分級變速主傳動系統(tǒng)設計【Nmin=35.5rmin Nmax=560rmin Z=9 φ=1.41 P=3kW n=1430rmin】
分級變速主傳動系統(tǒng)設計【Nmin=35.5rmin Nmax=560rmin Z=9 φ=1.41 P=3kW n=1430rmin】,Nmin=35.5rmin Nmax=560rmin Z=9 φ=1.41 P=3kW n=1430rmin,分級變速主傳動系統(tǒng)設計【Nmin=35.5rmin,Nmax=560rmin,Z=9,φ=1.41,分級
哈爾濱理工大學榮成學院課程設計任務書
設計小組
第2 組
班級
機械11-2 班
專業(yè)
機械設計制造及其自動化
小組成員
姓名
學號
任務分工
姓名
學號
任務分工
馮杰
1130060202
計算
郭云雨
1130060205
計算
宮榮成
1130060204
繪圖
賈智博
1130060207
計算
主要技術參數
題目11:分級變速主傳動系統(tǒng)設計
技術參數:
Nmin=35.5r/min;Nmax=560r/min;
Z=9級;公比為1.41;電動機功率P=3kW;電機轉速n=1430r/min
指導教師
王仲文
聯(lián)系方式
13754602538
設計內容:
1、運動設計:根據給定的極限轉速、變速級數、及公比值,確定其轉速范圍、轉速數列、結構式、結構網,繪制轉速圖和傳動系統(tǒng)圖,確定齒輪齒數,計算轉速誤差。
2、動力計算:根據給定的有關參數,確定各傳動件的計算轉速;確定各傳動軸和主軸的軸徑,確定并驗算各傳動齒輪的模數,計算主軸的合理跨距;對靠近主軸的傳動軸進行剛度校核,并驗算該軸上軸承的壽命。
3、繪制下列圖紙:(1)主軸箱橫剖面圖1張(A1或A0)。(2)主軸零件工作圖(A2或A3),并附在設計計算說明書內。
4、編寫設計計算說明書(約8000字左右):設計計算說明書書寫格式梗概
摘要;目錄;課程設計的目的;課程設計題目、主要技術參數和技術要求
運動設計;動力計算;主要零部件的選擇;校核;結束語;參考資料等
5、提交課程設計計算說明書及圖紙打印稿和電子稿,并準備答辯。
課程設計時間:2014年12月22日至2015年01月02日
答辯時間:2014年01月02日
主要參考文獻、資料:
【1】、趙韓.《機械系統(tǒng)設計》.高等教育出版社;
【2】、周堃敏.《機械系統(tǒng)設計》.高等教育出版社
【3】、于惠力 主編 《機械設計》 科學出版社 第一版
【4】、戴 曙 主編 《金屬切削機床設計》 機械工業(yè)出版社
【5】、趙九江 主編 《材料力學》 哈爾濱工業(yè)大學出版社 第一版
【6】、鄭文經 主編 《機械原理》 高等教育出版社 第七版
【7】、于惠力 主編 《機械設計課程設計》 科學出版社
機械系統(tǒng)設計課程設計計算書
哈爾濱理工大學榮成學院課程設計任務書
設計小組
第2 組
班級
機械11-2 班
專業(yè)
機械設計制造及其自動化
小組成員
姓名
學號
任務分工
姓名
學號
任務分工
馮杰
1130060202
計算
郭云雨
1130060205
計算
宮榮成
1130060204
繪圖
賈智博
1130060207
計算
主要技術參數
題目11:分級變速主傳動系統(tǒng)設計
技術參數:
Nmin=35.5r/min;Nmax=560r/min;
Z=9級;公比為1.41;電動機功率P=3kW;電機轉速n=1430r/min
指導教師
王仲文
聯(lián)系方式
13754602538
設計內容:
1、運動設計:根據給定的極限轉速、變速級數、及公比值,確定其轉速范圍、轉速數列、結構式、結構網,繪制轉速圖和傳動系統(tǒng)圖,確定齒輪齒數,計算轉速誤差。
2、動力計算:根據給定的有關參數,確定各傳動件的計算轉速;確定各傳動軸和主軸的軸徑,確定并驗算各傳動齒輪的模數,計算主軸的合理跨距;對靠近主軸的傳動軸進行剛度校核,并驗算該軸上軸承的壽命。
3、繪制下列圖紙:(1)主軸箱橫剖面圖1張(A1或A0)。(2)主軸零件工作圖(A2或A3),并附在設計計算說明書內。
4、編寫設計計算說明書(約8000字左右):設計計算說明書書寫格式梗概
摘要;目錄;課程設計的目的;課程設計題目、主要技術參數和技術要求
運動設計;動力計算;主要零部件的選擇;校核;結束語;參考資料等
5、提交課程設計計算說明書及圖紙打印稿和電子稿,并準備答辯。
課程設計時間:2014年12月22日至2015年01月02日
答辯時間:2014年01月02日
主要參考文獻、資料:
【1】、趙韓.《機械系統(tǒng)設計》.高等教育出版社;
【2】、周堃敏.《機械系統(tǒng)設計》.高等教育出版社
【3】、于惠力 主編 《機械設計》 科學出版社 第一版
【4】、戴 曙 主編 《金屬切削機床設計》 機械工業(yè)出版社
【5】、趙九江 主編 《材料力學》 哈爾濱工業(yè)大學出版社 第一版
【6】、鄭文經 主編 《機械原理》 高等教育出版社 第七版
【7】、于惠力 主編 《機械設計課程設計》 科學出版社
分級變速主傳動系統(tǒng)設計
摘 要
本說明書著重研究機床主傳動系統(tǒng)的設計步驟和設計方法,根據已確定的運動參數以變速箱展開圖的總中心距最小為目標,擬定變速系統(tǒng)的變速方案,以獲得最優(yōu)方案以及較高的設計效率。在機床主傳動系統(tǒng)中,為減少齒輪數目,簡化結構,縮短軸向尺寸,用齒輪齒數的設計方法是試算,湊算法,計算麻煩且不易找出合理的設計方案。本文通過對主傳動系統(tǒng)中三聯(lián)滑移齒輪傳動特點的分析與研究,繪制零件工作圖與主軸箱展開圖及剖視圖。
關鍵詞 分級變速;傳動系統(tǒng)設計;傳動副;結構網;結構式;齒輪模數,傳動比
26
目 錄
摘 要 II
第1章 緒論 1
1.1 課程設計的目的 1
1.2課程設計的內容 1
1.2.1 理論分析與設計計算 1
1.2.2 圖樣技術設計 1
1.2.3編制技術文件 1
1.3 課程設計題目、主要技術參數和技術要求 2
1.3.1課程設計題目和主要技術參數 2
1.3.2技術要求 2
第2章 運動設計 3
2.1 運動參數及轉速圖的確定 3
2.1.1 轉速范圍 3
2.1.2 轉速數列 3
2.1.3確定結構式 3
2.1.4確定結構網 3
2.1.5繪制轉速圖和傳動系統(tǒng)圖 4
2.2 確定各變速組此論傳動副齒數 4
2.3 核算主軸轉速誤差 5
第3章 動力計算 7
3.1 帶傳動設計 7
3.2 計算設計功率Pd 7
3.3 選擇帶型 8
3.4 確定帶輪的基準直徑并驗證帶速 8
3.5 確定中心距離、帶的基準長度并驗算小輪包角 9
3.6 確定帶的根數z 10
3.7 確定帶輪的結構和尺寸 10
3.8 確定帶的張緊裝置 10
3.9 計算轉速的計算 12
3.10 齒輪模數計算及驗算 13
3.11 主軸合理跨距的計算 18
第4章 主要零部件的選擇 19
第5章 校核 20
5.1 軸的校核 20
5.2 軸承壽命校核 23
第6章 結構設計及說明 23
6.1 結構設計的內容、技術要求和方案 23
6.2 展開圖及其布置 24
結論 25
參考文獻 26
致謝 27
第1章 緒論
1.1 課程設計的目的
《機械系統(tǒng)設計》課程設計是在學完本課程后,進行一次學習設計的綜合性練習。通過課程設計,使學生能夠運用所學過的基礎課、技術基礎課和專業(yè)課的有關理論知識,及生產實習等實踐技能,達到鞏固、加深和拓展所學知識的目的。通過課程設計,分析比較機械系統(tǒng)中的某些典型機構,進行選擇和改進;結合結構設計,進行設計計算并編寫技術文件;完成系統(tǒng)主傳動設計,達到學習設計步驟和方法的目的。通過設計,掌握查閱相關工程設計手冊、設計標準和資料的方法,達到積累設計知識和設計技巧,提高學生設計能力的目的。通過設計,使學生獲得機械系統(tǒng)基本設計技能的訓練,提高分析和解決工程技術問題的能力,并為進行機械系統(tǒng)設計創(chuàng)造一定的條件。
1.2課程設計的內容
《機械系統(tǒng)設計》課程設計內容由理論分析與設計計算、圖樣技術設計和技術文件編制三部分組成。
1.2.1 理論分析與設計計算
(1)機械系統(tǒng)的方案設計。設計方案的分析,最佳功能原理方案的確定。
(2)根據總體設計參數,進行傳動系統(tǒng)運動設計和計算。
(3)根據設計方案和零部件選擇情況,進行有關動力計算和校核。
1.2.2 圖樣技術設計
(1)選擇系統(tǒng)中的主要機件。
(2)工程技術圖樣的設計與繪制。
1.2.3編制技術文件
(1)對于課程設計內容進行自我經濟技術評價。
(2)編制設計計算說明書。
1.3 課程設計題目、主要技術參數和技術要求
1.3.1課程設計題目和主要技術參數
題目11:分級變速主傳動系統(tǒng)設計
技術參數:
Nmin=35.5r/min;Nmax=560r/min;
Z=9級;公比為1.41;電動機功率P=3kW;電機轉速n=1430r/min
1.3.2技術要求
(1)利用電動機完成換向和制動。
(2)各滑移齒輪塊采用單獨操縱機構。
(3)進給傳動系統(tǒng)采用單獨電動機驅動。
第2章 運動設計
2.1 運動參數及轉速圖的確定
2.1.1 轉速范圍
Rn===15.77
2.1.2 轉速數列
轉速數列。查《機械系統(tǒng)設計》表2-9標準數列表,首先找到35.5r/min、然后每隔5個數取一個值(1.41=1.066),
得出主軸的轉速數列為35.5 r/min、50 r/min、71 r/min、100 r/min、140 r/min、200 r/min,280 r/min,400 r/min,560r/min共9級。
2.1.3確定結構式
因為Z=9,可分解為:Z=31×33。
2.1.4確定結構網
根據“前多后少” , “先降后升” , “前密后疏”,“升2降4”的原則,選取傳動方案 Z=31×33,易知第一擴大組的變速范圍r=φp1(x1-1)=1.416=7.85〈8符合“升2降4”原則,其 結 構 網 如 圖
圖2-1 結構網 Z=31×33
2.1.5繪制轉速圖和傳動系統(tǒng)圖
(1)選擇電動機:采用Y系列封閉自扇冷式鼠籠型三相異步電動機。
(2)繪制轉速圖,如圖2-2所示:
圖2-2轉速圖
(3)畫主傳動系統(tǒng)圖。根據系統(tǒng)轉速圖及已知的技術參數,畫主傳動系統(tǒng)圖如圖2-3:
1-2軸最小中心距:A1_2min>1/2(Zmaxm+2m+D)
軸最小齒數和:Szmin>(Zmax+2+D/m)
2.2 確定各變速組此論傳動副齒數
(1)Sz100-120,中型機床Sz=70-100
(2)直齒圓柱齒輪Zmin18-20
圖2-3 主傳動系統(tǒng)圖
(7)齒輪齒數的確定。據設計要求Zmin≥18—20,由表4.1,根據各變速組公比,可得各傳動比和齒輪齒數,各齒輪齒數如表2-1。
齒輪齒數
傳動比
基本組
第一擴大組
1:2
1:2.8
1:4
2:1
1:1.41
1:4
代號
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
齒數
30
60
24
66
18
72
80
40
50
70
24
96
2.3 核算主軸轉速誤差
實際傳動比所造成的主軸轉速誤差,一般不應超過±10(-1)%,即
〈10(-1)%
各級轉速誤差
n
560
400
280
200
140
100
71
50
35.5
n`
575.5
402.8
287.7
203.3
142.38
102.08
72.84
50.99
36.56
誤差
2.76%
0.71%
2.76%
1.70%
1.70%
2.08%
2.59%
1.98%
2.99%
各級轉速誤差都都小于4.1%,因此不需要修改齒數。
第3章 動力計算
3.1 帶傳動設計
輸出功率P=3kW,轉速n1=1430r/min,n2=560r/min
3.2 計算設計功率Pd
表4 工作情況系數
工作機
原動機
ⅰ類
ⅱ類
一天工作時間/h
10~16
10~16
載荷
平穩(wěn)
液體攪拌機;離心式水泵;通風機和鼓風機();離心式壓縮機;輕型運輸機
1.0
1.1
1.2
1.1
1.2
1.3
載荷
變動小
帶式運輸機(運送砂石、谷物),通風機();發(fā)電機;旋轉式水泵;金屬切削機床;剪床;壓力機;印刷機;振動篩
1.1
1.2
1.3
1.2
1.3
1.4
載荷
變動較大
螺旋式運輸機;斗式上料機;往復式水泵和壓縮機;鍛錘;磨粉機;鋸木機和木工機械;紡織機械
1.2
1.3
1.4
1.4
1.5
1.6
載荷
變動很大
破碎機(旋轉式、顎式等);球磨機;棒磨機;起重機;挖掘機;橡膠輥壓機
1.3
1.4
1.5
1.5
1.6
1.8
根據V帶的載荷平穩(wěn),兩班工作制(16小時),查《機械設計》P296表4,
取KA=1.1。即
3.3 選擇帶型
普通V帶的帶型根據傳動的設計功率Pd和小帶輪的轉速n1按《機械設計》P297圖13-11選取。
根據算出的Pd=3.3kW及小帶輪轉速n1=1430r/min ,查圖得:dd=80~100可知應選取A型V帶。
3.4 確定帶輪的基準直徑并驗證帶速
由《機械設計》P298表13-7查得,小帶輪基準直徑為80~100mm
則取dd1= 100mm> ddmin.=75 mm(dd1根據P295表13-4查得)
表3. V帶帶輪最小基準直徑
槽型
Y
Z
A
B
C
D
E
20
50
75
125
200
355
500
由《機械設計》P295表13-4查“V帶輪的基準直徑”,得=250mm
① 誤差驗算傳動比: (為彈性滑動率)
誤差 符合要求
② 帶速
滿足5m/s300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結構,大帶輪選擇E型輪輻式結構。
帶輪的材料:選用灰鑄鐵,HT200。
3.8 確定帶的張緊裝置
選用結構簡單,調整方便的定期調整中心距的張緊裝置。
計算壓軸力
由《機械設計》P303表13-12查得,A型帶的初拉力F0=125.91N,上面已得到=159.44o,z=3,則
對帶輪的主要要求是質量小且分布均勻、工藝性好、與帶接觸的工作表面加工精度要高,以減少帶的磨損。轉速高時要進行動平衡,對于鑄造和焊接帶輪的內應力要小, 帶輪由輪緣、腹板(輪輻)和輪轂三部分組成。帶輪的外圈環(huán)形部分稱為輪緣,輪緣是帶輪的工作部分,用以安裝傳動帶,制有梯形輪槽。由于普通V帶兩側面間的夾角是40°,為了適應V帶在帶輪上彎曲時截面變形而使楔角減小,故規(guī)定普通V帶輪槽角 為32°、34°、36°、38°(按帶的型號及帶輪直徑確定),輪槽尺寸見表7-3。裝在軸上的筒形部分稱為輪轂,是帶輪與軸的聯(lián)接部分。中間部分稱為輪幅(腹板),用來聯(lián)接輪緣與輪轂成一整體。
表 普通V帶輪的輪槽尺寸(摘自GB/T13575.1-92)
項目
?
符號
槽型
Y
Z
A
B
C
D
E
基準寬度
b p
5.3
8.5
11.0
14.0
19.0
27.0
32.0
基準線上槽深
h amin
1.6
2.0
2.75
3.5
4.8
8.1
9.6
基準線下槽深
h fmin
4.7
7.0
8.7
10.8
14.3
19.9
23.4
槽間距
e
8 ± 0.3
12 ± 0.3
15 ± 0.3
19 ± 0.4
25.5 ± 0.5
37 ± 0.6
44.5 ± 0.7
第一槽對稱面至端面的距離
f min
6
7
9
11.5
16
23
28
最小輪緣厚
5
5.5
6
7.5
10
12
15
帶輪寬
B
B =( z -1) e + 2 f ? z —輪槽數
外徑
d a
輪 槽 角
32°
對應的基準直徑 d d
≤ 60
-
-
-
-
-
-
34°
-
≤ 80
≤ 118
≤ 190
≤ 315
-
-
36°
60
-
-
-
-
≤ 475
≤ 600
38°
-
> 80
> 118
> 190
> 315
> 475
> 600
極限偏差
± 1
± 0.5
V帶輪按腹板(輪輻)結構的不同分為以下幾種型式:
(1) 實心帶輪:用于尺寸較小的帶輪(dd≤(2.5~3)d時),如圖7 -6a。
(2) 腹板帶輪:用于中小尺寸的帶輪(dd≤ 300mm 時),如圖7-6b。
(3) 孔板帶輪:用于尺寸較大的帶輪((dd-d)> 100 mm 時),如圖7 -6c 。
(4) 橢圓輪輻帶輪:用于尺寸大的帶輪(dd> 500mm 時),如圖7-6d。
(a) (b) (c) (d)
圖7-6 帶輪結構類型
根據設計結果,可以得出結論:小帶輪選擇實心帶輪,如圖(a),大帶輪選擇腹板帶輪如圖(b)
3.2 計算轉速的計算
1、主軸的計算轉速
由《機械系統(tǒng)設計》表3-2中的公式
=35.5 =71r/min
取計算轉速為71r/min
2、傳動軸的計算轉速
在轉速圖上,軸IV在最低轉速71r/min時經過傳動組傳動副,得到主軸轉速為71r/min。這個轉速高于主軸計算轉速,在恒功率區(qū)間內,因此軸Ⅲ的最低轉速為該軸的計算轉速即nⅢj=280/min,同理可求得軸Ⅱ的計算轉速為=280r/min、軸Ⅰ計算轉速為=560 r/min
3、確定各傳動軸的計算轉速。
由機械設計知識可知,一對嚙合齒輪只需要校核危險的小齒輪,因此只需求出危險小齒輪的計算轉速??汕蟮闷溆鄡蓪Ш淆X輪中危險齒輪的計算轉速即
=71r/min,=71r/min
各計算轉速入表3-1。
表3-1 各軸計算轉速
軸 號
Ⅰ 軸
Ⅱ 軸
Ⅲ 軸
計算轉速 r/min
560
280
71
4、 確定齒輪副的計算轉速。齒輪Z裝在主軸上轉速,其中只有106r/min傳遞全功率,故Zj=106 r/min。依次可以得出其余齒輪的計算轉速,如表3-2。
5、
表3-2 齒輪副計算轉速
序號
Z
Z
Z
Z
Z
Z6
n
560
280
280
71
71
71
3.3 齒輪模數計算及驗算
傳動軸直徑按扭轉剛度用下式計算:
d=1.64(mm)
或 d=91(mm)
式中 d---傳動軸直徑(mm)
Tn---該軸傳遞的額定扭矩(N*mm) T=9550000;
N----該軸傳遞的功率(KW)
----該軸的計算轉速
---該軸每米長度的允許扭轉角,=0.5~。
各軸最小軸徑如表:
各軸最小軸徑如表:
軸 號
Ⅰ 軸
Ⅱ 軸
Ⅲ 軸
最小軸徑mm
35
40
45
(2)主(IV)軸軸頸直徑確定:
查表4-9選擇主軸前端直徑D1=80mm,后端直徑D2=64mm
軸承內徑d/D小于0.7 則取d=50mm
材料:45鋼。熱處理:調質Hre22-28
主軸懸伸量:a/D1=1.25--2.5 a=(1.25—2.5)D1=(1.25—2.5)x(80+64/2)=90—180 取a=120mm
最佳跨距
主軸:選擇主軸前端直徑,后端直徑
取,則平均直徑。
對于普通車床,主軸內孔直徑,故本例之中,主軸內孔直徑取為
支承形式選擇兩支撐,初取懸伸量,支撐跨距。
選擇平鍵連接,
因為ф=0.50~~1.0所以取值較大,計算的軸的直徑為最小直徑,也是危險直徑,所以實際裝配時可選用軸徑更大的軸。
4、模數計算,一般同一變速組內的齒輪取同一模數,選取負荷最重的小齒輪,按簡化的接觸疲勞強度公式進行計算,即mj=16338可得各組的模數,如表3-3所示。
(1)模數計算。一般同一變速組內的齒輪取同一模數,選取負荷最重的小齒輪,按簡化的接觸疲勞強度公式進行計算,即mj=16338可得各組的模數
式中 mj——按接觸疲勞強度計算的齒輪模數(mm);
——驅動電動機功率(kW);
——被計算齒輪的計算轉速(r/min);
——大齒輪齒數與小齒輪齒數之比,外嚙合取“+”,內嚙合取“-”;
——小齒輪的齒數(齒);
——齒寬系數,(B為齒寬,m為模數),;
——材料的許用接觸應力()。
得:基本組的模數mj=3.5 第一擴大組的模數mj=3.5
(2)基本組齒輪計算。
基本組齒輪幾何尺寸見下表
齒輪
Z1
Z1`
Z2
Z2`
Z3
Z3`
齒數
30
60
24
66
18
72
分度圓直徑
105
210
84
231
63
252
齒頂圓直徑
112
217
91
238
70
259
齒根圓直徑
96.25
201.25
75.25
222.25
54.25
243.25
齒寬
25
25
25
25
25
25
按基本組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。計算如下:
① 齒面接觸疲勞強度計算:
接觸應力驗算公式為
彎曲應力驗算公式為:
式中 N----傳遞的額定功率(kW),這里取N為電動機功率,N=4kW;
-----計算轉速(r/min). =850(r/min);
m-----初算的齒輪模數(mm), m=3.5(mm);
B----齒寬(mm);B=25(mm);
z----小齒輪齒數;z=18;
u----小齒輪齒數與大齒輪齒數之比,u=4;
-----壽命系數;
=
----工作期限系數;
T------齒輪工作期限,這里取T=15000h.;
-----齒輪的最低轉速(r/min), =500(r/min)
----基準循環(huán)次數,接觸載荷取=,彎曲載荷取=
m----疲勞曲線指數,接觸載荷取m=3;彎曲載荷取m=6;
----轉速變化系數,查【5】2上,取=0.60
----功率利用系數,查【5】2上,取=0.78
-----材料強化系數,查【5】2上, =0.60
-----工作狀況系數,取=1.1
-----動載荷系數,查【5】2上,取=1
------齒向載荷分布系數,查【5】2上,=1
Y------齒形系數,查【5】2上,Y=0.386;
----許用接觸應力(MPa),查【4】,表4-7,取=650 Mpa;
---許用彎曲應力(MPa),查【4】,表4-7,取=275 Mpa;
根據上述公式,可求得及查取值可求得:
=635 Mpa
=78 Mpa
(3)擴大組齒輪計算。
擴大組齒輪幾何尺寸見下表
齒輪
Z4
Z4`
Z5
Z5`
Z6
Z6`
齒數
80
40
50
70
24
96
分度圓直徑
280
140
175
245
84
336
齒頂圓直徑
287
147
182
252
91
343
齒根圓直徑
271.25
131.25
166.25
236.25
75.25
327.25
齒寬
25
25
25
25
25
25
按擴大組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。
同理根據基本組的計算,
查文獻【6】,可得 =0.62, =0.77,=0.60,=1.1,
=1,=1,m=3.5,=355;
可求得:
=619 Mpa
=135Mpa
3.5 主軸合理跨距的計算
設機床最大加工回轉直徑為?400mm,電動機功率P=3 kw,已選定的前后軸徑為 :,
定懸伸量a=120mm,主軸孔徑為30mm。
軸承剛度,主軸最大輸出轉矩
=955×104×(2.74/63)=415349(N.mm)床身上最常用的最大加工直徑,即經濟加工直徑約為最大回轉直徑的50%,這里取60%,即180mm,故半徑為0.09m;
切削力(沿y軸) Fc=415.349/0.09=4615N
背向力(沿x軸) Fp=0.5 Fc=2307N
總作用力 F==5159.72N
此力作用于工件上,主軸端受力為F=2522.28N。
先假設l/a=2,l=3a=240mm。前后支承反力RA和RB分別為
RA=F×=5159.72×=7739.58N
RB=F×=5159.72×=2579.86N
根據《機械系統(tǒng)設計》得:Kr=3.39得前支承的剛度:KA= 1815.06 N/ ;KB= 1626.2 N/;==1.12
主軸的當量外徑de=(80+60)/2=70mm,故慣性矩為
I==113.8×10-8m4
η==0.13
查《機械系統(tǒng)設計》圖 得 =2.0,與原假設接近,所以最佳跨距=120×2.0=240mm
合理跨距為(0.75-1.5),取合理跨距l(xiāng)=360mm。
根據結構的需要,主軸的實際跨距大于合理跨距,因此需要采取措施
增加主軸的剛度,增大軸徑:前軸徑D=62mm,后軸徑d=55mm。后支承采用背對背安裝的角接觸球軸承。
第4章 主要零部件的選擇
4.1選擇電動機,軸承,鍵和操縱機構
4.1.1電動機的選擇:
轉速n=1430r/min,功率P=3kW
選用Y100L2-4
4.1.2 軸承的選擇:(軸承代號均采用新軸承代號)
I軸:與帶輪靠近段安裝雙列角接觸球軸承代號7007C 另一安裝端角接觸球軸承代號7008C
II軸:對稱布置角接觸球軸承代號7008C
中間布置角接觸球軸承代號7010C
III軸:后端安裝雙列角接觸球軸承代號7015C
另一安裝端角接觸球軸承代號7010C
中間布置角接觸球軸承代號7012C
4.1.3 鍵規(guī)格
I軸安裝帶輪處選擇普通平鍵規(guī)格:
=8
安裝齒輪處選擇花鍵規(guī)格:
N d
II軸選擇花鍵規(guī)格:
N d
III軸選擇花鍵規(guī)格:
N d
4.1.4變速操縱機構的選擇:選用左右擺動的操縱桿使其通過桿的推力來控制II軸上的三聯(lián)滑移齒輪和二聯(lián)滑移齒輪。
第5章 校核
5.1 軸的校核
(a) 主軸的前端部撓度
(b) 主軸在前軸承處的傾角
(c) 在安裝齒輪處的傾角
E取為,
,
由于小齒輪的傳動力大,這里以小齒輪來進行計算
將其分解為垂直分力和水平分力
由公式
可得
主軸載荷圖如圖5-1所示:
圖5-1 主軸載荷圖
由上圖可知如下數據:a=364mm,b=161mm,l=525mm,c=87mm
計算(在垂直平面)
,,
,,
,,
計算(在水平面)
,,
,,
,,
合成:
5.2 軸承壽命校核
由П軸最小軸徑可取軸承為6208深溝球軸承,壽命指數ε=3;P=XFr+YFa
X=1,Y=0。
對Ⅱ軸受力分析
得:前支承的徑向力Fr=2541.33N。
由軸承壽命的計算公式:預期的使用壽命 [L10h]=15000h
L10h=×=×=93123.82h≥[L10h]=15000h
軸承壽命滿足要求。
第6章 結構設計及說明
6.1 結構設計的內容、技術要求和方案
設計主軸變速箱的結構包括傳動件(傳動軸、軸承、帶輪、齒輪、離合器和制動器等)、主軸組件、操縱機構、潤滑密封系統(tǒng)和箱體及其聯(lián)結件的結構設計與布置,用一張展開圖和若干張橫截面圖表示。課程設計由于時間的限制,一般只畫展開圖。
主軸變速箱是機床的重要部件。設計時除考慮一般機械傳動的有關要求外,著重考慮以下幾個方面的問題。
精度方面的要求,剛度和抗震性的要求,傳動效率要求,主軸前軸承處溫度和溫升的控制,結構工藝性,操作方便、安全、可靠原則,遵循標準化和通用化的原則。
主軸變速箱結構設計時整個機床設計的重點,由于結構復雜,設計中不可避免要經過反復思考和多次修改。在正式畫圖前應該先畫草圖。目的是:
1 布置傳動件及選擇結構方案。
2 檢驗傳動設計的結果中有無干涉、碰撞或其他不合理的情況,以便及時改正。
3 確定傳動軸的支承跨距、齒輪在軸上的位置以及各軸的相對位置,以確
定各軸的受力點和受力方向,為軸和軸承的驗算提供必要的數據。
6.2 展開圖及其布置
展開圖就是按照傳動軸傳遞運動的先后順序,假想將各軸沿其軸線剖開并將這些剖切面平整展開在同一個平面上。
軸上裝的摩擦離合器和變速齒輪。有兩種布置方案,一是將兩級變速齒輪和離合器做成一體。齒輪的直徑受到離合器內徑的約束,齒根圓的直徑必須大于離合器的外徑,負責齒輪無法加工。這樣軸的間距加大。另一種布置方案是離合器的左右部分分別裝在同軸線的軸上,左邊部分接通,得到一級反向轉動,右邊接通得到三級反向轉動。這種齒輪尺寸小但軸向尺寸大。我們采用第一種方案,通過空心軸中的拉桿來操縱離合器的結構。
總布置時需要考慮制動器的位置。制動器可以布置在背輪軸上也可以放在其他軸上。制動器不要放在轉速太低軸上,以免制動扭矩太大,是制動尺寸增大。
齒輪在軸上布置很重要,關系到變速箱的軸向尺寸,減少軸向尺寸有利于提高剛度和減小體積。
結論
分級變速主傳動系統(tǒng)設計的結構及部分計算,到這里基本結束了,由于筆者水平有限,加之時間倉促,僅對分級變速主傳動系統(tǒng)主要部分進行設計和校核,有許多地方處理不夠妥當,因為沒有接觸過生產實際,所以可能有的地方存在錯誤,希望老師多提寶貴意見。
經過這次課程設計,使我對機械系統(tǒng)設計這門課當中許多原理公式有了進一步的了解,對于機械類的書籍,軟件的使用能力得到了提升,并且對設計工作有了更深入的認識,在同學們一起進行設計任務的過程中,不僅增進了友誼,而且對于課程設計的課題有了更深的理解。在設計過程中,得到王仲文老師的精心指導和幫助,在此表示衷心的感謝。
參考文獻
【1】候珍秀.《機械系統(tǒng)設計》.哈爾濱工業(yè)大學出版社,修訂版;
【2】、于惠力 主編 《機械設計》 科學出版社 第一版
【3】、戴 曙 主編 《金屬切削機床設計》 機械工業(yè)出版社
【4】、戴 曙 主編 《金屬切削機床》 機械工業(yè)出版社 第一版
【4】、趙九江 主編 《材料力學》 哈爾濱工業(yè)大學出版社 第一版
【6】、鄭文經 主編 《機械原理》 高等教育出版社 第七版
【7】、于惠力 主編 《機械設計課程設計》 科學出版社
致謝
在課程設計過程中,感謝很多同學的幫助和指點,感謝院系各位老師多年來的諄諄教誨,感謝他們默默的栽培我。
這次的課程設計是在王仲文老師和丁艷艷老師的親切關懷和悉心指導下完成的。從課題的選擇到項目的最終完成,老師都始終給予我細心的指導和不懈的支持,在此,謹向教師表示衷心的感謝和崇高的敬意!。
此外,在課程設計過程中,也得到了其他同學的幫助,有關軟件方面的一些技能不足得到了同學的大力幫助,設計任務一直在很好的氛圍中進行,在這里,也向他們表示真誠的感謝!
再次向此次課程設計中所有幫助過我的人表示感謝。
Bebek, Bearing load Bending stress beam is rate, parameter with the most important influence on design of the crankshaft. Results of bearing loads and web bending stresses are tabulated. must overall systems on parameters of the crankshaft system. Studies on crankshaft of internal combustion engines mainly fo- cus on vibration and stress analyses 19. Although stress analy- ses of crankshafts are available in literature, there are few studies on the effect of counterweight configuration on main bear- ing loads and crankshaft stresses. Sharpe et al. 10 studied balanc- ing of the crankshaft of a V-8 engine using a rigid crankshaft model tions are carried out at engine speed range of 10002000 rpm. Bending stresses at the centres of each web are also calculated. 2. Engine specifications The specifications of in-line six-cylinder diesel engine are given in Table 1. The 9.0 L engine crankshaft has eight counterweights at crank webs 1, 2, 5, 6, 7, 8, 11 and 12. 3D solid model of the crank- shaft is obtained using Pro/Engineer and is shown in Fig. 1. Sche- matic representation of the crankshaft is given in Fig. 2. Static * Corresponding author. Tel.: +90 212 359 7534; fax: +90 212 287 2456. Advances in Engineering Software 40 (2009) 95104 Contents lists available E-mail address: yasin.yilmazboun.edu.tr (Y. Yilmaz). being the main part responsible for power production. Crankshaft system mainly consists of piston, piston pin, con- necting rod, crankshaft, torsional vibration (TV) damper and fly- wheel. Counterweights are placed on the opposite side of each crank to balance rotating inertia forces. In general, counterweights are designed for balancing rates between 50% and 100%. For acceptable maximum and average main bearing loads, mass of counterweights and their positions are important. Maximum and average main bearing loads of an engine depend on cylinder pres- sure, counterweight mass, engine speed and other geometric study on effect of counterweight configuration on main bearing loads and crankshaft stresses is still needed. In this study, counterweight positions and masses of an in-line six-cylinder diesel engine crankshaft system are studied. Maxi- mum and average main bearing forces and crankshaft bending stresses are calculated for 12-counterweight configurations with a zero degree counterweight angle, and for eight-counterweight configurations with 30C176 counterweight angle for 0%, 50% and 100% counterweight balancing rates. Analyses are carried out using Multibody System Simulation Program, ADAMS/Engine. Simula- 1. Introduction New internal combustion engines power, good fuel economy, small engine harmless as possible to the environment. each component of the engine on its be investigated in detail. Crankshaft tion engines have important influence 0965-9978/$ - see front matter C211 2008 Elsevier Ltd. All doi:10.1016/j.advengsoft.2008.03.009 C211 2008 Elsevier Ltd. All rights reserved. have high engine size, and should be as Therefore, the effect of performance should of internal combus- engine performance and optimized counterweights to minimize main bearing loads. Stanley and Taraza 11 obtained maximum and average main bearing loads of four and six-cylinder symmetric in-line engines using a rigid crankshaft model and estimated ideal counterweight mass that resulted in acceptable maximum bearing load. Rigid crankshaft models that are used in counterweight analyses do not consider the effect of crankshaft flexibility on main bearing loads and can lead to considerable errors. Therefore, an extensive Crankshaft models Balancing rate Both configurations show the same trend. The load from gas pressure rather than inertia forces is the An investigation of the effect of counterweight load and crankshaft bending stress Yasin Yilmaz * , Gunay Anlas Department of Mechanical Engineering, Faculty of Engineering, Bogazici University, 34342 article info Article history: Received 11 February 2008 Received in revised form 17 March 2008 Accepted 24 March 2008 Available online 6 May 2008 Keywords: Counterweight configuration abstract In this study, effects of counterweight stress of an in-line six-cylinder ADAMS. In the analysis, rigid, rigid, beam and 3D solid models analyses. Twelve-counterweight terweight configurations with ing rates, are considered. It with increasing balancing Advances in Engineering journal homepage: rights reserved. configuration on main bearing Istanbul, Turkey mass and position on main bearing load and crankshaft bending diesel engine is investigated using Multibody System Simulation Program, and 3D solid crankshaft models are used. Main bearing load results of are compared and beam model is used in counterweight configuration configurations with a zero degree counterweight angle and eight-coun- 30C176 counterweight angle, each for 0%, 50% and 100% counterweight balanc- found that maximum main bearing load and web bending stress increase and average main bearing load decreases with increasing balancing rate. at ScienceDirect Software cate/advengsoft unbalance of each crank throw (with and w/o counterweights) is determined using Pro/Engineer and is given in Table 2. The balanc- ing system data for the crank train are given in Table 3. 3. Modeling of crankshaft system Using ADAMS/Engine, a crankshaft can be modeled in four dif- ferent ways: rigid crankshaft, torsionalflexible crankshaft, beam crankshaft and 3D solid crankshaft. Rigid crankshaft model is mainly used to obtain free forces and torques, and for balancing purposes. Torsionalflexible crankshaft model is used to investi- gate torsional vibrations where each throw is modeled as one rigid part, and springs are used between each throw to represent tor- sional stiffness. Beam crankshaft model is used to represent the torsional and bending stiffness of the crankshaft. Using beam mod- el bending stresses at the webs can be calculated 12. Table 1 Engine specifications Unit 9.0 L engine Bore diameter mm 115 Stroke mm 144 Axial cylinder distance mm 134 Peak firing pressure MPa 19 Rated power at speed kW/rpm 295/2200 Max. torque at speed Nm/rpm 1600/12001700 Main journal/pin diameter mm 95/81 Firing order 1-5-3-6-2-4 Flywheel mass kg 47.84 Flywheel moment of inertia kg mm 2 1.57E+9 Mass of TV damper ring kg 4.94 Mass of TV damper housing kg 6.86 Moment of inertia of the ring kg mm 2 1.27E+5 Moment of inertia of the housing kg mm 2 0.56E+5 Main Bearing #1 Main Bearing #2 Main Bearing #3 Main Bearing #4 Main Bearing #5 Main Bearing #6 Main Bearing #7 Counterweights Fig. 1. 3D solid model of the crankshaft. C3, C4, C5, C6 C1, C2, C7, C8 1, 6 3, 4 2, 5 C1 C2 C3 C4 C5 C6 1 2 Fig. 2. Eight-counterweight arrangement Table 2 Properties of the crank throws Throw 1 Throw 2 Mass (kg) 12.50 9.25 CG position from crank rotation axis (mm) 12.423 31.435 Static unbalance (kg mm) 155.265 290.767 96 Y. Yilmaz, G. Anlas/Advances in Engineering Software 40 (2009) 95104 C7 C8 3 4 5 6 of the 9.0 L engine crankshaft. Throw 3 Throw 4 Throw 5 Throw 6 12.50 12.50 9.28 12.55 11.967 11.966 31.027 11.702 149.734 149.734 287.871 146.856 Elastic 3D solid model of the crankshaft can be obtained using an additional finite element program. The procedure is lengthy and time consuming and usually one ends up with degrees of free- dom in order of millions. To simplify the finite element model, modal superposition technique is used. The elastic deformation of the structure is approximated by linear combination of suitable modes which can be shown as follows: u Uq 1 where q is the vector of modal coordinates andUis the shape func- tion matrix. Table 3 Crankshaft system data Crank radius (mm) 72 Connecting rod length (mm) 239 Mass of complete piston (kg) 3.42 Connecting rod reciprocating mass (kg) 0.92 Reciprocating mass (total per cylinder) (kg) 4.32 Connecting rod rotating mass (kg) 2.01 Y. Yilmaz, G. Anlas/Advances in Engineering An elastic body contains two types of nodes, interface nodes where forces and boundary conditions interact with the structure during multibody system simulation (MSS), and interior nodes. In MSS the position of the elastic body is computed by superposing its rigid body motion and elastic deformation. In ADAMS, this is performed using Component Mode Synthesis” technique based on CraigBampton method 13,14. The component modes contain static and dynamic behavior of the structure. These modes are con- straint modes which are static deformation shapes obtained by giving a unit displacement to each interface degree of freedom (DOF) while keeping all other interface DOFs fixed, and fixed boundary normal modes which are the solution of eigenvalue problem by fixing the entire interface DOFs. The modal transforma- tion between the physical DOF and the CraigBampton modes and their modal coordinates is described by 15 u u B u I C26C27 I0 U C U N C20C21 q C q N C26C27 2 where u B and u I are column vectors and represent boundary DOF and interior DOF, respectively. I, 0 are identity and zero matrices, respectively. U C is the matrix of physical displacements of the inte- rior DOF in the constraint modes. U N is the matrix of physical dis- Fig. 3. Model of the crankshaft system. placements of the interior DOF in the normal modes. q C is the column vector of modal coordinates of the constraint modes. q N is the column vector of modal coordinates of the fixed boundary nor- mal modes. To obtain decoupled set of modes, constrained modes and normal modes are orthogonalized. Elastic 3D solid crankshaft model of the 9.0 L engine is obtained in MSC.Nastran using modal superposition technique. First, 3D so- lid model of the crankshaft that is shown in Fig. 1 is exported to MSC.Nastran and finite element model of the crankshaft, which is characterized by approximately 300,000 ten-node tetrahedral ele- ments and 500,000 nodes is obtained. The modal model of the crankshaft is developed with 32 boundary DOFs associated with 16 interface nodes. Constrained modes obtained from static analy- sis correspond to these DOFs. Flexible crankshaft model is obtained through modal synthesis considering the first 40 fixed boundary normal modes. Therefore flexible crankshaft model is character- ized by a total of 72 DOFs. This model is exported to ADAMS/En- gine and crankshaft system model that is shown in Fig. 3 is obtained. 3D finite element model is run with ADAMS. 4. Forces acting on crankshaft system and balancing Forces in an internal combustion engine may be divided into inertia forces and pressure forces. Inertia forces are further divided into two main categories: rotating inertia forces and reciprocating inertia forces. The rotating inertia force for each cylinder can be written as shown below: F iR;j m R C1 r R C1 x 2 C1C0sinh j j cosh j k3 where m R is the rotating mass that consists of the mass of crank pin, crank webs and mass of rotating portion of the connecting rod; r R is the distance from the crankshaft centre of rotation to the centre of gravity of the rotating mass, x is angular velocity of the crankshaft, and h j is the angular position of each crank throw with respect to Top Dead Centre” (TDC). If there are two counterweights per crank throw, each counterweight force is given by 11 F CWi;j C0m CWi;j C1 r CWi;j C1 x 2 C1C0sinh j c i;j j cosh j c i;j k hi ; i 1;2 j 1;2;.;6 4 where c i,j is the offset angle of counterweight mass from 180C176 oppo- site of crank throw j”. There are two counterweights per throw. i” denotes the counterweight number. The counterweight size that is required to accomplish an assessed balancing rate is U CW K C1U Crank throw m cr-r C1 rC1cosc 2 5 where U CW is the static unbalance of each counterweight, U Crank_throw is the static unbalance of each crank throw, m cr-r is the mass of connecting rod rotating portion, r is the crank radius and K is the balancing rate of the internal couple due to rotating forces. From this formula follows the balancing rate for a given crankshaft and a given counterweight size: K 2 C1 U CW U Crank throw m cr-r C1 rC1cosc 6 For a standard in-line six-cylinder engine crankshaft with three pairs of crank throws disposed at angles of 120C176 that are arranged symmetrical to the crankshaft centre, rotating forces, and first and second order reciprocating forces are naturally balanced. This can be explained by the first and second order vector stars shown in Fig. 4. The six-cylinder crankshaft generates rotating and first Software 40 (2009) 95104 97 and second order reciprocating couples in each crankshaft half that balance each other but which result in internal bending moment. At high speeds, the two equally directed crank throws, 3 and 4 yield a high rotating load on centre main bearing. The rotating inertia force of each cylinder is usually offset at least partially by counterweights placed on the opposite side of each crank. In gen- eral, the counterweights are designed for balancing rates between 50% and 100% of the internal couple. Gas forces in cylinders are acting on piston head, cylinder head and on side walls of the cylinder. These forces are equal to F p;j C0 pD 2 4 C1P cyl;j hC0P cc;j hC138 k; j 1;2;.;6 7 1, 6 2, 5 3, 4 3, 4 1, 6 2, 5 Fig. 4. First and second order vector stars. 0 20 40 60 80 100 120 140 160 180 200 0 90 180 270 360 450 540 630 720 Crank Angle (degree) Pressure (bar) 1000rpm 1200rpm 1350rpm 1675rpm 2000rpm Fig. 5. Gas pressure values at different engine speeds for the 9.0 L engine. Bearing #1 0 25 50 75 100 125 150 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 6. Forces acting on main bearing #1 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #2 0 25 50 75 100 125 150 175 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 7. Forces acting on main bearing #2 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #3 0 25 50 75 100 125 150 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 8. Forces acting on main bearing #3 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #4 0 25 50 75 100 125 150 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 9. Forces acting on main bearing #4 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #5 125 150 Rigid Bam 3D solid 98 Y. Yilmaz, G. Anlas/Advances in Engineering Software 40 (2009) 95104 0 25 50 75 100 0 120 240 360 480 600 720 Crank Angle deg Force kN Fig. 10. Forces acting on main bearing #5 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. where D is cylinder diameter, P cyl is the gas pressure in the cylinder and P cc is the pressure in the crankcase. The gas forces are transmit- ted to the crankshaft through the piston and connecting rod. Cylin- der pressure curves for the 9.0 L engine studied under full load at different engine speeds are given in Fig. 5. Pressure curves are ob- tained using AVL/Boost engine cycle calculation program which simulates thermodynamic processes in the engine taking into ac- count one dimensional gas dynamics in the intake and exhaust sys- tems 16. 5. Main bearing loads: comparison of crankshaft models Main bearing loads are calculated using ADAMSs rigid, beam and 3D solid crankshaft models and compared. In the rigid model, no vibration effects are considered which can lead to considerable errors if vibration effects have a major role on the system (like in multithrow crankshafts). To consider vibration effects beam crank- shaft model is used and main bearing loads and bending stresses at webs are calculated. Rigid model assumes crankshaft to be stati- cally determinate and reaction force of any given bearing depends on the load exerted on the throws adjacent to that bearing. Beam model assumes the crankshaft to be statically indeterminate and the load exerted on a throw affects all bearings. Analyses are car- ried out at an engine speed range of 10002000 rpm. A more sophisticated 3D solid hybrid model that combines FE with ADAMS is used to check the results obtained by beam model. Maximum main bearing load occurs at bearing number two at Bearing #6 0 25 50 75 100 125 150 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 11. Forces acting on main bearing #6 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #7 0 25 50 75 100 125 150 0 120 240 360 480 600 720 Crank Angle deg Force kN Rigid Beam 3D solid Fig. 12. Forces acting on main bearing #7 for rigid, beam and 3D solid crankshaft models at 1000 rpm engine speed. Bearing #1 40 50 60 70 80 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Maximum Bearing K=0% K=50% K=100% Force (kN) Fig. 13. (a) Maximum and (b) average bearing forces at Bearing #2 120 130 140 150 160 K=0% K=50% K=100% Maximum Bearing Force (kN) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Fig. 14. (a) Maximum and (b) average bearing forces at Y. Yilmaz, G. Anlas/Advances in Engineering Software 40 (2009) 95104 99 an engine speed of 1000 rpm, therefore results are plotted in Figs. 612 for 1000 rpm only. Rigid crankshaft model overestimates the maximum main bearing load at bearings 1 and 7 with respect to beam and flexible crankshaft models. However it underestimates the maximum main bearing load at other bearings. For example at bearing 2, beam model gives a maximum main bearing load that is 50% more than that of rigid models because the beam model as- sumes the crankshaft to be statically indeterminate and considers Bearing #1 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) 0 5 10 15 20 Average Bearing K=0% K=50% K=100% Force (kN) bearing #1 for 12-counterweight configurations. Bearing #2 20 25 30 35 40 K=0% K=50% K=100% 1000 1200 1400 1600 1800 2000 Average Bearing Force (kN) Crank Angular Velocity (rpm) bearing #2 for 12-counterweight configurations. bending vibrations. Maximum main bearing load difference of beam and 3D solid models is approximately 5%. Main bearing loads for beam and 3D solid crankshaft models are generally in good agreement. In bearings 3, 5 and 6, 3D solid model gives larger bear- ing loads at firing positions of the cylinders that are not adjacent to bearing. Because obtaining elastic 3D solid models for different counterweight configurations is difficult and time consuming, and beam model gives equally valid results, beam model is used Bearing #3 100 110 120 130 140 K=0% K=50% K=100% Bearing #3 20 25 30 35 40 K=0% K=50% K=100% Maximum Bearing Force (kN) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Average Bearing Force (kN) Fig. 15. (a) Maximum and (b) average bearing forces at bearing #3 for 12-counterweight configurations. Bearing #4 60 70 80 90 100 110 120 K=0% K=50% K=100% Bearing #4 10 15 20 25 30 35 40 K=0% K=50% K=100% Maximum Bearing Force (kN) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Average Bearing Force (kN) Fig. 16. (a) Maximum and (b) average bearing forces at bearing #4 for 12-counterweight configurations. Bearing #6 120 130 140 K=0% K=50% K=100% Bearing #6 35 40 45 50 K=0% K=50% K=100% Bearing #5 100 110 120 130 140 K=0% K=50% K=100% Bearing #5 20 25 30 35 40 K=0% K=50% K=100% Maximum Bearing Force (kN) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Average Bearing Force (kN) Fig. 17. (a) Maximum and (b) average bearing forces at bearing #5 for 12-counterweight configurations. 100 Y. Yilmaz, G. Anlas/Advances in Engineering Software 40 (2009) 95104 100 110 Maximum Bearing Force (kN) 1000 1200 1400 1600 1800 2000 Crank Angular Velocity (rpm) Fig. 18. (a) Maximum and (b) average bearing forces at 20 25 30 1000 1200 1400 1600 1800 2000 Average Bearing Force (kN) Crank Angular Velocity (rpm) bearing #6 for 12-counterweight con
收藏