秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

傅里葉變換性質-傅里葉變換的性質證明

上傳人:小** 文檔編號:28731404 上傳時間:2021-09-09 格式:DOC 頁數(shù):57 大?。?50.50KB
收藏 版權申訴 舉報 下載
傅里葉變換性質-傅里葉變換的性質證明_第1頁
第1頁 / 共57頁
傅里葉變換性質-傅里葉變換的性質證明_第2頁
第2頁 / 共57頁
傅里葉變換性質-傅里葉變換的性質證明_第3頁
第3頁 / 共57頁

下載文檔到電腦,查找使用更方便

35 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《傅里葉變換性質-傅里葉變換的性質證明》由會員分享,可在線閱讀,更多相關《傅里葉變換性質-傅里葉變換的性質證明(57頁珍藏版)》請在裝配圖網上搜索。

1、傅里葉變換的性質 對稱性質 主要內容 奇偶虛實性 線性性質 尺度變換性質 時移特性 微分性質 頻移特性 時域積分性質 忌乂 傅里葉變換具有惟一性。傅氏變換的性質揭示了 信號的時域特性和頻域特性之間的確定的內在聯(lián)系。 討論傅里葉變換的性質,目的在于: ?了解特性的內在聯(lián)系; ?用性質求F((o); ?了解在通信系統(tǒng)領域中的應用 一.對稱性質 1 ?性質 港/ (z) G 列⑼ 則(- 6) 豹(f丹偶函數(shù) 則F&21!睛斶 2?意義 若戸⑷形狀與珥)

2、相同,@ T J BlF(z)的頻譜函數(shù)形狀與/(『涉狀相同,&T砒 幅度差2疫 …線性性質 1 ?性質 若過)分片9),矗⑵少血⑷) 則 cifi “) + 5 fi “) ◎ c\^\ 9)+勺碼 9) s 勺為 常數(shù) 2.例 (/)=-+- Sgn()分歹(6)=打 <5(g)+丄 2 2 jay ?奇偶虛實性 證明: 由定義 F[f⑺卜匸/ (以一佔日"再⑷) 可以得到 F|/(-/)]=匸列-論如肛=匸/何戶宀du=F(-^ 四?尺度變換性質 劫*砂,則如㈠捫 2為非零畫數(shù) 意義 (1) 0l時域

3、壓縮,頻域擴屜倍。 說明 (3) a=-l 歹()T歹(一血 說明 3?意義 J E 7(/) (1) 0\時域壓縮,頻域擴展a倍。 持續(xù)時間短,變化快。信號在頻域高頻分量增加,頻 帶展寬,各分量的幅度下降a倍。 此例說明:信號的持續(xù)時間與信號占有頻帶成反比, 有時為加速信號的傳遞,要將信號持續(xù)時間壓縮,則 要以展開頻帶為代價。 ⑶ a = -l 于(f)T子(T)FS)TF(—。)=跖(G)

4、 S/(z0實函數(shù)時,戸(-6)=礦(町共輒 ■/渥(m軸偶 礙 X(o>b奇爵數(shù) 用一毎)=鳳一 e)+jX(—毎)=鳳國—=礦⑷) 五?時移特性 W (4宀珥嘰 81/ (―邙㈠卩何訂%; 若戸9)=叭呵胃如 則/"一即“列叭pmiwl 幅度頻譜無變化,只影響相位頻譜, 相移%_ar 理區(qū) I左 血0 時移加尺度變換 [仿才伽)=命 港/ &心戸㈣ 勉f如+方)分占F 證明過程 六.頻移特性 1?性質 若/⑷分叭國 則")嚴"(廠叫%為常拓注竜土號 2.證明 F[“)嚴卜匸[“)嚴汁缶 二「為尸戸@一呦) 3?說明

5、 時劈⑷乘』燈,頻域頻譜撅一一右移碣 時埠⑷乘*5,頻域頻譜搬一一左移碣 4?應用 通信中調制與解調,頻分復用。 七?微分性質 時域微分性質 fir) o 卩9), ujrczj 一j 窗 頻域微分性質 蘢f (z)一列叭則裁兇分但戸3)但at -jtf何分d列血陽如 (-腫“宀啤 1?時域微分 /(/)分F9),則嚴分j亦9) 一般情況下/何(M㈠G f 9) 若已知科/”測則歹(血二件廠卩 鞏嚴⑷]=j亦㈣: J幅度乘G (相住增如jT剜1

6、 注意 如果/⑴中有確定的直流分量,應先取出單獨求傅里 變換,余下部分再用微分性質。 (t )分F(血 直流1/ ◎加5@) 余下部分百 = M-| = jsgnM, A &爐分八(工卜死心1, A⑷料占 d/ 2?頻域微分性質 若右⑷分理礎則芽⑷分詛尸9)皿歸 或—j芽兇分 推廣 (―忒如一 d B 歹(g) 八?時域積分性質 若兀)分尸(專則 呦=附丄/簡 --- 也可以記作: F((d)-丄-+拠 i 證明 <0. a 因為

7、心仏)]二匸/廖弓7 x 1 當 > 05 4\x: = ffjtj z = —, d = — d a: 砒3)] 2匸衣嚴 — at — -\a\i ; z = —= — 鞏/(&)]=計匚f ^x a l心丿 丨 f 二一]—i d x = r-|P Jfl Adx= ”卩F 綜合上述馬種情況 等效耶2中寬度與等效頻霸寬度 八"八 八d/加 /(0) F(0 %) G) /(Z)dz = /(O)r =2 匸 F()d ???兔=竺 r=o J" F(6>)d^ = F(0)B F(O)= /0dA Bf= T o 等效脈沖寬 度與占

8、有的 等效帶寬成 反比。 ? 丿 例3—7-1 占("好 1, F(z) =1O 171^ 例3-7-2 已 ^>F[sgn(z)] = ^-, W 2 則「分 2jrsgn(—

9、,教材3?2) 令九((康示矩形單脈沖 信號,其頻譜函數(shù)卩0@), F0(fi>) = ErSa ⑹ ,柑②-勻的頻譜密度函數(shù). atr\ c f (ur vb = -5,對耐移沐向右)/①一即宀匚-S趨〒 1 2 \ 4 8T ~2~ 相同 例 3-7-9 已坷贏 方法一:先標度變換,再時延 ■ =2 .. f(2z) | 方法二:先時延再標度變換 對耐移5(向右):/(if-5)^>KTSa Et 例3-7-6 (教材例3?4) 已知矩形調幅信號/(r) = G0COS(d>o^ 譏) 其中G0為矩形脈沖,脈沖幅勘 ■? 脈寬為G

10、試求其頻譜函數(shù)。 E (a)矩形調幅信號的波形 G(d>)=ErSa a)Ty 幾)=丄G(淤斶+訂如) 2 2 2 頻譜圖 F(a))=丄G-叫)+ 丄+ ty ) 2 2 q_U)t ""2 「6+小「 2 將包絡線的頻譜一分為二,向左、右各平移% 例3-7-5 求三角函數(shù)的頻譜密度函數(shù). 三角形圏數(shù)—方波 方波一蘭T沖激函數(shù)

11、 8 T T J。% _4E十2E尹球 2+r 吃 1 F”?仙=匚[竿+貝-炎)+竽彳* - 滬,? 二2E尹% -竺+ 2E亡-弘% = G砧戸何=-亦歹何 T %)=厶 —at _ 1 2E -G^ T 一嚴 sm 4 ) 8 已樹梢◎ Fg), 解: 唄-2)旳] 例3-7-8 求唄—2)旳卜? 胡必)-叭)] 8 例3了7廠9 解: tn=ri 1 <-> 2 開(5(g)二 F(at) dot 譏g嚀] 2/ d" [2開&血]

12、 例3-7-10 1 ?求單位階躍函數(shù)的傅里葉變換 解:已知 (z) = Jr 郭)肛 (5(/) O 1 1 +7T規(guī)Q)1=丄+打盤國 2 2 ■求門畫麹7上湫分的頻譜畫數(shù). 1 解:務曲戸書血(器) ” * Sa(O) = i,知鞏D)hD &ZT)十上 Sil i at OfT T 證明 關于的躍函數(shù) 衛(wèi)(般)二1?(—廚) 誅AO是實函數(shù)(為虛函數(shù)或復函數(shù)情況相似,略) 羞(。)=[/(^)smai^d關于。的奇畫數(shù) f J 天@

13、)=-A (- 尸(-血二尸(6) 已知沖”卜F(-Q) 砒(-詐尸(。) 證明 覽0)=匸和加+恥*肛 當住〉証時)設血+占=x3f>Jz = -—— j dr = — dX a k(q)=E/w 幻 當= ..>:-d x — h a a? 1J e 11 - —dx a s設加+方二心則/=□=□ a匕丿 dz = — r~ dx=lf/(xk a J 山池)嚴 證明

14、 打匸伽卡理 農)+l ■7) * 習 二桃)+法 續(xù) 變上限積分用帶時移的 單位階躍的無限積分表 示,成為/ ◎切(” 交換積分順序先上后百 即先求時移的單位階躍 信號的傅里葉變換 對積分變量T而言為 常數(shù).移到積分外 牝)+書 女■果歹(d)=ci,則第一項為零 二 th5(g)+ 訝匸 =扛<5(6)+丄 ”() =勿(6護()+丄~打@) 二沁)如+理 1 0 1■好 F()? th5(g) + J-O ■ =碩哪何+曲 de 證% "卜匕1匸曠⑷)i血曲11 q 二/農)㈠歹⑷)詢二jMg) 即 札廠⑷卜j亦⑷) (flash)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!