《(文理通用)高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專(zhuān)題2 函數(shù)與導(dǎo)數(shù) 第3講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《(文理通用)高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專(zhuān)題2 函數(shù)與導(dǎo)數(shù) 第3講 導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用課件(63頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一部分第一部分專(zhuān)題強(qiáng)化突破專(zhuān)題強(qiáng)化突破專(zhuān)題二函數(shù)與導(dǎo)數(shù)專(zhuān)題二函數(shù)與導(dǎo)數(shù)第三講導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用第三講導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用(文文)第三講導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用與定積分第三講導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用與定積分(理理)1 1高考考點(diǎn)聚焦高考考點(diǎn)聚焦2 2核心知識(shí)整合核心知識(shí)整合3 3高考真題體驗(yàn)高考真題體驗(yàn)4 4命題熱點(diǎn)突破命題熱點(diǎn)突破5 5課后強(qiáng)化訓(xùn)練課后強(qiáng)化訓(xùn)練高考考點(diǎn)聚焦高考考點(diǎn)聚焦高考考點(diǎn)考點(diǎn)解讀導(dǎo)數(shù)的幾何意義(文)1.求過(guò)某點(diǎn)的切線的斜率、方程或切點(diǎn)的坐標(biāo)2根據(jù)過(guò)某點(diǎn)切線方程或其與某線平行、垂直等求參數(shù)的值導(dǎo)數(shù)與定積分的幾何意義(理)1.確定或應(yīng)用過(guò)某點(diǎn)的切線的斜率(方程)2定積分的簡(jiǎn)單計(jì)算或利用定積分求某些圖形的面
2、積利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性1.利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,討論含有參數(shù)的較復(fù)雜基本函數(shù)的單調(diào)性(區(qū)間)2根據(jù)函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求某些參數(shù)的取值范圍利用導(dǎo)數(shù)研究函數(shù)的極值和最值1.利用函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,求某些含有參數(shù)的較復(fù)雜基本函數(shù)的極值的大小、個(gè)數(shù)或最值2根據(jù)函數(shù)極值的存在情況,利用導(dǎo)數(shù)求某些參數(shù)的取值范圍 備考策略 本部分內(nèi)容在備考時(shí)應(yīng)注意以下幾個(gè)方面:(1)理解并掌握求導(dǎo)公式和求導(dǎo)法則及定積分的計(jì)算公式及性質(zhì)(2)熟練掌握利用導(dǎo)數(shù)研究曲線切線問(wèn)題、函數(shù)的單調(diào)性、極(最)值問(wèn)題的方法和規(guī)律 預(yù)測(cè)2019年命題熱點(diǎn)為:(1)根據(jù)曲線的切線的斜率大小、方程或切線的性質(zhì)求參數(shù)的取值問(wèn)題
3、(2)利用導(dǎo)數(shù)研究含有參數(shù)的高次式、分式、指數(shù)式(主要含ex),對(duì)數(shù)式(主要含ln x)及三角式(主要含sinx,cosx)函數(shù)的單調(diào)性、極(最)值問(wèn)題核心知識(shí)整合核心知識(shí)整合 1基本初等函數(shù)的八個(gè)導(dǎo)數(shù)公式0 各極值各極值 端點(diǎn)處的函數(shù)值端點(diǎn)處的函數(shù)值f(a),f(b)比較比較 1判斷極值的條件掌握不清:利用導(dǎo)數(shù)判斷函數(shù)的極值時(shí),忽視“導(dǎo)數(shù)等于零,并且兩側(cè)導(dǎo)數(shù)的符號(hào)相反”這兩個(gè)條件同時(shí)成立 2混淆在點(diǎn)P處的切線和過(guò)點(diǎn)P的切線:前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求解時(shí)應(yīng)先設(shè)出切點(diǎn)坐標(biāo) 3關(guān)注函數(shù)的定義域:求函數(shù)的單調(diào)區(qū)間及極(最)值應(yīng)先求定義域(理)4.對(duì)復(fù)合函數(shù)求導(dǎo)法則用錯(cuò)高考真題體驗(yàn)高考
4、真題體驗(yàn)D A 3(2017浙江卷,7)函數(shù)yf(x)的導(dǎo)函數(shù)yf(x)的圖象如圖所示,則函數(shù)yf(x)的圖象可能是()Dy2x2 y2x e 3 方法二:f(x)(ax1)(x1)ex.當(dāng)a0時(shí),令f(x)0得x1.f(x),f(x)隨x的變化情況如下表:x(,1)1(1,)f(x)0f(x)極大值 所以f(x)在x1處取得極大值,不合題意()當(dāng)x11時(shí),f(x),f(x)隨x的變化情況如下表:x(,t2)t2(t2,t2)t2(t2,)f(x)00f(x)極大值極小值命題熱點(diǎn)突破命題熱點(diǎn)突破命題方向命題方向1文文導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義理理導(dǎo)數(shù)的幾何意義與定積分導(dǎo)數(shù)的幾何意義與定積分(
5、1,1)3 C 規(guī)律總結(jié) 1求曲線yf(x)的切線方程的三種類(lèi)型及方法(1)已知切點(diǎn)P(x0,y0),求yf(x)在點(diǎn)P處的切線方程:求出切線的斜率f(x0),由點(diǎn)斜式寫(xiě)出方程(2)已知切線的斜率為k,求yf(x)的切線方程 設(shè)切點(diǎn)P(x0,y0),通過(guò)方程kf(x0)解得x0,再由點(diǎn)斜式寫(xiě)出方程(3)已知切線上一點(diǎn)(非切點(diǎn)),求yf(x)的切線方程:設(shè)切點(diǎn)P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f(x0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點(diǎn)斜式或兩點(diǎn)式寫(xiě)出方程 2根據(jù)過(guò)某點(diǎn)切線方程(斜率)或其與某線平行、垂直等求參數(shù)問(wèn)題的解法:利用導(dǎo)數(shù)的幾何意義、切點(diǎn)坐標(biāo)、切線斜率之間的
6、關(guān)系構(gòu)建方程(組)或函數(shù)求解 3(理)利用定積分求平面圖形的面積的兩個(gè)關(guān)鍵點(diǎn) 關(guān)鍵點(diǎn)一:正確畫(huà)出幾何圖形,結(jié)合圖形位置,準(zhǔn)確確定積分區(qū)間以及被積函數(shù),從而得到面積的積分表達(dá)式,再利用微積分基本定理求出積分值 關(guān)鍵點(diǎn)二:根據(jù)圖形的特征,選擇合適的積分變量在以y為積分變量時(shí),應(yīng)注意將曲線方程變?yōu)閤(y)的形式,同時(shí),積分上、下限必須對(duì)應(yīng)y的取值 易錯(cuò)提醒:求曲線的切線方程時(shí),務(wù)必分清點(diǎn)P處的切線還是過(guò)點(diǎn)P的切線,前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求解時(shí)應(yīng)先求出切點(diǎn)坐標(biāo)A C D 命題方向命題方向2利用導(dǎo)數(shù)研究函數(shù)單調(diào)性利用導(dǎo)數(shù)研究函數(shù)單調(diào)性命題方向命題方向3用導(dǎo)數(shù)研究函數(shù)的極值與最值用導(dǎo)數(shù)研究函數(shù)的極值與最值 規(guī)律總結(jié) 利用導(dǎo)數(shù)研究函數(shù)極值、最值的方法(1)若求極值,則先求方程f(x)0的根,再檢查f(x)在方程根的左右函數(shù)值的符號(hào)(2)若探究極值點(diǎn)個(gè)數(shù),則探求方程f(x)0在所給范圍內(nèi)實(shí)根的個(gè)數(shù)(3)若已知極值大小或存在情況,則轉(zhuǎn)化為已知方程f(x)0根的大小或存在情況來(lái)求解(4)求函數(shù)f(x)在閉區(qū)間a,b的最值時(shí),在得到極值的基礎(chǔ)上,結(jié)合區(qū)間端點(diǎn)的函數(shù)值f(a),f(b)與f(x)的各極值進(jìn)行比較,從而得到函數(shù)的最值