《2019-2020年高三數學第一輪復習單元講座 第09講 空間幾何體的表面積和體積教案 新人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數學第一輪復習單元講座 第09講 空間幾何體的表面積和體積教案 新人教版.doc(13頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三數學第一輪復習單元講座 第09講 空間幾何體的表面積和體積教案 新人教版
一.課標要求:
了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。
二.命題走向
近些年來在高考中不僅有直接求多面體、旋轉體的面積和體積問題,也有已知面積或體積求某些元素的量或元素間的位置關系問題。即使考查空間線面的位置關系問題,也常以幾何體為依托.因而要熟練掌握多面體與旋轉體的概念、性質以及它們的求積公式.同時也要學會運用等價轉化思想,會把組合體求積問題轉化為基本幾何體的求積問題,會等體積轉化求解問題,會把立體問題轉化為平面問題求解,會運用“割補法”等求解。
由于本講公式多反映在考題上,預測008年高考有以下特色:
(1)用選擇、填空題考查本章的基本性質和求積公式;
(2)考題可能為:與多面體和旋轉體的面積、體積有關的計算問題;與多面體和旋轉體中某些元素有關的計算問題;
三.要點精講
1.多面體的面積和體積公式
名稱
側面積(S側)
全面積(S全)
體 積(V)
棱
柱
棱柱
直截面周長l
S側+2S底
S底h=S直截面h
直棱柱
ch
S底h
棱
錐
棱錐
各側面積之和
S側+S底
S底h
正棱錐
ch′
棱
臺
棱臺
各側面面積之和
S側+S上底+S下底
h(S上底+S下底+)
正棱臺
(c+c′)h′
表中S表示面積,c′、c分別表示上、下底面周長,h表斜高,h′表示斜高,l表示側棱長。
2.旋轉體的面積和體積公式
名稱
圓柱
圓錐
圓臺
球
S側
2πrl
πrl
π(r1+r2)l
S全
2πr(l+r)
πr(l+r)
π(r1+r2)l+π(r21+r22)
4πR2
V
πr2h(即πr2l)
πr2h
πh(r21+r1r2+r22)
πR3
表中l(wèi)、h分別表示母線、高,r表示圓柱、圓錐與球冠的底半徑,r1、r2分別表示圓臺 上、下底面半徑,R表示半徑。
四.典例解析
題型1:柱體的體積和表面積
例1.一個長方體全面積是20cm2,所有棱長的和是24cm,求長方體的對角線長.
解:設長方體的長、寬、高、對角線長分別為xcm、ycm、zcm、lcm
依題意得:
由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)
由(3)-(1)得x2+y2+z2=16
即l2=16
所以l=4(cm)。
點評:涉及棱柱面積問題的題目多以直棱柱為主,而直棱柱中又以正方體、長方體的表面積多被考察。我們平常的學習中要多建立一些重要的幾何要素(對角線、內切)與面積、體積之間的關系。
例2.如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。
(1)求證:頂點A1在底面ABCD上的射影O在∠BAD的平分線上;
(2)求這個平行六面體的體積。
圖1 圖2
解析:(1)如圖2,連結A1O,則A1O⊥底面ABCD。作OM⊥AB交AB于M,作ON⊥AD交AD于N,連結A1M,A1N。由三垂線定得得A1M⊥AB,A1N⊥AD。∵∠A1AM=∠A1AN,
∴Rt△A1NA≌Rt△A1MA,∴A1M=A1N,
從而OM=ON。
∴點O在∠BAD的平分線上。
(2)∵AM=AA1cos=3=
∴AO==。
又在Rt△AOA1中,A1O2=AA12 – AO2=9-=,
∴A1O=,平行六面體的體積為。
題型2:柱體的表面積、體積綜合問題
例3.(xx全國,3)一個長方體共一頂點的三個面的面積分別是,這個長方體對角線的長是( )
A.2 B.3 C.6 D.
解析:設長方體共一頂點的三邊長分別為a=1,b=,c=,則對角線l的長為l=;答案D。
點評:解題思路是將三個面的面積轉化為解棱柱面積、體積的幾何要素—棱長。
例4.如圖,三棱柱ABC—A1B1C1中,若E、F分別為AB、AC 的中點,平面EB1C1將三棱柱分成體積為V1、V2的兩部分,那么V1∶V2= ____ _。
解:設三棱柱的高為h,上下底的面積為S,體積為V,則V=V1+V2=Sh。
∵E、F分別為AB、AC的中點,
∴S△AEF=S,
V1=h(S+S+)=Sh
V2=Sh-V1=Sh,
∴V1∶V2=7∶5。
點評:解題的關鍵是棱柱、棱臺間的轉化關系,建立起求解體積的幾何元素之間的對應關系。最后用統(tǒng)一的量建立比值得到結論即可。
題型3:錐體的體積和表面積
P
A
B
C
D
O
E
例5.(xx上海,19)在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60,對角線AC與BD相交于點O,PO⊥平面ABCD,PB與平面ABCD所成的角為60,求四棱錐P-ABCD的體積?
解:(1)在四棱錐P-ABCD中,由PO⊥平面ABCD,得∠PBO是PB與平面ABCD所成的角,∠PBO=60。
在Rt△AOB中BO=ABsin30=1, 由PO⊥BO,
于是PO=BOtan60=,而底面菱形的面積為2。
∴四棱錐P-ABCD的體積V=2=2。
點評:本小題重點考查線面垂直、面面垂直、二面角及其平面角、棱錐的體積。在能力方面主要考查空間想象能力。
圖
例6.(xx京皖春文,19)在三棱錐S—ABC中,∠SAB=∠SAC=∠ACB=90,且AC=BC=5,SB=5。(如圖所示)
(Ⅰ)證明:SC⊥BC;
(Ⅱ)求側面SBC與底面ABC所成二面角的大??;
(Ⅲ)求三棱錐的體積VS-ABC。
解析:(Ⅰ)證明:∵∠SAB=∠SAC=90,
∴SA⊥AB,SA⊥AC。
又AB∩AC=A,
∴SA⊥平面ABC。
由于∠ACB=90,即BC⊥AC,由三垂線定理,得SC⊥BC。
(Ⅱ)解:∵BC⊥AC,SC⊥BC。
∴∠SCA是側面SCB與底面ABC所成二面角的平面角。
在Rt△SCB中,BC=5,SB=5,得SC==10。
在Rt△SAC中AC=5,SC=10,cosSCA=,
∴∠SCA=60,即側面SBC與底面ABC所成的二面角的大小為60。
(Ⅲ)解:在Rt△SAC中,
∵SA=,
S△ABC=ACBC=55=,
∴VS-ABC=S△ACBSA=。
點評:本題比較全面地考查了空間點、線、面的位置關系。要求對圖形必須具備一定的洞察力,并進行一定的邏輯推理。
題型4:錐體體積、表面積綜合問題
例7.ABCD是邊長為4的正方形,E、F分別是AB、AD的中點,GB垂直于正方形ABCD所在的平面,且GC=2,求點B到平面EFC的距離?
解:如圖,取EF的中點O,連接GB、GO、CD、FB構造三棱錐B-EFG。
設點B到平面EFG的距離為h,BD=,EF,CO=。
。
而GC⊥平面ABCD,且GC=2。
由,得
點評:該問題主要的求解思路是將點面的距離問題轉化為體積問題來求解。構造以點B為頂點,△EFG為底面的三棱錐是解此題的關鍵,利用同一個三棱錐的體積的唯一性列方程是解這類題的方法,從而簡化了運算。
例8.(xx江西理,12)如圖,在四面體ABCD中,截面AEF經過四面體的內切球(與四個面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則必有( )
A.S1
S2
C.S1=S2 D.S1,S2的大小關系不能確定
解:連OA、OB、OC、OD,
則VA-BEFD=VO-ABD+VO-ABE+VO-BEFD
VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC,
而每個三棱錐的高都是原四面體的內切球的半徑,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又面AEF公共,故選C
點評:該題通過復合平面圖形的分割過程,增加了題目處理的難度,求解棱錐的體積、表面積首先要轉化好平面圖形與空間幾何體之間元素間的對應關系。
題型5:棱臺的體積、面積及其綜合問題
例9.(xx北京理,18)如圖9—24,在多面體ABCD—A1B1C1D1中,上、下底面平行且均為矩形,相對的側面與同一底面所成的二面角大小相等,側棱延長后相交于E,F兩點,上、下底面矩形的長、寬分別為c,d與a,b,且a>c,b>d,兩底面間的距離為h。
(Ⅰ)求側面ABB1A1與底面ABCD所成二面角的大??;
(Ⅱ)證明:EF∥面ABCD;
(Ⅲ)在估測該多面體的體積時,經常運用近似公式V估=S中截面h來計算.已知它的體積公式是V=(S上底面+4S中截面+S下底面),試判斷V估與V的大小關系,并加以證明。
(注:與兩個底面平行,且到兩個底面距離相等的截面稱為該多面體的中截面)
圖
(Ⅰ)解:過B1C1作底面ABCD的垂直平面,交底面于PQ,過B1作B1G⊥PQ,垂足為G。
如圖所示:∵平面ABCD∥平面A1B1C1D1,∠A1B1C1=90,
∴AB⊥PQ,AB⊥B1P.
∴∠B1PG為所求二面角的平面角.過C1作C1H⊥PQ,垂足為H.由于相對側面與底面所成二面角的大小相等,故四邊形B1PQC1為等腰梯形。
∴PG=(b-d),又B1G=h,∴tanB1PG=(b>d),
∴∠B1PG=arctan,即所求二面角的大小為arctan.
(Ⅱ)證明:∵AB,CD是矩形ABCD的一組對邊,有AB∥CD,
又CD是面ABCD與面CDEF的交線,
∴AB∥面CDEF。
∵EF是面ABFE與面CDEF的交線,
∴AB∥EF。
∵AB是平面ABCD內的一條直線,EF在平面ABCD外,
∴EF∥面ABCD。
(Ⅲ)V估<V。
證明:∵a>c,b>d,
∴V-V估=
=[2cd+2ab+2(a+c)(b+d)-3(a+c)(b+d)]
=(a-c)(b-d)>0。
∴V估<V。
點評:該題背景較新穎,把求二面角的大小與證明線、面平行這一常規(guī)運算置于非規(guī)則幾何體(擬柱體)中,能考查考生的應變能力和適應能力,而第三步研究擬柱體的近似計算公式與可精確計算體積的辛普生公式之間計算誤差的問題,是極具實際意義的問題??疾榱丝忌^續(xù)學習的潛能。
例10.(1)(xx全國,9)如果棱臺的兩底面積分別是S、S′,中截面的面積是S0,那么( )
A. B. C.2S0=S+S′ D.S02=2S′S
(2)(1994全國,7)已知正六棱臺的上、下底面邊長分別為2和4,高為2,則其體積為( )
A.32 B.28 C.24 D.20
解析:(1)解析:設該棱臺為正棱臺來解即可,答案為A;
(2)正六棱臺上下底面面積分別為:S上=622=6,S下=642=24,V臺=,答案B。
點評:本題考查棱臺的中截面問題。根據選擇題的特點本題選用“特例法”來解,此種解法在解選擇題時很普遍,如選用特殊值、特殊點、特殊曲線、特殊圖形等等。
題型6:圓柱的體積、表面積及其綜合問題
例11.(xx全國理,9)一個圓柱的側面積展開圖是一個正方形,這個圓柱的全面積與側面積的比是( )
A. B. C. D.
解析:設圓柱的底面半徑為r,高為h,則由題設知h=2πr.
∴S全=2πr2+(2πr)2=2πr2(1+2π).S側=h2=4π2r2,
∴。答案為A。
點評:本題考查圓柱的側面展開圖、側面積和全面積等知識。
例12.(xx京春理13,文14)如圖9—9,一個底面半徑為R的圓柱形量杯中裝有適量的水.若放入一個半徑為r的實心鐵球,水面高度恰好升高r,則= 。
解析:水面高度升高r,則圓柱體積增加πR2r。恰好是半徑為r的實心鐵球的體積,因此有πr3=πR2r。故。答案為。
點評:本題主要考查旋轉體的基礎知識以及計算能力和分析、解決問題的能力。
圖
題型7:圓錐的體積、表面積及綜合問題
例13.(1)(xx京皖春,7)在△ABC中,AB=2,BC=1.5,∠ABC=120(如圖所示),若將△ABC繞直線BC旋轉一周,則所形成的旋轉體的體積是( )
A.π B.π C.π D.π
(2)(xx全國文,3)若一個圓錐的軸截面是等邊三角形,其面積為,則這個圓錐的全面積是( )
圖
A.3π B.3π C.6π D.9π
解析:(1)如圖所示,該旋轉體的體積為圓錐C—ADE與圓錐B—ADE體積之差,又∵求得AB=1。
∴,答案D。
(2)∵S=absinθ,∴a2sin60=,
∴a2=4,a=2,a=2r,
∴r=1,S全=2πr+πr2=2π+π=3π,答案A。
點評:通過識圖、想圖、畫圖的角度考查了空間想象能力。而對空間圖形的處理能力是空間想象力深化的標志,是高考從深層上考查空間想象能力的主要方向。
例14.(xx全國文,12)如圖所示,OA是圓錐底面中心O到母線的垂線,OA繞軸旋轉一周所得曲面將圓錐分成相等的兩部分,則母線與軸的夾角的余弦值為( )
A. B. C. D.
解析:如圖所示,由題意知,πr2h=πR2h,
圖
∴r=. 又△ABO∽△CAO,
∴,∴OA2=rR=,
∴cosθ=,答案為D。
點評:本題重點考查柱體、錐體的體積公式及靈活的運算能力。
題型8:球的體積、表面積
例15.已知過球面上三點的截面和球心的距離為球半徑的一半,且,求球的表面積。
解:設截面圓心為,連結,設球半徑為,
則,
在中,,
∴,
∴,
∴。
點評: 正確應用球的表面積公式,建立平面圓與球的半徑之間的關系。
例16.如圖所示,球面上有四個點P、A、B、C,如果PA,PB,PC兩兩互相垂直,且PA=PB=PC=a,求這個球的表面積。
解析:如圖,設過A、B、C三點的球的截面圓半徑為r,圓心為O′,球心到該圓面的距離為d。
在三棱錐P—ABC中,∵PA,PB,PC兩兩互相垂直,且PA=PB=PC=a,
∴AB=BC=CA=a,且P在△ABC內的射影即是△ABC的中心O′。
由正弦定理,得 =2r,∴r=a。
又根據球的截面的性質,有OO′⊥平面ABC,而PO′⊥平面ABC,
∴P、O、O′共線,球的半徑R=。又PO′===a,
∴OO′=R - a=d=,(R-a)2=R2 – (a)2,解得R=a,
∴S球=4πR2=3πa2。
點評:本題也可用補形法求解。將P—ABC補成一個正方體,由對稱性可知,正方體內接于球,則球的直徑就是正方體的對角線,易得球半徑R=a,下略。
題型9:球的面積、體積綜合問題
例17.(xx四川文,10)如圖,正四棱錐底面的四個頂點在球的同一個大圓上,點在球面上,如果,則球的表面積是( )
A. B. C. D.
(2)半球內有一個內接正方體,正方體的一個面在半球的底面圓內,若正方體棱長為,求球的表面積和體積。
解析:(1)如圖,正四棱錐底面的四個頂點在球的同一個大圓上,點在球面上,PO⊥底面ABCD,PO=R,,,所以,R=2,球的表面積是,選D。
(2)作軸截面如圖所示,
,,
設球半徑為,
則
∴,
∴,。
點評:本題重點考查球截面的性質以及球面積公式,解題的關鍵是將多面體的幾何要素轉化成球的幾何要素。
例18.(1)表面積為的球,其內接正四棱柱的高是,求這個正四棱柱的表面積。
(2)正四面體ABCD的棱長為a,球O是內切球,球O1是與正四面體的三個面和球O都相切的一個小球,求球O1的體積。
解:(1)設球半徑為,正四棱柱底面邊長為,
則作軸截面如圖,,,
又∵,∴,
∴,∴,
∴
(2)如圖,設球O半徑為R,球O1的半徑為r,E為CD中點,球O與平面ACD、BCD切于點F、G,球O1與平面ACD切于點H
由題設
∵ △AOF∽△AEG ∴ ,得
∵ △AO1H∽△AOF ∴ ,得
∴
點評:正四面體的內切球與各面的切點是面的中心,球心到各面的距離相等。
題型10:球的經緯度、球面距離問題
例19.(1)我國首都靠近北緯緯線,求北緯緯線的長度等于多少?(地球半徑大約為)
(2)在半徑為的球面上有三點,,求球心到經過這三點的截面的距離。
解:(1)如圖,是北緯上一點,是它的半徑,
∴,
設是北緯的緯線長,
∵,
∴
答:北緯緯線長約等于.
(2)解:設經過三點的截面為⊙,
設球心為,連結,則平面,
∵,
∴,
所以,球心到截面距離為.
例20.在北緯圈上有兩點,設該緯度圈上兩點的劣弧長為(為地球半徑),求兩點間的球面距離。
解:設北緯圈的半徑為,則,設為北緯圈的圓心,,
∴,∴,
∴,∴,
∴中,,
所以,兩點的球面距離等于.
點評:要求兩點的球面距離,必須先求出兩點的直線距離,再求出這兩點的球心角,進而求出這兩點的球面距離。
五.思維總結
1.正四面體的性質 設正四面體的棱長為a,則這個正四面體的
(1)全面積:S全=a2;
(2)體積:V=a3;
(3)對棱中點連線段的長:d=a;
(4)內切球半徑:r=a;
(5)外接球半徑 R=a;
(6)正四面體內任意一點到四個面的距離之和為定值(等于正四面體的高)。
2.直角四面體的性質 有一個三面角的各個面角都是直角的四面體叫做直角四面體.直角四面 體有下列性質:
如圖,在直角四面體AOCB中,∠AOB=∠BOC=∠COA=90,OA=a,OB=b,OC=c。
則:①不含直角的底面ABC是銳角三角形;
②直角頂點O在底面上的射影H是△ABC的垂心;
③體積 V=abc;
④底面△ABC=;
⑤S2△ABC=S△BHCS△ABC;
⑥S2△BOC=S2△AOB+S2△AOC=S2△ABC
⑦=++;
⑧外切球半徑 R=;
⑨內切球半徑 r=
3.圓錐軸截面兩腰的夾角叫圓錐的頂角.
①如圖,圓錐的頂角為β,母線與下底面所成角為α,母線為l,高為h,底面半徑為r,則
sinα=cos = ,
α+=90
cosα=sin = .
②圓臺 如圖,圓臺母線與下底面所成角為α,母線為l,高為h,上、下底面半徑分別為r ′、r,則h=lsinα,r-r′=lcosα。
③球的截面
用一個平面去截一個球,截面是圓面.
(1)過球心的截面截得的圓叫做球的大圓;不經過球心的截面截得的圓叫做球的小圓;
(2)球心與截面圓圓心的連線垂直于截面;
(3)球心和截面距離d,球半徑R,截面半徑r有關系:
r=.
4.經度、緯度:
經線:球面上從北極到南極的半個大圓;
緯線:與赤道平面平行的平面截球面所得的小圓;
經度:某地的經度就是經過這點的經線與地軸確定的半平面與經線及軸確定的半平面所成的二面角的度數。
緯度:某地的緯度就是指過這點的球半徑與赤道平面所成角的度數。
5. 兩點的球面距離:
球面上兩點之間的最短距離,就是經過兩點的大圓在這兩點間的一段劣弧的長度,我們把這個弧長叫做兩點的球面距離
兩點的球面距離公式:(其中R為球半徑,為A,B所對應的球心角的弧度數)
鏈接地址:http://m.hcyjhs8.com/p-2616040.html