2022年高考數(shù)學總復習 第二章 函數(shù)概念與基本初等函數(shù) 第1講 函數(shù)及其表示
《2022年高考數(shù)學總復習 第二章 函數(shù)概念與基本初等函數(shù) 第1講 函數(shù)及其表示》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學總復習 第二章 函數(shù)概念與基本初等函數(shù) 第1講 函數(shù)及其表示(11頁珍藏版)》請在裝配圖網上搜索。
1、 2022年高考數(shù)學總復習 第二章 函數(shù)概念與基本初等函數(shù) 第1講 函數(shù)及其表示 最新考綱 1.了解構成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域,了解映射的概念;2.在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù);3.了解簡單的分段函數(shù),并能簡單地應用. 知 識 梳 理 1.函數(shù)的基本概念 (1)函數(shù)的定義 一般地,設A,B是非空數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應;那么就稱f:A→B為從集合A到集合B的一個函數(shù),記作y=f(x),x∈A. (2)函數(shù)的定義域、值域 在函
2、數(shù)y=f(x),x∈A中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域. (3)函數(shù)的三要素是:定義域、值域和對應關系. (4)表示函數(shù)的常用方法有:解析法、列表法和圖象法. (5)分段函數(shù) 在函數(shù)的定義域內,對于自變量x的不同取值區(qū)間,有著不同的對應法則,這種函數(shù)稱為分段函數(shù). 分段函數(shù)是一個函數(shù),分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集. 2.函數(shù)定義域的求法 類型 x滿足的條件 ,n∈N* f(x)≥0 與[f(x)]0 f(x)≠0 logaf(x) f(x)>0
3、 四則運算組成的函數(shù) 各個函數(shù)定義域的交集 實際問題 使實際問題有意義 診 斷 自 測 1.判斷正誤(在括號內打“√”或“×”) 精彩PPT展示 (1)f(x)=與g(x)=x是同一個函數(shù).(×) (2)若兩個函數(shù)的定義域與值域相同,則這兩個函數(shù)相等.(×) (3)函數(shù)是特殊的映射.(√) (4)分段函數(shù)是由兩個或幾個函數(shù)組成的.(×) 2.下列函數(shù)中,不滿足f(2x)=2f(x)的是( ) A.f(x)=|x| B.f(x)=x-|x| C.f(x)=x+1 D.f(x)=-x 解析 將f(2x)表示出來,看與2f(x)是否相等. 對于A,f(2x)=|2x|
4、=2|x|=2f(x); 對于B,f(2x)=2x-|2x|=2(x-|x|)=2f(x); 對于C,f(2x)=2x+1≠2f(x); 對于D,f(2x)=-2x=2f(x), 故只有C不滿足f(2x)=2f(x),所以選C. 答案 C 3.(xx·山東卷)函數(shù)f(x)=的定義域為( ) A.(0,2) B.(0,2] C.(2,+∞) D.[2,+∞) 解析 由題意知解得x>2,故選C. 答案 C 4.設f(x)=g(x)=則f(g(π))的值為( ) A.1 B.0 C.-1 D.π 解析 g(π)=0,f(g(π))=f(0)=0. 答案 B
5、 5.已知f(2x+1)=3x-4,f(a)=4,則a=________. 解析 令2x+1=a,則x=, 則f(2x+1)=3x-4可化為f(a)=-4, 因為f(a)=4,所以-4=4,解得a=. 答案 考點一 求函數(shù)的定義域 例1 (1)(xx·杭州模擬)函數(shù)f(x)=+的定義域為( ) A.(-3,0] B.(-3,1] C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] (2)函數(shù)f(x)=的定義域是( ) A.(-1,+∞) B.[-1,+∞) C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 解析 (1)由題意知解得
6、-3<x≤0,所以函數(shù)f(x)的定義域為(-3,0],故選A. (2)要使函數(shù)f(x)=有意義,需滿足x+1>0且x-1≠0,得x>-1且x≠1,故選C. 答案 (1)A (2)C 規(guī)律方法 (1)給出解析式的函數(shù)的定義域是使解析式中各個部分都有意義的自變量的取值集合 ,在求解時,要把各個部分自變量的限制條件列成一個不等式(組),這個不等式(組)的解集就是這個函數(shù)的定義域,函數(shù)的定義域要寫成集合或者區(qū)間的形式.(2)對于實際問題中求得的函數(shù)解析式,在確定定義域時,除了要考慮函數(shù)解析式有意義外,還要使實際問題有意義. 【訓練1】 (1)函數(shù)f(x)=的定義域為( ) A.(-∞,2)
7、 B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞) (2)函數(shù)f(x)=ln+的定義域為________. 解析 (1)由題意知解得所以函數(shù)f(x)的定義域為(2,3)∪(3,+∞). (2)由條件知??x∈(0,1]. 答案 (1)C (2)(0,1] 考點二 求函數(shù)的解析式 例2 (1)如果f=,則當x≠0且x≠1時,f(x)等于( ) A. B. C. D.-1 (2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,則f(x)=________. (3)已知f(x)滿足2f(x)+f=3x,則f(x)=__
8、______. 解析 (1)令t=,得x=,∴f(t)==, ∴f(x)=. (2)設f(x)=ax+b(a≠0), 則3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+5a+b, 即ax+5a+b=2x+17不論x為何值都成立, ∴解得 ∴f(x)=2x+7. (3)∵2f(x)+f=3x, ① 把①中的x換成,得 2f+f(x)=. ② ①×2-②得3f(x)=6x-, ∴f(x)=2x-(x≠0). 答案 (1)B (2)2x+7 (3)2x-(x≠0) 規(guī)律方法 求函數(shù)解析式的常用方法:(1)待定系數(shù)法,若已知函數(shù)的類型(
9、如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法;(2)換元法,已知復合函數(shù)f(g(x))的解析式,可用換元法,此時要注意新元的取值范圍;(3)配湊法,由已知條件f(g(x))=F(x),可將F(x)改寫成關于g(x)的表達式,然后以x替代g(x),便得f(x)的解析式;(4)方程法,已知關于f(x)與f或f(-x)的表達式,可根據(jù)已知條件再構造出另外一個等式組成方程組,通過解方程組求出f(x). 【訓練2】 (1)已知f=x2+,則f(x)=________. (2)已知函數(shù)f(x)的定義域為(0,+∞),且f(x)=2f·-1,則f(x)=________. 解析 (1)∵f=x2+=2-2,
10、 且x+≥2或x+≤-2, ∴f(x)=x2-2(x≥2或x≤-2). (2)在f(x)=2f-1中,用代替x, 得f=2f(x)-1, 將f=-1代入f(x)=2f-1中, 可求得f(x)=+. 答案 (1)x2-2(x≥2或x≤-2) (2)+ 考點三 分段函數(shù) 例3 (1)(xx·山西四校聯(lián)考)定義在R上的函數(shù)f(x)滿足f(x)=則f(3)的值為( ) A.1 B.2 C.-2 D.-3 (2)(xx·新課標全國Ⅰ卷)設函數(shù)f(x)=則使得f(x)≤2成立的x的取值范圍是________. 解析 (1)f(3)=f(2)-f(1)=f(1)-f(0)-f
11、(1)=-f(0)=-log28=-3. (2)當x<1時,ex-1≤2成立,解得x≤1+ln 2, ∴x<1. 當x≥1時,≤2,解得x≤8,∴1≤x≤8. 綜上可知x∈(-∞,8]. 答案 (1)D (2)(-∞,8] 規(guī)律方法 (1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應從內到外依次求值.(2)求某條件下自變量的值,先假設所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍. 【訓練3】 (xx·浙江卷)設函數(shù)f(x)=若f(f
12、(a))=2,則a=________. 解析 當a>0時,f(a)=-a2<0,f(f(a))=a4-2a2+2=2,解得a= . 當a≤0時,f(a)=a2+2a+2=(a+1)2+1>0, f(f(a))=-(a2+2a+2)2=2,此方程無解. 答案 微型專題 抽象函數(shù)的定義域問題 抽象函數(shù)是指沒有明確給出具體解析式的函數(shù),其有關問題對同學們來說具有一定難度,特別是求其定義域時,許多同學解答起來總感覺棘手,在高考中一般不會單獨考查,但從提升能力方面考慮,還應有所涉及. 例4】 若函數(shù)y=f(x)的定義域是[1,2 015],則函數(shù)g(x)=的定義域是( ) A.[0
13、,2 014] B.[0,1)∪(1,2 014] C.(1,2 015] D.[-1,1)∪(1,2 014] 點撥 先利用換元法求出函數(shù)f(x+1)的定義域,則函數(shù)g(x)的定義域為f(x+1)的定義域與不等式x-1≠0的解集的交集. 解析 要使函數(shù)f(x+1)有意義,則有1≤x+1≤2 015,解得0≤x≤2 014,故函數(shù)f(x+1)的定義域為[0,2 014]. 所以使函數(shù)g(x) 有意義的條件是解得0≤x<1或1<x≤2 014. 故函數(shù)g(x)的定義域為[0,1)∪(1,2 014],故選B. 答案 B 點評 函數(shù)的定義域是函數(shù)解析式中自變量的取值范圍,即f(x)與
14、f(g(x))的定義域都是自變量x的取值范圍,常見有如下兩種類型:(1)已知函數(shù)f(x)的定義域為D,則函數(shù)f(g(x))的定義域就是不等式g(x)∈D的解集;(2)已知函數(shù)f(g(x))的定義域為D,則函數(shù)f(x)的定義域就是函數(shù)y=g(x)(x∈D)的值域. [思想方法] 1.在判斷兩個函數(shù)是否為同一函數(shù)時,要緊扣兩點:一是定義域是否相同;二是對應關系是否相同. 2.函數(shù)的定義域是函數(shù)的靈魂,它決定了函數(shù)的值域,并且它是研究函數(shù)性質和圖象的基礎.因此,我們一定要樹立函數(shù)定義域優(yōu)先意識. 3.函數(shù)解析式的幾種常用求法:待定系數(shù)法、換元法、配湊法、方程法. [易錯防范] 1.求
15、函數(shù)的解析式時要充分根據(jù)題目的類型選取相應的方法,同時要注意函數(shù)的定義域,如已知f()=x+1,求函數(shù)f(x)的解析式時,通過換元的方法可得f(x)=x2+1,這個函數(shù)的定義域是[0,+∞),而不是(-∞,+∞). 2.求分段函數(shù)應注意的問題:在求分段函數(shù)的值f(x0)時,首先要判斷x0屬于定義域的哪個子集,然后再代入相應的關系式;分段函數(shù)的值域應是其定義域內不同子集上各關系式的取值范圍的并集. 基礎鞏固題組 (建議用時:40分鐘) 一、選擇題 1.(xx·廣州調研)若函數(shù)y=f(x)的定義域為M={x|-2≤x≤2},值域為N={y|0≤y≤2},則函數(shù)y=f(x)的圖象可能是
16、( ) 解析 可以根據(jù)函數(shù)的概念進行排除,使用篩選法得到答案. 答案 B 2.(xx·鄭州模擬)函數(shù)f(x)=+lg(3x+1)的定義域是( ) A. B. C. D. 解析 由得所以定義域為. 答案 A 3.設函數(shù)f(x)=2x+3,g(x+2)=f(x),則g(x)的表達式是( ) A.2x+1 B.2x-1 C.2x-3 D.2x+7 解析 ∵g(x+2)=f(x)=2x+3=2(x+2)-1, ∴g(x)=2x-1. 答案 B 4.(xx·合肥檢測)已知函數(shù)f(x)=則f(2 014)=( ) A.2 014 B. C.2 015 D
17、. 解析 f(2 014)=f(2 013)+1=…=f(0)+2 014=f(-1)+2 015=2-1+2 015=. 答案 D 5.某學校要召開學生代表大會,規(guī)定各班每10人推選一名代表,當各班人數(shù)除以10的余數(shù)大于6時再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為( ) A.y= B.y= C.y= D.y= 解析 法一 取特殊值法,若x=56,則y=5,排除C,D; 若x=57,則y=6,排除A,選B. 法二 設x=10m+α(0≤α≤9,m,α∈N),當0≤α≤6時,==m=,
18、當6<α≤9時,==m+1=+1,所以選B. 答案 B 二、填空題 6.下列集合A到集合B的對應f中: ①A={-1,0,1},B={-1,0,1},f:A中的數(shù)平方; ②A={0,1},B={-1,0,1},f:A中的數(shù)開方; ③A=Z,B=Q,f:A中的數(shù)取倒數(shù); ④A=R,B={正實數(shù)},f:A中的數(shù)取絕對值, 是從集合A到集合B的函數(shù)的為________. 解析 其中②,由于1的開方數(shù)不唯一,因此f不是A到B的函數(shù);其中③,A中的元素0在B中沒有對應元素;其中④,A中的元素0在B中沒有對應元素. 答案?、? 7.已知f=,則f(x)的解析式為________. 解
19、析 令t=,由此得x=(t≠-1), 所以f(t)==, 從而f(x)的解析式為f(x)=(x≠-1). 答案 f(x)=(x≠-1) 8.(xx·武漢一模)若函數(shù)f(x)=的定義域為R,則a的取值范圍是________. 解析 由題意知2x2+2ax-a-1≥0恒成立. ∴x2+2ax-a≥0恒成立, ∴Δ=4a2+4a≤0,∴-1≤a≤0. 答案 [-1,0] 三、解答題 9.已知f(x)是二次函數(shù),若f(0)=0,且f(x+1)=f(x)+x+1.求函數(shù)f(x)的解析式. 解 設f(x)=ax2+bx+c(a≠0),又f(0)=0, ∴c=0,即f(x)=ax2+
20、bx.又f(x+1)=f(x)+x+1. ∴a(x+1)2+b(x+1)=ax2+(b+1)x+1. ∴(2a+b)x+a+b=(b+1)x+1, ∴解得∴f(x)=x2+x. 10.根據(jù)如圖所示的函數(shù)y=f(x)的圖象,寫出函數(shù)的解析式. 解 當-3≤x<-1時,函數(shù)y=f(x)的圖象是一條線段(右端點除外),設f(x)=ax+b(a≠0),將點(-3,1),(-1,-2)代入,可得f(x)=-x-; 當-1≤x<1時,同理可設f(x)=cx+d(c≠0), 將點(-1,-2),(1,1)代入,可得f(x)=x-; 當1≤x<2時,f(x)=1. 所以f(x)= 能力
21、提升題組 (建議用時:25分鐘) 11.設f(x)=lg,則f+f的定義域為( ) A.(-4,0)∪(0,4) B.(-4,-1)∪(1,4) C.(-2,-1)∪(1,2) D.(-4,-2)∪(2,4) 解析 ∵>0,∴-2<x<2, ∴-2<<2且-2<<2, 取x=1,則=2不合題意(舍去), 故排除A,取x=2,滿足題意,排除C,D,故選B. 答案 B 12.(xx·包頭測試與評估)設函數(shù)f(x)=則 滿足f(x)≤3的x的取值范圍是( ) A.[0,+∞) B.[-1,3] C.[0,3] D.[1,+∞) 解析 依題意,不等式f(x)≤3等價
22、于①或 ②解①得0≤x≤1,解②得x>1.因此,滿足f(x)≤3的x的取值范圍是[0,1]∪(1,+∞)=[0,+∞). 答案 A 13.(xx·杭州質檢)函數(shù)f(x)=ln的值域是________. 解析 依題意,因為 |x|+1≥1,則0<≤1, ln≤ln 1=0,即函數(shù)的值域是(-∞,0]. 答案 (-∞,0] 14.某人開汽車沿一條直線以60 km/h的速度從A地到150 km遠處的B地.在B地停留1 h后,再以50 km/h的速度返回A地,把汽車與A地的距離x(km)表示為時間t(h)(從A地出發(fā)開始)的函數(shù),并畫出函數(shù)的圖象. 解 x= 其圖象如圖所示.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點美食推薦
- XX國有企業(yè)黨委書記個人述責述廉報告及2025年重點工作計劃
- 世界濕地日濕地的含義及價值
- 20XX年春節(jié)節(jié)后復工安全生產培訓人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點節(jié)后常見的八大危險
- 廈門城市旅游介紹廈門景點介紹廈門美食展示
- 節(jié)后開工第一課復工復產十注意節(jié)后復工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓
- 深圳城市旅游介紹景點推薦美食探索
- 節(jié)后復工安全生產培訓勿忘安全本心人人講安全個個會應急
- 預防性維修管理
- 常見閥門類型及特點
- 設備預防性維修
- 2.乳化液泵工理論考試試題含答案