)作的快速響應(yīng),以及降低價(jià)格成本。小臂采用伺服電機(jī)帶同同步帶傳遞動(dòng)能,使其能夠較遠(yuǎn)距離傳遞動(dòng)能給末端[12],采摘機(jī)械手末端通過(guò)快速連接機(jī)械裝置將法蘭盤(pán)與末端執(zhí)行器固連。在末端執(zhí)行器下部連接有漏斗狀的果實(shí)收集裝置,并且漏斗狀收集裝置與柔管道相連接,采摘后的柑橘由此落下,依靠其重力勢(shì)能,通過(guò)柔性管道將柑橘傳送到收集筐中。
柑橘采摘機(jī)器人總體結(jié)構(gòu)大致可由5部分組成,如圖3.1所示,可移動(dòng)小車(chē)底盤(pán),升降梯,柑橘采摘機(jī)器人機(jī)械手,柑橘采摘執(zhí)行末端,電控系統(tǒng),視覺(jué)系統(tǒng)六部分組成。
圖3.1 采摘機(jī)器人總體結(jié)構(gòu)
3.1 可移動(dòng)小車(chē)底盤(pán)
可移動(dòng)小車(chē)底盤(pán)由四個(gè)麥克納姆輪、底板、伺服電機(jī)、供電系統(tǒng)、傳感器系統(tǒng)、水果回收藍(lán)等組成,如圖3.2所示。裝有四個(gè)麥克納姆輪的底板可控制整個(gè)移動(dòng)平臺(tái)的移動(dòng),如平臺(tái)的前進(jìn)、后退、橫移、斜行、原地360°旋轉(zhuǎn)及其組合等動(dòng)作,在伺服電機(jī)的控制下都能完美的實(shí)現(xiàn)。供電系統(tǒng)為電機(jī)源源不斷的輸送電能,實(shí)現(xiàn)連續(xù)采摘作業(yè)。傳感器系統(tǒng)能夠識(shí)別整個(gè)小車(chē)周?chē)欠裼姓系K物,使得能夠?qū)崿F(xiàn)自動(dòng)避障。底板上安裝有一個(gè)真空泵,為執(zhí)行末端提供一個(gè)持續(xù)的吸力,能夠更好的使執(zhí)行末端達(dá)到采摘效果。可移動(dòng)小車(chē)為果實(shí)采摘機(jī)器人提供了最根本的運(yùn)行條件。
圖3.2 移動(dòng)小車(chē)底盤(pán)
3.2 升降梯
升降梯的作用大大加大了機(jī)械手的可采摘范圍,如圖3.3所示,同時(shí)為機(jī)械手的采摘帶來(lái)極大的方便。同時(shí)升降梯能夠承受人的重量,在未安裝機(jī)械臂時(shí),能用來(lái)充當(dāng)一個(gè)可隨時(shí)移動(dòng)的梯子,才在上面可進(jìn)行認(rèn)為采摘,是的人工采摘更加高效,更加方便與更加安全。
圖3.3 升降梯3維模型圖
3.3 柑橘采摘機(jī)械手臂
圖3.4 柑橘采摘機(jī)械手臂
柑橘采摘機(jī)械手臂采用關(guān)節(jié)坐標(biāo)型機(jī)械臂,如圖3.4所示,使得機(jī)械手的運(yùn)動(dòng)動(dòng)作更加靈活,工作空間大、占地面積小。機(jī)械臂的最下不是一個(gè)旋轉(zhuǎn)底座,由伺服電機(jī)帶動(dòng)減速機(jī)來(lái)實(shí)現(xiàn)整個(gè)機(jī)械臂的精準(zhǔn)旋轉(zhuǎn)控制。機(jī)械臂大臂安裝旋轉(zhuǎn)底座,上通過(guò)伺服電機(jī)帶減速機(jī)來(lái)實(shí)現(xiàn)大臂的旋轉(zhuǎn)。機(jī)械臂的中臂有兩部分做成,中臂A安裝在大臂末端,由氣動(dòng)馬達(dá)帶動(dòng)實(shí)現(xiàn)繞大臂末端上下運(yùn)轉(zhuǎn),中臂B安裝在中臂A末端,由氣動(dòng)馬達(dá)帶動(dòng)實(shí)現(xiàn)繞中臂A末端左右360°旋轉(zhuǎn)。小臂安裝在中臂B末端,通過(guò)兩個(gè)伺服電機(jī)帶動(dòng)小臂實(shí)現(xiàn)上下旋轉(zhuǎn)運(yùn)動(dòng),之間的運(yùn)動(dòng)傳遞通過(guò)同步帶實(shí)現(xiàn)。
3.4 柑橘采摘執(zhí)行末端
柑橘采摘執(zhí)行末端通過(guò)可拆卸式手柄式的方法,將柑橘采摘執(zhí)行末端安裝在小臂末端,柑橘采摘執(zhí)行末端通過(guò)采用吞咬的仿生學(xué)原理,將果實(shí)通過(guò)機(jī)械裝置吞入內(nèi)部,然后合攏機(jī)械臂,實(shí)現(xiàn)咬的過(guò)程,剪斷果梗,剪斷后的果實(shí)通過(guò)柑橘采摘執(zhí)行末端下的回收管道,將柑橘回收到回收果框內(nèi)。
圖3.5 果實(shí)采摘機(jī)械手執(zhí)行末端
3.5 電控系統(tǒng)
3.5.1 控制系統(tǒng)
本設(shè)計(jì)柑橘采摘機(jī)器人控制系統(tǒng)硬件由Siemens1200系列PLC控制器、伺服控制器、雙目CCD工業(yè)相機(jī)、圖像數(shù)據(jù)采集卡、氣動(dòng)控制套件、檢測(cè)系統(tǒng)共六個(gè)子系統(tǒng)組成。選用Siemens1200系列PLC控制器作為小型柑橘采摘機(jī)器人的控制核心,其相當(dāng)穩(wěn)定的控制能力與抗干擾能力為果實(shí)的采摘奠定基礎(chǔ)。伺服控制為其運(yùn)動(dòng)控制提供更高的精度,雙目CCD工業(yè)相機(jī)為果實(shí)采摘提供實(shí)時(shí)數(shù)據(jù),檢測(cè)系統(tǒng)確保了采摘的安全正常運(yùn)行,最終通過(guò)電動(dòng)、氣動(dòng)與機(jī)械結(jié)構(gòu)的結(jié)合,完成對(duì)果實(shí)的采摘。采摘的定位、抓取、采摘、回收過(guò)程自動(dòng)進(jìn)行。
3.5.2 視覺(jué)系統(tǒng)
視覺(jué)系統(tǒng)安裝在采摘機(jī)械臂小臂上,采用高清CCD相機(jī)采集視覺(jué)信號(hào),將視覺(jué)信號(hào)傳遞給處理器,處理器實(shí)現(xiàn)對(duì)圖像信息的實(shí)時(shí)處理,并將信號(hào)傳遞給PLC,實(shí)現(xiàn)自動(dòng)精確采摘。雙目視覺(jué)能實(shí)現(xiàn)更加精確的定位,使得視覺(jué)觀察更加精準(zhǔn)。視覺(jué)系統(tǒng)與機(jī)械臂相結(jié)合,能夠非常完美的實(shí)現(xiàn)圖像的采集,捕捉,識(shí)別,并將信息分析處理,完成對(duì)機(jī)械臂的控制,實(shí)現(xiàn)果實(shí)的自動(dòng)采摘。
圖3.6 采摘機(jī)械手視覺(jué)
3.6 本章小結(jié)
本章通過(guò)對(duì)柑橘采摘機(jī)器人移動(dòng)小車(chē)底盤(pán),升降梯,柑橘采摘機(jī)器人機(jī)械手,柑橘采摘執(zhí)行末端,電控系統(tǒng),視覺(jué)系統(tǒng)進(jìn)行設(shè)計(jì)并對(duì)其部件及細(xì)節(jié)作必要的介紹,分析的采摘機(jī)器人機(jī)械結(jié)構(gòu)的優(yōu)勢(shì),最終完成柑橘采摘機(jī)器人總體結(jié)構(gòu)方案設(shè)計(jì),為后續(xù)末端執(zhí)行器的設(shè)計(jì)奠定基礎(chǔ)。
第4章 執(zhí)行末端的設(shè)計(jì)
4.1 柑橘采摘末端執(zhí)行器設(shè)計(jì)的總體原則
柑橘采摘末端執(zhí)行器應(yīng)嚴(yán)格按照采摘對(duì)象、采摘環(huán)境和采摘方法進(jìn)行設(shè)計(jì),并通過(guò)調(diào)查找出參考和相關(guān)技術(shù)參數(shù),找出比較適合的機(jī)械結(jié)構(gòu),通過(guò)可行性研究與參數(shù)計(jì)算,并通過(guò)對(duì)比,尋找比較適合的方案,進(jìn)行詳細(xì)計(jì)算。設(shè)計(jì)時(shí)再能實(shí)現(xiàn)其功能的同時(shí),要考慮到采摘末端執(zhí)行器成本盡量低廉,機(jī)械結(jié)構(gòu)盡量簡(jiǎn)單,使用方便。
4.2 設(shè)計(jì)三維軟件Solidworks簡(jiǎn)介
SolidWorks是目前市面上主流的三維設(shè)計(jì)繪圖軟件。
Solidworks軟件具有強(qiáng)大的三維設(shè)計(jì)功能,同時(shí)其也具有非常豐富的各類(lèi)組件,為三維繪圖軟件提供了更加強(qiáng)大的渲染功能與有限元分析功能。
SolidWorks以其易學(xué)、功能強(qiáng)大、技術(shù)創(chuàng)新性強(qiáng)等優(yōu)點(diǎn),廣受大眾喜愛(ài)。SolidWorks強(qiáng)大的裝配功能使用戶(hù)能夠在短時(shí)間內(nèi)完成大規(guī)模的裝配設(shè)計(jì),從而大大提高了設(shè)計(jì)效率。SolidWorks同時(shí)具有強(qiáng)大的曲面設(shè)計(jì)功能、渲染功能、磨具設(shè)計(jì)功能、鈑金設(shè)計(jì)功能、有限元分析功能和二維CAD繪圖生成功能,使用戶(hù)能夠在較短的時(shí)間內(nèi)完成更多的工作,更快地將優(yōu)質(zhì)產(chǎn)品投放市場(chǎng)。
4.3 連桿機(jī)構(gòu)設(shè)計(jì)方案
本章節(jié)通過(guò)仿生學(xué)原理與實(shí)際生活中的柑橘采摘相結(jié)合,選取蛇嘴吞咽食物的過(guò)程為研究對(duì)象,蛇的吞咽動(dòng)作可分為兩個(gè)階段:第一階段為把嘴從張開(kāi)到咬住獵物的階段;第二階段是咬住獵物到將其吞下的階段。將蛇吞咽的這兩階段與小型柑橘的采摘相結(jié)合,并參照蛇嘴吞食抽象柑橘采摘末端執(zhí)行器的機(jī)械結(jié)構(gòu)。蛇頭上顎部分可簡(jiǎn)化一個(gè)閉環(huán)的連桿機(jī)構(gòu), 連桿對(duì)實(shí)現(xiàn)上顎的主要運(yùn)動(dòng)幾乎無(wú)影響,因此蛇頭上顎部模型可簡(jiǎn)化為一個(gè)兩側(cè)對(duì)稱(chēng)的鉸鏈四桿機(jī)鉤,下文就四桿機(jī)構(gòu)的形式進(jìn)一步討論。
圖4.2 蛇頭部骨架模型
以蛇頭上頜骨機(jī)構(gòu)為分析對(duì)象,對(duì)機(jī)構(gòu)模型進(jìn)行簡(jiǎn)化,得到簡(jiǎn)化模型1 (專(zhuān)用四桿機(jī)構(gòu))和簡(jiǎn)化模型2 (通用鉸鏈四桿機(jī)構(gòu))。
(a)蛇頭上顎機(jī)構(gòu)簡(jiǎn)化模型 1 (b)蛇頭上顎機(jī)構(gòu)簡(jiǎn)化模型 2
圖4.3 蛇頭上顎機(jī)構(gòu)簡(jiǎn)化模型
對(duì)以上兩種簡(jiǎn)化模型機(jī)械結(jié)構(gòu)進(jìn)行綜合對(duì)比,判斷其各自結(jié)構(gòu)的優(yōu)勢(shì),最終選取模型2做為作為末端執(zhí)行器結(jié)構(gòu),其結(jié)構(gòu)形式為鉸鏈四桿機(jī)構(gòu)。
(1) 鉸鏈四桿機(jī)構(gòu)
① 運(yùn)動(dòng)學(xué)分析
圖 4.6 上顎簡(jiǎn)化四桿機(jī)構(gòu)模型幾何參數(shù)
以鉸鏈 D 點(diǎn)為原點(diǎn)構(gòu)建機(jī)構(gòu)坐標(biāo)系
l1cosβ1+l2cosβ2-l3cosβ3=l4
l1sinβ1+l2sinβ2-l3sinβ3=0
l1cos(β1-φ)+l2cosβ2-l3(cosβ3+θ)=l4
l1cos(β1-φ)+l2cosβ2-l3(cosβ3θ)=l4 公式(4.1)
由(4.1)式可得
β3=π-arccosl32+D2-l122l3D-arccosl42+D2-l122l4D θ=π-arccosl32+E2-l222l3E-arccosl42+E2-l122l4E-β3 公式(4.2)
其中
D=l12+l42-2l1l4cosβ1 公式(4.3)
E=l12+l42-2l1l4cos(β1-φ) 公式(4.4)
由上求得β3后,即可求得 E 點(diǎn)的變化規(guī)律,則桿 1 中β1隨時(shí)間的變化關(guān)系為:
β1=ωt+φ0 公式(4.5)
式中ω為一常數(shù),代入式 4.5,可以得出桿件夾角β3隨時(shí)間的運(yùn)動(dòng)關(guān)系式。
執(zhí)行器機(jī)構(gòu)受力分析
圖 4.7 末端執(zhí)行器機(jī)構(gòu)受力分析
假設(shè)四桿傳動(dòng)機(jī)構(gòu)為剛體輕質(zhì)桿,則
F12cosφ=F M=Fl1l1=F12sinθl1Fl1=Fl2cosθ 公式(4.6)
假設(shè)桿為輕質(zhì)桿,則傳動(dòng)機(jī)構(gòu)中F12≈F,即F=Msinθl1
圖 4.8 末端執(zhí)行器初步模型 2
(2) 柑橘采摘末端執(zhí)行器模型建立
根據(jù)執(zhí)行器采摘對(duì)象的生物學(xué)特性分析,柑橘果實(shí)的橫縱徑幾乎不會(huì)大于 0mm,經(jīng)調(diào)查測(cè)量一般果實(shí)的橫縱徑一般不大于80mm,基于模型尺寸緊湊性原則與通用性原則,與取執(zhí)行器上下顎運(yùn)動(dòng)半徑為 50mm,使得果實(shí)采摘執(zhí)行末端能達(dá)到采摘小型柑橘的目的,同時(shí)其又能夠作為其他水果的采摘執(zhí)行末端,使得末端執(zhí)行器的通用性與可加工性得到提高。如圖 4.9 所示。
圖4.9 末端執(zhí)行器模型示意圖
由于末端執(zhí)行器在結(jié)構(gòu)形式上,上下結(jié)構(gòu)相互對(duì)稱(chēng),故只取上部結(jié)構(gòu)作為參數(shù)研究對(duì)象。將上部結(jié)構(gòu)的運(yùn)動(dòng)看作剛體繞鉸接在執(zhí)行器主架上運(yùn)動(dòng),鉸接點(diǎn)為 D。驅(qū)動(dòng)末端執(zhí)行器上部結(jié)構(gòu)運(yùn)動(dòng)的四桿機(jī)構(gòu)為圖 A-B-C-D 所示。
此結(jié)構(gòu)選取指型氣缸與標(biāo)準(zhǔn)直線(xiàn)氣缸作為采摘末端執(zhí)行器的動(dòng)力源。
根據(jù)SolidWorks中的緊湊結(jié)構(gòu)原則,建立了手指圓柱的對(duì)稱(chēng)參考平面與執(zhí)行器主框架的對(duì)稱(chēng)參考平面重合的數(shù)學(xué)模型,并對(duì)其最終lAD=118mm,分別研究了傳動(dòng)機(jī)構(gòu)的傳動(dòng)參數(shù),提取了一般鉸鏈四桿傳動(dòng)機(jī)構(gòu)的傳動(dòng)參數(shù)。
圖4.10 傳動(dòng)機(jī)構(gòu)分析示意圖
預(yù)取lCD=152+102=18.03mm ,以其鉸鏈四桿機(jī)構(gòu)及計(jì)算的數(shù)據(jù)參數(shù),對(duì)末端執(zhí)行器的其他部分進(jìn)行建模。為了保證整個(gè)模型的緊湊性,將由真空泵等裝置組成的抽吸裝置設(shè)計(jì)到末端執(zhí)行器內(nèi)部,從而獲得其三維模型如圖4.11所示。
圖4.11末端執(zhí)行器最終三維模型
經(jīng)研究得出執(zhí)行器基本尺寸參數(shù)后,需要根據(jù)執(zhí)行器作業(yè)情況確定其動(dòng)力參數(shù),由式 (4.7) 可知,該型氣缸在 0.5MPa 氣壓下能提供的切割力
F=2*Ml1sinθcosφ=2*0.540.02203*sin90°*cos147°=41.12N 公式(4.8)
下面來(lái)探討切割過(guò)程中切割力的主要影響因素,如上分析,將切割過(guò)程刀片受力視為0平衡狀態(tài),則建立其平衡方程如式 (4.8) 所示。
FRY1=N1sin?(θ+φ)cosφN2=-FRX1=-N1cos?(θ+φ)cosφFf2=N2μ=N2tanφ 公式(4.9)
則此時(shí)切割力
F=P+Ff2-FRY1=P-N1cos?(θ+φ)sinφcos2φ-sin?(θ+φ)cosφ 公式(4.10)
根據(jù)材料力學(xué)的相關(guān)理論,建立了切削裝置分離時(shí)的微元模型。在果梗的切割過(guò)程中,由于刀片本身的厚度,刀片將擠壓果梗表面兩側(cè)的柑橘莖組織,將力傳遞給未切割的莖,然后莖桿微元梁在力的作用下彎曲。
由材料力學(xué)梁彎矩理論:
N1=Ml1ρ=MEIX 公式(4.11)
式中l(wèi)為定刀支點(diǎn)C 到正壓力N1的距離,mm ;E 為果柄順紋抗拉彈性模量,Pa ;由相關(guān)幾何關(guān)系可知,微元梁曲率ρ與慣性矩Ix表達(dá)式如式(4.12)所示:
ρ=Catanθ(yc+r)Ix=A(y-yc)2dA=B1-B2+B3 公式(4.12)
推導(dǎo)得出:
N1=EIxlρ=E(B1-B2+B3)atanθlC(yc+r) 公式(4.13)
式中,為形心 G 點(diǎn)到 X 軸的距離, mm ;B1,B2和B3為參數(shù),單位均為m4,r 為柑橘果柄半徑,mm ;
在切割過(guò)程中,果柄纖維在刀刃擠壓下,發(fā)生變形,當(dāng)形變足夠大時(shí),纖維被拉斷。研究表明,在果柄切割分離過(guò)程中,其對(duì)刀刃的阻抗力 P以表示為:
P=1.607σ0Lh12E''/E' 公式(4.14)
綜上所述,通過(guò)材料力學(xué)及相關(guān)文獻(xiàn)研究,可得果柄在單刃切剪的數(shù)學(xué)模型,
其表達(dá)式如(4.15):
F=1.607σ0Lh12E''/E'+E(B1-B2+B3)atanθlC(yc+r)cos?(θ+φ)sinφcos2φ-sin?(θ+φ)cosφ公式(4.15)
由表達(dá)式(4.15),該模型可推論在給定果柄(果柄直徑、含水率一定情況下)和特定刀刃角下刀片切斷果柄所需切割力的大小,該模型可以對(duì)刀片切斷柑橘果柄的切割力作出預(yù)估,為切割刀具的設(shè)計(jì)提供理論參考。 而實(shí)際上在理想切割狀態(tài),上下刀片接觸瞬間,由于機(jī)構(gòu)存在沖量,由 Ft =mv ,切割瞬間加速度增大,對(duì)柑橘果柄的破壞也會(huì)加大,故該執(zhí)行器所選動(dòng)力氣缸及切割裝置完全滿(mǎn)足執(zhí)行器作業(yè)切割要求。
圖4.12 末端執(zhí)行器模型圖
4.4 半球式設(shè)計(jì)方案
該方案的是設(shè)計(jì)仍然是引用蛇類(lèi)吞食大的構(gòu)想,但設(shè)計(jì)思路并非上一節(jié)的四桿機(jī)構(gòu),機(jī)械機(jī)械結(jié)構(gòu)采用直切式結(jié)構(gòu),將柑橘果梗剪斷。此機(jī)構(gòu)的動(dòng)力源為氣動(dòng)馬達(dá),機(jī)械執(zhí)行末端通過(guò)旋轉(zhuǎn)氣缸帶動(dòng)球型刀片將果梗剪斷,在通過(guò)柔性管道將剪斷的柑橘輸送到果框中。該柑橘采摘機(jī)械手執(zhí)行末端通過(guò)設(shè)計(jì)一個(gè)半球式刀片,可實(shí)現(xiàn)180°采摘,采摘管一周設(shè)有相同寬度的間隙,間隙的邊緣較為鋒利,更加方便和有效的采摘果實(shí),能夠?qū)崿F(xiàn)水果的果的固定與果枝的裁剪同時(shí)能夠保證人的手指等不受刀片的劃傷,使得采摘更加安全。
圖4.13 末端執(zhí)行器圖 圖4.14 傳動(dòng)三維圖
4.5 半齒設(shè)計(jì)方案
該方案的是設(shè)計(jì)仍然是引用蛇類(lèi)吞食大的構(gòu)想,但設(shè)計(jì)思路并非上一節(jié)的四桿機(jī)構(gòu),機(jī)械機(jī)械結(jié)構(gòu)采用對(duì)切式結(jié)構(gòu),將柑橘果梗剪斷。其動(dòng)力源為氣動(dòng)馬達(dá),機(jī)械執(zhí)行末端通過(guò)氣動(dòng)氣缸旋轉(zhuǎn)帶動(dòng)半齒輪,使得1/4球式刀片相對(duì)運(yùn)動(dòng)將果梗剪斷,在通過(guò)管道將剪斷的柑橘輸送到果框中。該柑橘采摘機(jī)械手執(zhí)行末端通過(guò)設(shè)計(jì)一個(gè)1/4球式刀片,180°采摘,采摘管一周設(shè)有相同寬度的間隙,能夠?qū)崿F(xiàn)水果的果的固定與果枝的裁剪。同時(shí)能夠保證人的手指等不受刀片的劃傷,使得采摘更加安全。
圖4.15 末端執(zhí)行器圖 圖4.16 末端執(zhí)行器圖
圖4.17半尺模型圖 圖4.18齒半球模型圖
圖4.19 末端執(zhí)行器圖 圖4.20 傳動(dòng)三維圖
4.5.1 齒輪傳動(dòng)的計(jì)算載荷
根據(jù)齒輪傳動(dòng)的額定功率P和轉(zhuǎn)速V,可以得到齒輪傳遞的實(shí)際使用扭矩和輪齒上的名義法向載荷力Fn。
Fca=KFn,式中K為載荷系數(shù)。
K=KAKvKαKβ
根據(jù)強(qiáng)度計(jì)算的類(lèi)別,載荷系數(shù)可分為載荷系數(shù)KF,用于計(jì)算齒根的彎曲疲勞強(qiáng)度和齒面接觸疲勞強(qiáng)度計(jì)算用載荷系數(shù)KH。
(1) 齒輪的受力分析
計(jì)算齒輪上的法向力Fn,將小齒輪分度圓處分解為圓周力Ft1和徑向力Fr1,根據(jù)平衡條件和個(gè)力間幾何條件進(jìn)行計(jì)算。
Ft1=2T1/dr1Fr1=Ft1/tanαFn=Ft1/cosα 式(4.16)
式(4.16)中;T1-小齒輪傳遞的轉(zhuǎn)矩,N*mm;
α-壓力角。
圖4.21直尺圓柱齒輪輪齒的受力分析
(2) 齒根彎曲疲勞強(qiáng)度計(jì)算
調(diào)查分析表明,當(dāng)載荷作用在單對(duì)齒嚙合區(qū)域的最高點(diǎn)時(shí),齒根產(chǎn)生的彎曲應(yīng)力最大。
齒根彎曲應(yīng)力的危險(xiǎn)截面可由30°切線(xiàn)法確定。圖中,作與輪齒對(duì)稱(chēng)線(xiàn)成30°角,并與齒根過(guò)渡曲線(xiàn)相切的圓條直線(xiàn),切點(diǎn)分別為A、B,連線(xiàn)AB表示的就是齒根的危險(xiǎn)截面。該位置的彎曲應(yīng)力為:
σF0=MW=Fncosγhbs26=kFFt1bs2 公式(4.17)
將上式代入上式,并引人載荷系數(shù)KF,于是危險(xiǎn)截面處的彎曲應(yīng)力為
σF0=KFFt1bm*6smcosγbmsm2cosα=kFFt1bm*YFa 公式(4.18)
式中: KF一彎曲疲勞強(qiáng)度計(jì)算的載荷系數(shù), KF= KAKVKFαKFβ;
YFa---齒形系數(shù),與齒制、變位系數(shù)和齒數(shù)有關(guān),與模數(shù)無(wú)關(guān), 考慮齒根危險(xiǎn)截面處的過(guò)渡曲線(xiàn)所引起的應(yīng)力集中、彎曲應(yīng)力以外的其他應(yīng)力以及重合度
對(duì)齒根應(yīng)力的影響,、修正m,從而得到直齒輪的彎曲疲勞強(qiáng)度條件為
σF=σF0YSaYε=KFKt1YFaYSaYεbm≤σF 公式(4.19)
圖4.22 齒頂嚙合受載 圖4.23 齒根應(yīng)力圖
將?d=b/d1、Ft1=2T1/d1及m=d1/z1得
σF=2KFTFaYFaYsaYε?dm3z12≤σF 公式(4.20)
經(jīng)變換,可得
m≥32KFT1Ysa?dz12*(YFaYsaσF) 公式(4.21)
4.6 三種方案的優(yōu)缺點(diǎn)分析
三種機(jī)械手執(zhí)行末端的構(gòu)想都是采用蛇吞食的仿生學(xué)原理設(shè)計(jì)的機(jī)械機(jī)構(gòu),都具有剪斷果實(shí)后依靠重力將采摘的果實(shí)回收到果框里。
機(jī)械手的設(shè)計(jì)能夠快速更換執(zhí)行末端,機(jī)械手執(zhí)行末端通過(guò)相當(dāng)于數(shù)控?fù)Q刀結(jié)構(gòu),按照不同的要求可換上不同的執(zhí)行末端。能夠?qū)崿F(xiàn)機(jī)械手更換執(zhí)行的快速性、簡(jiǎn)捷性與采摘的多樣性。
(1) 連桿機(jī)構(gòu)設(shè)計(jì)方案機(jī)構(gòu)設(shè)計(jì)非常巧妙,采用連桿機(jī)構(gòu)實(shí)現(xiàn)刀口的開(kāi)合,能夠?qū)崿F(xiàn)果實(shí)果梗的剪斷與采摘。其缺點(diǎn)1)機(jī)械結(jié)構(gòu)比較復(fù)雜,造價(jià)相對(duì)較高;2)對(duì)機(jī)械末端的壞后維護(hù)較難;3)該機(jī)構(gòu)內(nèi)部空間較小,刀體部均外漏,不安全;4)刀片采用直型刀片,不能夠剪斷側(cè)邊的果實(shí)果梗,采摘效果不理想。
(2) 半球式設(shè)計(jì)方案采用氣動(dòng)馬達(dá)直接帶動(dòng)半球式刀片運(yùn)動(dòng)實(shí)現(xiàn)剪切作業(yè),該機(jī)構(gòu)整體結(jié)構(gòu)較為簡(jiǎn)單,整個(gè)刀體均內(nèi)置在采摘桶內(nèi),保護(hù)人身不受傷害,刀體180°旋轉(zhuǎn)能夠?qū)崿F(xiàn)無(wú)死角采摘。其缺點(diǎn)1)由其結(jié)構(gòu)不是很對(duì)稱(chēng),采摘為氣動(dòng),速度較快,使得果實(shí)容易被磕碰,采摘破環(huán)率較高。
(3) 半齒方案采用氣動(dòng)馬達(dá)帶動(dòng)半齒輪實(shí)現(xiàn)齒半球的相對(duì)90°同步運(yùn)動(dòng)實(shí)現(xiàn)剪切作業(yè),該機(jī)構(gòu)整體結(jié)構(gòu)較為簡(jiǎn)單,整個(gè)刀體均內(nèi)置在采摘桶內(nèi),保護(hù)人身不受傷害,刀體180°旋轉(zhuǎn)能夠?qū)崿F(xiàn)無(wú)死角采摘。同時(shí)其結(jié)構(gòu)解決了半球式設(shè)計(jì)運(yùn)行不對(duì)稱(chēng)問(wèn)題,使得果實(shí)不容易被磕碰,采摘破環(huán)率降低。
上述三種方案在設(shè)計(jì)時(shí),采摘切割刀刃的長(zhǎng)度分別80mm,280mm.140mm,能夠?qū)崿F(xiàn)最大采摘90mm果徑大小的果實(shí),使其在滿(mǎn)足采摘小型柑橘的同時(shí)也能夠?qū)崿F(xiàn)其他與小型柑橘具有相同果況的其他果實(shí),實(shí)現(xiàn)一物多用的好處。通過(guò)對(duì)上述三個(gè)方案的優(yōu)缺點(diǎn)進(jìn)行分析比較,得出半齒方案的機(jī)械結(jié)構(gòu)、采摘性能、可加工性、安全等方面的綜合性能優(yōu)于其他兩方案,是本次執(zhí)行末端設(shè)計(jì)的最佳方案。
4.7本章小結(jié)
本章首先介紹對(duì)三維繪圖軟件Solidworks軟件進(jìn)行簡(jiǎn)要介紹,后面對(duì)三種執(zhí)行末端連桿機(jī)構(gòu)設(shè)計(jì)方案、半球式設(shè)計(jì)方案、半齒式設(shè)計(jì)方案進(jìn)行的設(shè)計(jì)與進(jìn)行了必要的實(shí)際計(jì)算,通過(guò)Solidworks三維繪圖軟件得出其三維實(shí)體圖,并通過(guò)三維圖內(nèi)運(yùn)動(dòng)仿真,得出方案的可行性。仿真得出三種執(zhí)行末端都具有采摘能力與可使用性,并在章節(jié)最后通過(guò)三種方案之間的相互對(duì)比,得出其不同方案的優(yōu)缺點(diǎn),并最終得出半齒方案為最佳方案。
第5章 柑橘采摘機(jī)械手運(yùn)動(dòng)分析
在選擇柑橘采摘機(jī)器人機(jī)械手末端執(zhí)行器的機(jī)械結(jié)構(gòu)方案和改進(jìn)末端執(zhí)行器設(shè)計(jì)時(shí),應(yīng)考慮采摘方式的合理性,為了得到最合理的末端執(zhí)行器機(jī)械結(jié)構(gòu),提出了幾種末端執(zhí)行器的機(jī)械結(jié)構(gòu)方案,并通過(guò)實(shí)驗(yàn)進(jìn)行了驗(yàn)證。
5.1 柑橘采摘機(jī)器人機(jī)械手運(yùn)動(dòng)學(xué)分析
機(jī)器人一般是一種多自由度空間機(jī)構(gòu),是由一系列剛性部件組成的系統(tǒng)。需要有一種描述這些構(gòu)件在空間上相互位置的數(shù)學(xué)方法,并用它去建立各運(yùn)動(dòng)構(gòu)件的速度、加速度及各驅(qū)動(dòng)力、力矩和負(fù)載的關(guān)系[13], 齊次坐標(biāo)矩陣法能更好地表達(dá)這種關(guān)系。它是一種系統(tǒng)性及規(guī)范性很強(qiáng)的方法,既有利于形成機(jī)器人運(yùn)動(dòng)控制算法,也可用作機(jī)器人視覺(jué)的圖像處理[14]。
Denavit一Hartenbern(D-H)是一種經(jīng)典的研究機(jī)器人運(yùn)動(dòng)學(xué)的方法。用齊次坐標(biāo)變換描述了機(jī)器人相鄰桿件的空間關(guān)系,最終可以建立機(jī)械手末端點(diǎn)的參考坐標(biāo)系相對(duì)于機(jī)械手基坐標(biāo)系的齊次變換矩陣[15]。建立了機(jī)械手的運(yùn)動(dòng)學(xué)方程。
圖5.1 連桿D-H表示
用D-H齊次坐標(biāo)變換法建立蘋(píng)果采摘機(jī)械手的運(yùn)動(dòng)學(xué)方程。
圖5.2 機(jī)械手D-H坐標(biāo)
5.1.1 運(yùn)動(dòng)學(xué)正解
機(jī)器人的正向運(yùn)動(dòng)學(xué)是根據(jù)機(jī)器人的各關(guān)節(jié)變量,求機(jī)器人末端操作裝置的位姿[15]。
建立了連桿的三維坐標(biāo)系和三維參數(shù)。連桿的D-H坐標(biāo)變換矩陣可推導(dǎo)如下:
10T=0-1010000100d10001 公式(5.1)
21T=c20-s2s0c20-110.133c20.133c200 0 0 1 公式(5.2)
32T=c3-s30s3c30001c3s300001 公式(5.3)
4 3T=c40-s4s40c40-100000001 公式(5.4)
54T=10001000100d50001 公式(5.5)
運(yùn)動(dòng)學(xué)方程為:
5 0T=10T21T32T43T54T=nxoxaxnyoyaynzozazpxpypz0001 公式(5.6)
px=-s34d5-s3+d1. 公式(5.7)
利用初始位姿進(jìn)行正反解的初步驗(yàn)證
正解驗(yàn)證:將初始位姿:d1=0.84m,θ2=0°,θ3=-90°,θ4=0°,d5=1m 代入(5.7)式得:
50T=0,1,0,0,0,1,1,0,0,01.1331.8400,0,0,1 公式(5.8)
其與實(shí)際情況完全符合,初步證明了正解的正確性。
5.1.2 反解驗(yàn)證
利用末端執(zhí)行器初始位姿進(jìn)行反解驗(yàn)證
50T=nxoxaxnyoyaynzozazpxpypz0001=0,1,0,0,0,1,1,0,0,01.1331.8400,0,0,1 公式(5.9)
代入相應(yīng)的運(yùn)動(dòng)學(xué)的反解公式中得到:
θ2=arccosox=0°d5+c3+0.133=1.133d1-s3=1.840cos(θ3+θ3)=0 公式(5.10)
將d1=0.840m,θ2=0°,θ3=-90°,θ4=0°,d5=1m, 代入方程組,結(jié)果等式分別成立,這說(shuō)明d1=0.840m,θ2=0°,θ3=-90°,θ4=0°,d5=1m,是方程組的解,初步證明了反解的正確性。
5.1.3 機(jī)械手雅可比矩陣的求解
雅可比矩陣是衡量機(jī)器人運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)性能的重要指標(biāo)。本文采用矢量積法求解小型柑橘采摘機(jī)械手的雅可比矩陣。采用向量乘積法計(jì)算列中的雅可比矩陣,得到機(jī)械手m×n的雅可比矩陣。解決方法如下:如果關(guān)節(jié)i為移動(dòng)關(guān)節(jié),則雅可比矩陣的第i列為:
Ji=zi0 公式(5.11)
如果關(guān)節(jié)i為轉(zhuǎn)動(dòng)關(guān)節(jié),則雅可比矩陣的第i列為:
Ji=zi×ipn0zi=zi×(i0Ripn)zi 公式(5.12)
矩陣, ipn0為末端執(zhí)行器原點(diǎn)相對(duì)坐標(biāo)系i的位置矢量在基坐標(biāo)系0中的表示,
即ipn0=i0Ripn。
對(duì)于本柑橘采摘機(jī)械手而言,有5個(gè)關(guān)節(jié),所以雅可比矩陣的是6×5階矩陣可將雅可比矩陣J(q)的分塊,即:
Jq=J1vJ2vJ3vJ4vJ5vJ1wJ2wJ3wJ4wJ5w=J1J2J3J4J56×5 公式(5.13)
利用矢量積法得到本小型柑橘采摘機(jī)器人機(jī)械手的雅克比矩陣各列,其中:
J1=z10=0,0,1,0,0,0, 公式(5.14)
J2=z2×0p52z2=-s22c3s4d5-s3c4d5-c3-0.2,c2s2(c3s4d5+s3c4d5-c3-0.2),-c2-c22s3c4d5-c22s3c4d5+c2c3+0.2+s2c2s3c4d5-c3s4d5-s3+s2c2s2c3s4d5-s2c3s4d5-s2c3-s30.2-s2(s3c4d5-c3s4d5-s3),-c2,-s2,0,
公式(5.15)
J3=z3×0p53z3=-s2s3c3s4d5+s32c4d5-s3c3-c32c4d5+c3s3s4d5-s3c3,c2(s3c3s4d5+s32c4d5-s3c3-c32c4d5+c3s4d5-s3c3)-c2c2c32c4d5-s2c2s3c4d5+c32c2+c2s2s3c4d5+c2s32s4d5-c2s32)+s2s2c32c4d5+s2c2s3c4d5-s32c3+s2c3s3c4d5-s3s4d5+s32s2,-c2,-s2,0,
公式(5.16)
J4=z4×0p54z4=-s2c3s4-c2s3c4)(-c3s4-s3c4)s4d5-(s3s4-c3c4)(-c2c3c4s4d5+c2s3s4s4+s2c4d5,s3s4-c3c4s2c3c4s4d5-s2s3s4d5+c2c4d5+(s2c3s4+s2s3c4)(-c3s4-s3c4)s4d5(s2c3s4+s2s3c4)(-c2c3c4s4d5+c2s3s4s3s4d5-c2c4d5)-(-s2c3s4-c2s3c4)(s2c3c4s4d5-s2s3s4s3s4d5+c2c4d5)s2c3s4+s2s3s4,-c2c3s4-c2s3s4,s3s4-c3c4, 公式(5.17)
J5=z50=s2c3s4+s2s3s4,-c2c3s4-c2s3s4,s3s4-c3c4,0,0,0, 公式(5.18)
通過(guò)求解機(jī)械手的雅可比矩陣,得到末端執(zhí)行器速度與各關(guān)節(jié)速度的瞬時(shí)對(duì)應(yīng)關(guān)系。
5.1.4 機(jī)械手速度和加速度正解分析
(1) 速度正解
機(jī)械手正運(yùn)動(dòng)學(xué)方程為關(guān)節(jié)位置向量q的函數(shù),可簡(jiǎn)寫(xiě)為如下方程形:
r=f(q) 公式(5.19)
對(duì)式兩邊求導(dǎo)可得到機(jī)械手末端的速度方程為:
r=J(q)q 公式(5.20)
(2) 加速度正解分析
機(jī)械手末端加速度方程為:
r= J(q)q+j (q)q 公式(5.21)
式中r機(jī)械手末端的加速度向量, q關(guān)節(jié)變量加速度向量。
5.2 柑橘采摘機(jī)械手零件理論分析
5.2.1 機(jī)械零件疲勞極限的因素
由于機(jī)械零件、機(jī)構(gòu)與其使用材料在幾何尺寸、形狀、加工質(zhì)量、表面強(qiáng)化技術(shù)等方面存在的差異,往往導(dǎo)致零件的疲勞極限小于材料試件的疲勞極限。因此機(jī)械零件疲勞極限的因素進(jìn)行理論分析,如果材料系數(shù)Kσ表示,則零件的對(duì)稱(chēng)循環(huán)彎曲疲勞極限σ-1與對(duì)稱(chēng)循環(huán)彎曲疲勞極限σ-1e之比如下
Kσ=σ-1σ-1e
則當(dāng)已知Kσ,及σ-1時(shí),就可以估算出零件的對(duì)稱(chēng)循環(huán)彎曲疲勞極限為Kσσ-1e=σ-1Kσ
圖5.3 零件極限應(yīng)力線(xiàn)圖
在非對(duì)稱(chēng)循環(huán)時(shí), Kσ是試樣極限應(yīng)力幅值與零件應(yīng)力幅值的比值。零件材料極限應(yīng)力圖中的線(xiàn)AD'G"按比例Kσ表示。向下移動(dòng),變?yōu)樯蠄D所示直線(xiàn)ADG,極限應(yīng)力曲線(xiàn)CG'部分,不需進(jìn)行修正,因?yàn)樗前凑侦o應(yīng)力的要求來(lái)考慮的。這樣,零件的極限應(yīng)力曲線(xiàn)即可由折線(xiàn)AGC表示。直線(xiàn)AG的方程,由已知兩點(diǎn)坐標(biāo)A(0, σ-1Kσ)及D(σ02,σ02Kσ)得到
σ-1e=σ-1Kσ=σae'+φσeσme'或σ-1=Kσσae'+φσσme' 公式(5.22)
直線(xiàn)CG的方程為。σae'+σme'=σs 公式(5.23)
φσe零件受循環(huán)彎曲應(yīng)力時(shí)的材料常數(shù), φσe可用下式計(jì)算:
φσe=φsKσ=1Kσ2σ-1-σ0σ0 公式(5.24)
式中, Kσ可用下式計(jì)算:
Kσ=(kσεσ+1βσ-1) 1βq 公式(5.25)
同樣,對(duì)于切應(yīng)力的情況,以τ代換σ,得出應(yīng)力相關(guān)方程。
5.2.2 帶傳動(dòng)分析
(1) 帶傳動(dòng)受力分析
帶傳動(dòng)工作前,施加一定的初拉力F0張緊在帶輪上。
F1-F0=F0-F2 公式(5.26)
F1+F2=2F0 公式(5.27)
如取小帶輪上傳送帶為分離體,則帶輪上力矩平衡條件;
Ffdd12=F1dd12-F2dd12 公式(5.28)
Ff=F1-F2 公式(5.29)
式(5.29)中: Ff--傳動(dòng)帶工作面上的總摩擦力;
dd1一小帶輪的基準(zhǔn)直徑;
帶傳動(dòng)的有效拉力Fe等于傳動(dòng)帶工作表面上的總摩擦力Ff,于是
Fe=Ff=F1-F2 公式(5.30)
在初拉力Fe、緊邊拉力F1、松邊拉力F2和有效拉力Fe.這4個(gè)力中,只有兩個(gè)是獨(dú)立的,因此:
F1=F0+Fe2F2=F0-Fe2 公式(5.31)
有效拉力Fe與帶傳動(dòng)所傳遞的功率P的關(guān)系為:
P=Fev /1000 公式(5.32)
圖5.4 帶與帶輪的受力分析
(2) 帶傳動(dòng)的最大有效拉力及其影響因素
在皮帶傳動(dòng)中,當(dāng)有打滑趨勢(shì)時(shí),摩擦力達(dá)到極限值,即皮帶傳動(dòng)的有效張力達(dá)到最大值。這時(shí),根據(jù)理論推導(dǎo),帶的緊邊拉力F1和松邊拉力F2的關(guān)系可用柔韌體摩擦的歐拉公式表示,即
F1=F2efa 公式(5.33)
式(5.33)中:e-自自然對(duì)數(shù)的底(e=2.718…);
f一摩擦系數(shù)(對(duì)于V帶,用當(dāng)量摩擦系數(shù)fv,代替f;α-帶在帶輪上的包角,rad.
小帶輪與大帶輪的包角分別為α1和α2,由下式確定;
α1≈180°-(dd2-dd1)+57.3aα1≈180°+(dd2-dd1)+57.3a 公式(5.34)
由式(5.34)可得出以下關(guān)系式,其中用Fec表示最大(臨界)有效,F(xiàn)1和F2也表示其臨界值
F1=Fecefaefa-1F2=Fec1efa-1Fec= 2F0efa-1efa+1=2F01-1/efa1+1/efa 公式(5.35)
式(5.35)中的包角α應(yīng)取α1和α2中的較小者。
5.3 本章小結(jié)
本章通過(guò)Denavit一Hartenbern,機(jī)械手雅可比矩陣等數(shù)學(xué)算法對(duì)柑橘采摘機(jī)器人機(jī)械手進(jìn)行了運(yùn)動(dòng)學(xué)分析,并通過(guò)對(duì)機(jī)械零件疲勞極限方面得與同步帶方面得計(jì)算,得出其理論上得可行性。
第6章 機(jī)械手末端執(zhí)行器有限元分析
任何物體都有固有頻率,固有頻率是由其本身的結(jié)構(gòu)決定的,與外界無(wú)關(guān)。一般來(lái)說(shuō)每一階固有頻率都有一個(gè)振型與之對(duì)應(yīng)。當(dāng)外界激振頻率與結(jié)構(gòu)本身頻率一致時(shí),就會(huì)產(chǎn)生共振現(xiàn)象,對(duì)結(jié)構(gòu)破環(huán)影響很大,通過(guò)Solidworks內(nèi)部Smulation有限元分析軟件對(duì)執(zhí)行末端進(jìn)行模態(tài)分析。
在末端執(zhí)行器有限元模型中,對(duì)末端執(zhí)行器安裝端面進(jìn)行全自由度約束,采用SolidWorks軟件建立末端執(zhí)行器有限元模型,求解約束模態(tài)。解決方案結(jié)果如下圖所示。根據(jù)振動(dòng)理論,模型的低階頻率最有可能與外界頻率產(chǎn)生共振效應(yīng)。在分析末端執(zhí)行器模型的模態(tài)時(shí),只需對(duì)其低階固有頻率和振型進(jìn)行檢測(cè)。
6.1 連桿機(jī)構(gòu)末端執(zhí)行器模態(tài)分析
如圖6.1所示,在頻率為53.25 Hz時(shí),機(jī)械手末端執(zhí)行器發(fā)生共振現(xiàn)象,使得執(zhí)行末端機(jī)械結(jié)構(gòu)發(fā)生兩側(cè)左右擺動(dòng)。
如圖6.2所示,在頻率為61.2 Hz時(shí),機(jī)械手末端執(zhí)行器發(fā)生共振現(xiàn)象,使得執(zhí)行末端機(jī)械結(jié)構(gòu)發(fā)生左右兩側(cè)向內(nèi)擺動(dòng)。
圖6.1第一階固有振型 圖6.2第二階固有振型
如圖6.3所示,在頻率為113.93 Hz時(shí),機(jī)械手末端執(zhí)行器發(fā)生共振現(xiàn)象,使得執(zhí)行末端機(jī)械結(jié)構(gòu)發(fā)生整體上下擺動(dòng)。
收藏