(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修2
《(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修2》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用版)2018-2019學(xué)年高中數(shù)學(xué) 第一章 三角函數(shù) 1.1.2 弧度制學(xué)案 新人教A版必修2(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 1.1.2 弧度制 學(xué)習(xí)目標(biāo) 1.理解角度制與弧度制的概念,能對弧度和角度進(jìn)行正確的轉(zhuǎn)換.2.體會(huì)引入弧度制的必要性,建立角的集合與實(shí)數(shù)集一一對應(yīng)關(guān)系.3.掌握并能應(yīng)用弧度制下的扇形弧長公式和面積公式. 知識(shí)點(diǎn)一 角度制與弧度制 思考1 在初中學(xué)過的角度制中,1度的角是如何規(guī)定的? 答案 周角的等于1度. 思考2 在弧度制中,1弧度的角是如何規(guī)定的,如何表示? 答案 把長度等于半徑長的弧所對的圓心角叫做1弧度(radian)的角,用符號(hào)rad表示. 思考3 “1弧度的角”的大小和所在圓的半徑大小有關(guān)系嗎? 答案 “1弧度的角”的大小等于半徑長的圓弧所對的圓心角,是一個(gè)定
2、值,與所在圓的半徑大小無關(guān). 梳理 (1)角度制和弧度制 角度制 用度作為單位來度量角的單位制叫做角度制,規(guī)定1度的角等于周角的 弧度制 長度等于半徑長的弧所對的圓心角叫做1弧度的角,用符號(hào)rad表示,讀作弧度.以弧度作為單位來度量角的單位制叫做弧度制 (2)角的弧度數(shù)的計(jì)算 如果半徑為r的圓的圓心角α所對弧的長為l,那么,角α的弧度數(shù)的絕對值是|α|=. 知識(shí)點(diǎn)二 角度制與弧度制的換算 思考 角度制和弧度制都是度量角的單位制,它們之間如何進(jìn)行換算呢? 答案 利用1°= rad和1 rad=°進(jìn)行弧度與角度的換算. 梳理 (1)角度與弧度的互化 角度化弧度 弧度化
3、角度 360°=2π rad 2π rad=360° 180°=π rad π rad=180° 1°= rad≈0.017_45 rad 1 rad=°≈57.30° (2)一些特殊角的度數(shù)與弧度數(shù)的對應(yīng)關(guān)系 度 0° 1° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° 弧度 0 π 2π 知識(shí)點(diǎn)三 扇形的弧長及面積公式 思考 扇形的面積與弧長公式用弧度怎么表示? 答案 設(shè)扇形的半徑為R,弧長為l,α為其圓心角的弧度數(shù),則: α為度數(shù) α為弧
4、度數(shù) 扇形的弧長 l= l=αR 扇形的面積 S= S=lR=αR2 1.1 rad的角和1°的角大小相等.( × ) 提示 1 rad的角和1°的角大小不相等,1°= rad. 2.用弧度來表示的角都是正角.( × ) 提示 弧度也可表示負(fù)角,負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù). 3.“1弧度的角”的大小和所在圓的半徑大小無關(guān).( √ ) 提示 “1弧度的角”的大小等于半徑長的圓弧所對的圓心角,是一個(gè)定值,與所在圓的半徑大小無關(guān). 類型一 角度與弧度的互化 例1 將下列角度與弧度進(jìn)行互化. (1)20°;(2)-15°;(3);(4)-. 考點(diǎn) 弧度制 題點(diǎn)
5、 角度與弧度的互化 解 (1)20°==. (2)-15°=-=-. (3)=×180°=105°. (4)-=-×180°=-396°. 反思與感悟 將角度轉(zhuǎn)化為弧度時(shí),要把帶有分、秒的部分化為度之后,牢記π rad=180°即可求解.把弧度轉(zhuǎn)化為角度時(shí),直接用弧度數(shù)乘以°即可. 跟蹤訓(xùn)練1 (1)把下列角度化成弧度: ①-150°=________;②2 100°=________; ③11°15′=________;④112°30′=________. (2)把下列弧度化成角度: ①=________;②-=________; ③=________;④-=_____
6、___. 考點(diǎn) 弧度制 題點(diǎn) 角度與弧度的互化 答案 (1)①-?、讦小、邸、? (2)①30°?、冢?00°?、?1°?、埽?5° 類型二 用弧度制表示終邊相同的角 例2 把下列各角化成2kπ+α(0≤α<2π,k∈Z)的形式,并指出是第幾象限角. (1)-1 500°;(2);(3)-4. 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+,是第四象限角. (2)∵=2π+, ∴與終邊相同,是第四象限角. (3)∵-4=-2π+(2π-4),<2π-4<π.
7、∴-4與2π-4終邊相同,是第二象限角. 反思與感悟 用弧度制表示終邊相同的角2kπ+α(k∈Z)時(shí),其中2kπ是π的偶數(shù)倍,而不是整數(shù)倍,還要注意角度制與弧度制不能混用. 跟蹤訓(xùn)練2 (1)把-1 480°寫成α+2kπ(k∈Z)的形式,其中0≤α≤2π; (2)在[0°,720°]內(nèi)找出與角終邊相同的角. 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 解 (1)∵-1 480°=-1 480×=-, 而-=-10π+,且0≤α≤2π,∴α=. ∴-1 480°=+2×(-5)π. (2)∵=×°=72°, ∴終邊與角相同的角為θ=72°+k·360°(k∈Z), 當(dāng)k=0時(shí)
8、,θ=72°;當(dāng)k=1時(shí),θ=432°. ∴在[0°,720°]內(nèi)與角終邊相同的角為72°,432°. 類型三 扇形的弧長及面積公式的應(yīng)用 例3 (1)若扇形的中心角為120°,半徑為,則此扇形的面積為( ) A.π B. C. D. (2)如果2弧度的圓心角所對的弦長為4,那么這個(gè)圓心角所對的弧長為( ) A.2 B. C.2sin 1 D. 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 答案 (1)A (2)D 解析 (1)扇形的中心角為120°=,半徑為, 所以S扇形=|α|r2=××()2=π. (2)連接圓心與弦的中點(diǎn),則以
9、弦心距、弦長的一半、半徑長為長度的線段構(gòu)成一個(gè)直角三角形,半弦長為2,其所對的圓心角也為2,故半徑長為.這個(gè)圓心角所對的弧長為2×=. 反思與感悟 聯(lián)系半徑、弧長和圓心角的有兩個(gè)公式:一是S=lr=|α|r2,二是l=|α|r,如果已知其中兩個(gè),就可以求出另一個(gè).求解時(shí)應(yīng)注意先把度化為弧度,再計(jì)算. 跟蹤訓(xùn)練3 一個(gè)扇形的面積為1,周長為4,求圓心角的弧度數(shù). 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 解 設(shè)扇形的半徑為R,弧長為l,則2R+l=4, ∴l(xiāng)=4-2R,根據(jù)扇形面積公式S=lR, 得1=(4-2R)·R, ∴R=1,∴l(xiāng)=2,∴α===
10、2, 即扇形的圓心角為2 rad. 1.下列說法正確的是( ) A.1弧度就是1度的圓心角所對的弧 B.1弧度是長度為半徑的弧 C.1弧度是1度的弧與1度的角之和 D.1弧度是長度等于半徑長的弧所對的圓心角的大小 考點(diǎn) 弧度制 題點(diǎn) 弧度制的定義 答案 D 解析 由弧度的定義可知D正確. 2.把化為角度是( ) A.270° B.280° C.288° D.318° 考點(diǎn) 弧度制 題點(diǎn) 角度與弧度的互化 答案 C 解析?。健痢悖?88°. 3.若θ=-5,則角θ的終邊在( ) A.第四象限 B.第三象限 C.第二象限 D.第一象
11、限 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 答案 D 解析 2π-5與-5的終邊相同, ∵2π-5∈, ∴2π-5是第一象限角,則-5也是第一象限角. 4.(2017·浙江省91聯(lián)盟聯(lián)考)如圖,以正方形ABCD的頂點(diǎn)A為圓心,邊AB的長為半徑作扇形EAB,若圖中兩塊陰影部分的面積相等,則∠EAD的弧度數(shù)大小為________. 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的面積公式 答案 2- 解析 設(shè)正方形的邊長為a,∠EAD=α, 由已知可得a2-πa2=αa2,∴α=2-. 5.已知扇形AOB的圓心角α為,半徑長R為6,求: (1)弧AB的長; (2)扇形所含
12、弓形的面積. 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 解 (1)l=α·R=π×6=4π, 所以弧AB的長為4π. (2)S扇形OAB=lR=×4π×6=12π. 如圖所示,過點(diǎn)O作OD⊥AB,交AB于點(diǎn)D,π=120°, 所以∠AOD=60°,∠DAO=30°, 于是有S△OAB=×AB×OD =×2×6cos 30°×3=9. 所以弓形的面積為S扇形OAB-S△OAB=12π-9. 所以弓形的面積是12π-9. 1.角的概念推廣后,在弧度制下,角的集合與實(shí)數(shù)集R之間建立起一一對應(yīng)的關(guān)系:每一個(gè)角都有唯一的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))
13、與它對應(yīng);反過來,每一個(gè)實(shí)數(shù)也都有唯一的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對應(yīng). 2.解答角度與弧度的互化問題的關(guān)鍵在于充分利用“180°=π rad”這一關(guān)系式. 易知:度數(shù)× rad=弧度數(shù),弧度數(shù)×°=度數(shù). 3.在弧度制下,扇形的弧長公式及面積公式都得到了簡化,在具體應(yīng)用時(shí),要注意角的單位取弧度. 一、選擇題 1.下列說法中,錯(cuò)誤的是( ) A.“度”與“弧度”是度量角的兩種不同的度量單位 B.1°的角是周角的,1 rad的角是周角的 C.1 rad的角比1°的角要大 D.用角度制和弧度制度量角,都與圓的半徑有關(guān) 考點(diǎn) 弧度制 題點(diǎn) 弧度制的定義 答案
14、 D 解析 根據(jù)1度,1弧度的定義可知只有D是錯(cuò)誤的,故選D. 2.-240°化為弧度是( ) A.-π B.-π C.-π D.-π 考點(diǎn) 弧度制 題點(diǎn) 角度與弧度的互化 答案 A 解析?。?40°=-240×=-π. 3.(2017·濰坊檢測)圓的半徑是6 cm,則圓心角為15°的扇形面積是( ) A. cm2 B. cm2 C.π cm2 D.3π cm2 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的面積公式 答案 B 解析 因?yàn)?5°=,所以l=×6=(cm), 所以S=lr=××6=(cm2). 4.設(shè)角α=-2弧度,則α所在的象限為(
15、 ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 答案 C 解析 ∵-π<-2<-, ∴2π-π<2π-2<2π-, 即π<2π-2<π, ∴2π-2為第三象限角,∴α為第三象限角. 5.把-π表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是( ) A.-π B.-2π C.π D.-π 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 答案 A 解析 ∵-π=-2π+ =2×(-1)π+, ∴θ=-π. 6.若扇形圓心角為,則扇形內(nèi)切圓的面積與扇形面積之比為( ) A.1∶3 B.
16、2∶3 C.4∶3 D.4∶9 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的面積公式 答案 B 解析 設(shè)扇形的半徑為R,扇形內(nèi)切圓半徑為r, 則R=r+=r+2r=3r.∴S內(nèi)切圓=πr2. S扇形=αR2=××R2=××9r2=πr2. ∴S內(nèi)切圓∶S扇形=2∶3. 7.《九章算術(shù)》是我國古代數(shù)學(xué)的杰出代表作.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=(弦×矢+矢2).弧田(如圖)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對的弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,半徑為4 m的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是( ) A.
17、6 m2 B.9 m2 C.12 m2 D.15 m2 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 答案 B 解析 根據(jù)題設(shè),弦=2×4sin=4(m), 矢=4-2=2(m), 故弧田面積=×(弦×矢+矢2)=×(4×2+22) =4+2≈9(m2). 二、填空題 8.-π是第________象限的角. 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 答案 三 解析 因?yàn)椋校剑?π-π,而-π是第三象限的角,所以-π是第三象限的角. 9.(2017·寧波期末)弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無窮小分析概
18、論》中提出把圓的半徑作為弧長的度量單位.已知一個(gè)扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是________. 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長公式 答案 1 解析 設(shè)扇形的弧長和半徑長為l,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是α==1. 10.時(shí)針經(jīng)過一小時(shí),轉(zhuǎn)過了________. 考點(diǎn) 弧度制的應(yīng)用 題點(diǎn) 弧度制的應(yīng)用 答案?。?rad 解析 時(shí)針經(jīng)過一小時(shí),轉(zhuǎn)過-30°, 又-30°=- rad. 11.已知弧長為π cm的弧所對的圓心角為,則這條弧所在圓的直徑是________ cm,這條弧所在的扇形面積是________ cm2. 考點(diǎn)
19、 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 答案 8 2π 12.π是第________象限角. 答案 三 解析 =20π+. ∵與終邊相同, 又∵是第三象限角, ∴是第三象限角. 三、解答題 13.已知一扇形的圓心角是α,所在圓的半徑是R. (1)若α=60°,R=10 cm,求扇形的弧長及該弧所在的弓形面積; (2)若扇形的周長是a,當(dāng)α為多少弧度時(shí),該扇形有最大面積? 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 解 (1)設(shè)弧長為l,弓形面積為S弓, ∵α=60°=,R=10(cm),∴l(xiāng)=αR= (cm). S弓
20、=S扇-S△=××10-2××10×sin ×10×cos =50 (cm2). (2)∵l+2R=a,∴l(xiāng)=a-2R, 從而S=·l·R=(a-2R)·R =-R2+R=-2+. ∴當(dāng)半徑R=時(shí),l=a-2·=, 扇形面積的最大值是,這時(shí)α==2(rad). ∴當(dāng)扇形的圓心角為2 rad,半徑為時(shí),扇形面積最大,為. 四、探究與拓展 14.如圖,已知一個(gè)長為 dm,寬為1 dm的長方形木塊在桌面上作無滑動(dòng)的翻滾,翻滾到第四面時(shí)被一小木板擋住,使木塊底面與桌面成30°的角.求點(diǎn)A走過的路程的長及走過的弧度所對扇形的總面積. 考點(diǎn) 扇形的弧長與面積公式 題點(diǎn) 扇形的弧長與面積公式的綜合應(yīng)用 解 AA1所在圓弧的半徑是2 dm,圓心角為;A1A2所在圓弧的半徑是1 dm,圓心角為;A2A3所在圓弧的半徑是 dm,圓心角為,所以走過的路程是3段圓弧之和,即2×+1×+×=π(dm);3段圓弧所對的扇形的總面積是×2×π+×+××=(dm2). 12
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評價(jià)新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時(shí)代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會(huì)課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動(dòng)中國十大人物事跡及頒獎(jiǎng)詞
- XX教育系統(tǒng)單位述職報(bào)告教育工作概述教育成果展示面臨的挑戰(zhàn)未來規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個(gè)語文優(yōu)秀作文標(biāo)題
- 初中語文考試專項(xiàng)練習(xí)題(含答案)