安全氣囊擰螺母直角坐標機器人結構與控制系統(tǒng)設計【含CAD圖紙、說明書】
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
附錄
Industrial robot and its system’
components
There are a variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widely. Numerous single purpose muchines are used in manufacturing plants that might appear to be robots. These machines ar e hardwired to perform a single function and can not be reprogrammed to perfor m a different function. Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted. This definition was developed by the robot Institute of America:
A robot is a reprogrammable muanfactional manipulator designed to move material, parts, tools, or specialized devi ces through variable program motions for the perfommnce of a variety of tasks.
Note that this definition cxmtalns the words reprograrnmable and multifunctional. It is these two characteristics that separate the true industrial robot from the various singl e-purpose machines used in modern manufacturing firms. The term "reprogrammable" implies two things: The robot operates are reding to a written program, and this program can be rewritten to acconlmodatc a variety of manufacturing tasks.
The first articulated arm came about in 1951 and was used by the U.S. Atomic Energy Commission. In 1954, the first programmable robot was designed by George Devol. It was ba sed on two important technologies:
(1) Numerical control (NC) technology.
(2) Remote manipulation technology.
Numerical control technology provided a foam of machine control ideally suited to robots. It allowed for the cont rol of motion by stored programs. These programs contain data points to which the robot sequentially moves, timing signals to initiate action and to stop move ment, and logic statements to allow for decision frmking.
Remote manipulation technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots that can perfoml a variety of manufactuing ta sks in both inaccessible an unsafe environmonts. By mering these two tec hnologies, Devol developed the first industrial robot, an unsophi stieated programmable materials handling machine. commercially produced industrial robot controlled by a minicomputer.
Numerical control and remote manipulation technology prompted the wide scaledevelopment and use of industr ial robots. But major technological developmentsdo not take place simply because of such new capabilities. Something must providethe impetus for taking advantage of these capabilities. In the case of industrialrobot s, the impetus was economies.
The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious problem fo r U. S. manufacturers. Foreign manufacturers who had under taken automation on a wide scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobiles.
Through a variety of automation techni ques, includicg robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S. ma nufacturers. Conseque ntly, in order to survive, U.S. manufacturers were fo rced to consider any technological developments that could help improve productivity.
It became imperative to produce better produets at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing danger ous marmfacturing tasks contributed to the development of industrial robots. Ho wever, the principal rationale has always been,and is still, improved productivity.
One of the principal advantages of r obots is that they can be used in settingsthat are dangerous to humans. Welding and parting are examples of applicationswhere rotmts can be dange rous to humans. Even though robots are closely asmciated with safety in the workplace, they can, in themselves, be dangerous.
Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelops should be accurately calculated and a danger zone surondting the envelop clearly marked off. Red flooring strips and barriers can be used to keep human workers out of a robot’s work envelope.
Even with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should have the capacity to sense the need for an automatic shutdown of operations. Fault-tolerant computers and redunant systems can be inst alled to ensure proper shutdown of robotics systems to ensure a safe environment.
Industrial robots is the science of designing, building, and applying industrial robots. What ar e robots? In the late 1970s the Robotic Industries Association defined a robot as” a manipulator, designed to move material, parts, tools or specialized devi ces through variable programmed motions for the performance of a variety of tasks". Although this definition does not directly include pick and place arms as robots, teleoperams and remotely controlled devicesare often referred to also as robots. The International Standards Organization(ISO) has a more lengthy definition of an industrial robot:
A machine formed by a mechanism including several degrees of freedom, often having tile appearaon of one or several arms ending in a wrist capable of holding a tool or a workpiece or an inspect ion device. In particular, its control unit must use a memorizing device and .sometimes it can use sensing oradaptation appliances taking into account environment and circumstances. These multipurt pose machines are generally designed to carry out a repetitive function and can be adapted to other functions.
The RIA and ISO definitions both stress the multifunctional and programmable capabilities and, theref ore, exclude special-purpose "hard automation" tools and equipment typi cally found in high volume production. Also excluded are manual remote manipulators, which are extensions of human hands for use in, for example, sterile , hot, or radioactive environments.
In Japan, the Japanese Industrial Robot Associat ion (JIRA) classifies industrial robots by the method of input in formatkm and the method of teaching:
1. Manual Manipulators. Manipulators directly activated by the operator.
2. Fixed-sequence Robot. Robot th at once programmed for a given sequence of operations is not easily changed.
3. Variable-sequence Robot. Robot th at can be programmed for a given sequence of operations and can easily be changed or reprogrammed.
4. Playback Robot. Robot that "memorizes" work sequences taught by a human being who physically leads the device through the intended work pattern; the robot can then create this sequence repetitively from memory.
5. Numerically Controlled (NC) Robot. Robot that operatas from and is controlled by digital data, as in the form of punched tape, cards, or digital switches; operates like a NC machine.
6. Intelligent Robot. Robot that uses sensory perception to evaluate its environment and camke decisions and proceeds to operate accordingly.
The first-generation of robot systems was defined for the various robots with limited computer power. Their main intelligant functions include programming by showing a sequence of manipulation steps by a human operator using a teach box. Without any sensors, these robots require a prearranged and relatively fixed factory environment and, therefore, have limited use.
The second-generation of robot systems was enhanced by the addition of a computer processor. A major step in industrial robotics development was the integration of a computer with the industrial robot mechanism. This has provided real-time calculation of trajectory to smooth the motions of the end effector and integration of mine simple force and proximity sensors to obtain external signals.
The main applications of second generation robots include spot and arc welding, spray painting, and some assembly.
Third-generation robot systems incorporate multiple computer processors and multiple arms that can operate asynchronously to perform .several functions. Distributed hierarchical computer organization is preferred, because it can coordinate motions and interface with external sens ors, other machines, and other robots and can communicate with other computers. These robots can already exhibit intelligent behavior, including knowledge-based control and learning abilities.
Japan ranks as the world's top robot-producing and robot -using country, with more than 40% of the world's industrial robot installations. The reasons for this penetration are sociol ogical-and technological f actors that are unique to Japan:
industrial robots brought productivity and quality gains in Japanese industry, coupled with improvements of the work enviromment. These have perpetuated the social-demand for more robots as well as increased the expectation from this technology.
Current and emerging robot applications in industry can be categorized on the complexity and requirements of th e job. They range from simple, low technology pick-and place operations through medium technology painting, some assembly and welding operations to high technology precision assembly and inspection operations.
工業(yè)機器人及其系統(tǒng)組成
有許多關于機器人這個術語的定義。全世界采用不同的定義各地機器人的數(shù)量就會發(fā)生很大的變化。在制造工廠中使用的許多單用途機器可能會看起來像機器人。這些機器是硬連線的,不能通過新編程的方式去完成不同的工作。這種單用途的機器不能滿足被人們日益廣泛接受的關于工業(yè)機器人的定義。這個定義是由美國機器人協(xié)會提出的:
機器人是一個易改編程序的多功能操作器,被設計涉及應用按照預先編制的、能夠完成多種作業(yè)的運動程序運送材料、零件、工具或者專用設備。
注意在這個定義中包含“可以改編程序”和“多功能”這兩個詞。正是這兩個詞將真證的機器人與現(xiàn)代制造工廠中使用的單一用途的機器區(qū)分開來。“可以改編程序”這個術語意味著兩層含義:機器人根據(jù)編寫的程序工作,以及可以通過重新編寫程序來適應不同種類的制造工作的需要?!岸喙δ堋边@個詞意味著機器人能夠通過編程和使用的末端執(zhí)行機構,完成不同的制造上作。圍繞著這兩個關鍵特征所撰寫的定義正在變成制造業(yè)的專業(yè)人員所接受的定義。
第一個帶有活動關節(jié)的于臂于 1951 年被研制出來,由美國原子能委員會使用。在 1954 年,第一個可以編程的機器人由喬治·狄弗設計出來。它基于下面兩項重要技術:
(1)數(shù)字控制(NC)技術;
(2)遠程操作技術。
數(shù)字控制技術提供一種非常適合于機器人的機器控制技術。它可通過存儲的程序對運動進行控制。這些程序包含機器人進行順序運動的數(shù)據(jù),開始運動和停止運動的時間控制信號,以及做出決定所需要的邏輯語句。
遠程操作技術使得一臺機器的性能超出一臺數(shù)控機器。它可以使這種機器能夠在不容易進入和不安全的環(huán)境中完成各種制造任務。通過融合上述兩項技術,狄弗研制出第一個機器人,它是一個不復雜的,可以編程的物料運送機器人。
數(shù)字控制技術和遠程操作技術推動了大范圍的機器人研制和應用。但是主要的技術進步并不僅僅是由于這些新的應用能力而產(chǎn)生的,而是必須由利用這些能力所得到的效益來提供動力。就工業(yè)機器人而古,這個動力是經(jīng)濟件。
在 20 世紀 70 年代中,丁資的快速增長大大增加了制造業(yè)的企業(yè)中的人工費用。與此同時,來自國外的競爭成為美國制造業(yè)所面臨的一個嚴峻的考驗。諸如日本等外國的制造廠家在廣泛地應用自動化技術之后,其工業(yè)產(chǎn)晶,特別是汽車,在美國和世界市場上占據(jù)了日益增大的份額。 通過采用包括機器人在內的各種自動化技術,從 20 世紀 70 年代開始,日本的制造廠家能夠比沒有采用自動化技術的美國制造廠家生產(chǎn)更好的和便宜的汽車。隨后,為了生存,美國制造廠家被迫考慮采用任何能夠提高生產(chǎn)率的技術。
為了與國外制造廠家進行競爭,必須以比較低的成術,生產(chǎn)出更好的產(chǎn)品。其他的因素,諸如尋找能夠更好地完成帶有危險性的制造工作的方式也促進了工業(yè)機器人的發(fā)展。但是,主要的理由一直是,而日.現(xiàn)在仍然是提高生產(chǎn)率。
機器人的一個主要優(yōu)點是它們可以在對于人類來說是危險的位置上工作。采用機器人進行焊接和切斷工作是比由人工來完成這些工作更安全的例子。盡管機器人與工作地點的安全密切相關,它們本身也可能是危險的。
應該仔細地設計和配置機器人和機器人單元,使它們不會傷害人類和其他機器。應該精確地算出機器人的工作范圍,且在這個范圍的四周清楚地標出危險區(qū)域。可以采用在地面上畫出紅顏色的線和設置障礙物以阻止工人進入機器人的工作范圍。即使有了這些預防措施,在使用機器人的場地中設置一個自動停止工作的系統(tǒng)仍然不失為一個好主意。機器人的這個系統(tǒng)應該具有測出是否有需要自動停止工作的要求的能力。為了保證有一個安全的環(huán)境,應當安裝容錯計算機和冗余系統(tǒng),保證在適當?shù)臅r候停止機器人的工作。
工業(yè)機器人是一門設計、建筑、應用工業(yè)機器人的科學。什么是機器人呢?在 20 世紀 70 年代,機器人工業(yè)協(xié)會把機器人定義為“設計成可通過為實現(xiàn)各種各樣任務而編制好的運動來移動材料、零件、工具或特別設備的操作者”。盡管這種定義沒有直接把抓-放型手臂算作機器人,但遠距離操縱裝置和遙控裝置通常被認為是機器人。國際標準組織有一個更合法的工業(yè)機器人的定義:
一種含有多層次自由度的機器,通常用一條或多條手腕的末端來握住一個工具或一個部件或檢測裝置。特別地,它的控制單元必須用一個記憶設備,考慮到環(huán)境和條件等因素 通??捎脵z測或適應裝置,這些多用途的機器通常設計為實現(xiàn)重復性功能,同時也可適用于其他功能。機器人工業(yè)協(xié)會和國際標準組織都強調多功能和程序化的功能。因此,包括特殊用途“硬自動化”工具和裝置特別地出現(xiàn)在高檔產(chǎn)品。同時也包括遠途手動操作者,它們是人類工作在如枯燥無味的、熱的、輻射性的環(huán)境里應用的延伸。
在日本,日本工業(yè)機器人協(xié)會根據(jù)輸入信息和輸入方法的不同把工業(yè)機器人分為:
1、手動操作者直接由操作人操縱。
2、固定順序機器人這類機器人一旦被給定某執(zhí)行順序的程序,就不容易改變。
3、可邊順序機器人可以對這類機器人進行編程,使其按一定的順序工作,可以很容易地改變這種順序或者重新編程。
4、再現(xiàn)式機器人這種機器人的記憶工作順序由人的示教,他通過已定的工作類型親自引導設備來實現(xiàn)。這種機器人可以由記憶重復實現(xiàn)這種順序。
5、數(shù)字控制機器人這種機器人由數(shù)字化數(shù)據(jù)來操作和控制,這些數(shù)字數(shù)據(jù)有針孔帶、記憶卡、或數(shù)字表等形式,像一臺數(shù)字控制機器操作。
6、智能機器人這種機器人采用感官知覺對它周圍的環(huán)境進行評價和做出決定,并據(jù)此進行工作。第一代機器人系統(tǒng)被定義為許多帶有有限計算機能力的機器人,他們主要的智力功能包括通過由操作人員用一個示教盒來顯示出一系列的操作步驟的程序。沒有任何傳感器,這些機器人需要一個預先設計,直接與工廠相應的環(huán)境。因此,其應用的場所很有限。
第二代機器人系統(tǒng)的功能由于增加一個計算機程序而加強。其在工業(yè)機器人發(fā)展中的關鍵步驟是將一臺計算機與工業(yè)機器機構相集合。這樣就提供實時的軌跡計算。可以使末端作用器的運動更為平滑,并且集成了某些簡單的力傳感器和接近式傳感器以獲取外部信號。第二代機器人的主要應用包括勘測、焊接、噴漆和其它一些的組合。
第三代機器人系統(tǒng)包括多層次計算機程序和多層次手臂,它能自如地實現(xiàn)多種功能。分配多層次計算機組織為首選,因為它能協(xié)調各種運動并且可以與外部傳感器、其他機構和其他機器人相聯(lián)接,并且可以和其他計算機相聯(lián)系。這些機器人可展示智力行為,包括在知識基礎上的控制和學習能力。
日本作為世界頂尖的機器人制造和使用的國家,擁有高達 40%以上的世界工業(yè)機器人裝置。其原因為這種集中是由于日本獨特的社會和科技因素:工業(yè)機器人在日本工業(yè)中帶來了高生產(chǎn)率和高質量產(chǎn)品,并與其工業(yè)的環(huán)境的提高相匹配,這些因素使得社對更多的機器人的需求被無限期地延續(xù)下去和增加了人們對這種技術的期望。現(xiàn)行的和正在開發(fā)的機器人在工業(yè)上的應用可由其復雜程度和工作的需求的不同而分類。它們可分為從通過中介技術圖案簡單的、低技術抓-放型操作,一些組合和焊接操作到高技術高精度的組合檢測操作。
收藏