2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第13篇 第1節(jié) 坐標(biāo)系課時(shí)訓(xùn)練 理.doc
《2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第13篇 第1節(jié) 坐標(biāo)系課時(shí)訓(xùn)練 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第13篇 第1節(jié) 坐標(biāo)系課時(shí)訓(xùn)練 理.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第13篇 第1節(jié) 坐標(biāo)系課時(shí)訓(xùn)練 理 【選題明細(xì)表】 知識(shí)點(diǎn)、方法 題號(hào) 平面直角坐標(biāo)系中的伸縮變換 3 極坐標(biāo)與直角坐標(biāo)的互化 1、7、10 直線和圓的極坐標(biāo)方程及應(yīng)用 4、9、11 簡(jiǎn)單曲線的極坐標(biāo)方程及應(yīng)用 2、5、6、8、12、13 一、選擇題 1.(xx天津模擬)已知曲線的極坐標(biāo)方程為ρ=4cos 2-2,則其直角坐標(biāo)方程為( C ) (A)x2+(y+1)2=1 (B)(x+1)2+y2=1 (C)(x-1)2+y2=1 (D)x2+(y-1)2=1 解析:由ρ=4cos 2-2得ρ=2(cos θ+1)-2=2cos θ, 即x2+y2=2x, 得(x-1)2+y2=1. 2.(xx海淀模擬)在極坐標(biāo)系中,曲線ρ=4cos θ圍成的圖形面積為( C ) (A)π (B)4 (C)4π (D)16 解析:由曲線的極坐標(biāo)方程ρ=4cos θ, 得ρ2=4ρcos θ, 所以圓的直角坐標(biāo)方程為x2+y2-4x=0, 化為標(biāo)準(zhǔn)方程, 得(x-2)2+y2=4, 所以圓的半徑為2,面積為4π. 3.在平面直角坐標(biāo)系中,經(jīng)伸縮變換后曲線x2+y2=16變換為橢圓 x′2+=1,此伸縮變換公式是( B ) (A) (B) (C) (D) 解析:設(shè)此伸縮變換為 代入x′2+=1, 得(λx)2+=1, 即16λ2x2+μ2y2=16. 與x2+y2=16比較得 故 即所求變換為 4.(xx高考安徽卷)在極坐標(biāo)系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為( B ) (A)θ=0(ρ∈R)和ρcos θ=2 (B)θ=(ρ∈R)和ρcos θ=2 (C)θ=(ρ∈R)和ρcos θ=1 (D)θ=0(ρ∈R)和ρcos θ=1 解析:把圓ρ=2cos θ的方程化為(x-1)2+y2=1知,圓的垂直于極軸的兩條切線方程分別為x=0和x=2,從而得這兩條切線的極坐標(biāo)方程為θ=(ρ∈R) 和ρcos θ=2. 故選B. 二、填空題 5.(xx韶關(guān)模擬)在極坐標(biāo)系中,過(guò)點(diǎn)A(1,-)引圓ρ=8sin θ的一條切線,則切線長(zhǎng)為 . 解析:點(diǎn)A(1,-)的極坐標(biāo)化為直角坐標(biāo)為A(0,-1), 圓ρ=8sin θ的直角坐標(biāo)方程為x2+y2-8y=0, 圓的標(biāo)準(zhǔn)方程為x2+(y-4)2=16, 點(diǎn)A與圓心C(0,4)的距離為|AC|=5, 所以切線長(zhǎng)為=3. 答案:3 6.(xx廣州模擬)已知曲線C1的極坐標(biāo)方程為ρ=6cos θ,曲線C2的極坐標(biāo)方程為θ=(ρ∈R),曲線C1、曲線C2的交點(diǎn)為A,B,則弦AB的長(zhǎng)為 . 解析:由ρ2=x2+y2,tan θ=, 將曲線C1與曲線C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程為C1:x2+y2=6x, 即(x-3)2+y2=9, 故C1是圓心為(3,0), 半徑為3的圓, C2:θ=, 即y=x,表示過(guò)原點(diǎn)傾斜角為的直線. 因?yàn)榈慕鉃? 所以|AB|=3. 答案:3 7.(xx南昌調(diào)研)在極坐標(biāo)系中,圓ρ=2cos θ與直線θ=(ρ>0)所表示的圖形的交點(diǎn)的極坐標(biāo)是 . 解析:圓ρ=2cos θ可轉(zhuǎn)化為x2-2x+y2=0, 直線θ=(ρ>0)可轉(zhuǎn)化為y=x(x>0), 兩個(gè)方程聯(lián)立得交點(diǎn)坐標(biāo)是(1,1), 可得其極坐標(biāo)是(,). 答案:(,) 8.(xx高考天津卷)在以O(shè)為極點(diǎn)的極坐標(biāo)系中,圓ρ=4sin θ和直線ρsin θ=a相交于A,B兩點(diǎn).若△AOB是等邊三角形,則a的值為 . 解析:由于圓和直線的直角坐標(biāo)方程分別為x2+y2=4y和y=a, 它們相交于A,B兩點(diǎn),△AOB為等邊三角形, 所以不妨取直線OB的方程為y=x, 聯(lián)立 消去y,得x2=x, 解得x=或x=0, 所以a=3. 答案:3 9.(xx保定模擬)點(diǎn)M,N分別是曲線ρsin θ=2和ρ=2cos θ上的動(dòng)點(diǎn),則|MN|的最小值是 . 解析:ρsin θ=2化為普通方程為y=2, ρ=2cos θ化為普通方程為x2+y2-2x=0, 即(x-1)2+y2=1, 圓(x-1)2+y2=1上的點(diǎn)到直線上點(diǎn)的距離的最小值為圓心(1,0)到直線y=2的距離減去半徑,即為2-1=1. 答案:1 三、解答題 10.在極坐標(biāo)系下,已知圓O:ρ=cos θ+sin θ和直線l:ρsin=. (1)求圓O和直線l的直角坐標(biāo)方程; (2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo). 解:(1)圓O:ρ=cos θ+sin θ, 即ρ2=ρcos θ+ρsin θ, 圓O的直角坐標(biāo)方程為x2+y2=x+y, 即x2+y2-x-y=0. 直線l:ρsin=, 即ρsin θ-ρcos θ=1, 則直線l的直角坐標(biāo)方程為y-x=1, 即x-y+1=0. (2)由得 故直線l與圓O公共點(diǎn)的極坐標(biāo)為. 11.(xx淮安模擬)在極坐標(biāo)系中,曲線L:ρsin 2θ=2cos θ,過(guò)點(diǎn)A(5,α)(α為銳角且tan α=)作平行于θ=(ρ∈R)的直線l,且l與曲線L分別交于B,C兩點(diǎn). (1)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長(zhǎng)度,建立平面直角坐標(biāo)系,寫(xiě)出曲線L和直線l的普通方程. (2)求|BC|的長(zhǎng). 解:(1)由題意得,點(diǎn)A的直角坐標(biāo)為(4,3),由曲線L的極坐標(biāo)方程ρsin 2θ=2cos θ, 得ρ2sin 2θ=2ρcos θ, 所以L的直角坐標(biāo)方程為y2=2x. 由于直線l的斜率為1,且過(guò)點(diǎn)A(4,3),故直線l的普通方程為y-3=x-4,即y=x-1. (2)設(shè)B(x1,y1),C(x2,y2), 由消去y, 得x2-4x+1=0, 由一元二次方程的根與系數(shù)的關(guān)系, 得x1+x2=4,x1x2=1, 由弦長(zhǎng)公式得|BC|==2. 12.(xx蘇州模擬)在極坐標(biāo)系中,圓C是以點(diǎn)C(2,-)為圓心,2為半徑的圓. (1)求圓C的極坐標(biāo)方程. (2)求圓C被直線l:θ=-所截得的弦長(zhǎng). 解:法一 (1)設(shè)所求圓上任意一點(diǎn)M(ρ,θ),如圖, 在Rt△OAM中,∠OMA=90, ∠AOM=2π-θ-,|OA|=4. 因?yàn)閏os ∠AOM=, 所以|OM|=|OA|cos ∠AOM, 即ρ=4cos(2π-θ-)=4cos(θ+), 驗(yàn)證可知,極點(diǎn)O與A(4,-)的極坐標(biāo)也滿足方程, 故ρ=4cos (θ+)為所求. (2)設(shè)l:θ=-交圓C于點(diǎn)P, 在Rt△OAP中,∠OPA=90, 易得∠AOP=, 所以|OP|=|OA|cos ∠AOP=2. 法二 (1)圓C是將圓ρ=4cos θ繞極點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)而得到的圓,所以圓C的極坐標(biāo)方程是ρ=4cos(θ+). (2)將θ=-代入圓C的極坐標(biāo)方程ρ=4cos(θ+),得ρ=2,所以圓C被直線l:θ=-所截得的弦長(zhǎng)為2. 13.(xx鄭州模擬)已知曲線C1的極坐標(biāo)方程為ρcos(θ-)=-1,曲線C2的極坐標(biāo)方程為ρ=2cos(θ-).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系. (1)求曲線C2的直角坐標(biāo)方程. (2)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值. 解:(1)依題意,得ρ=2cos(θ-)=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ), 可得x2+y2-2x-2y=0, 故C2的直角坐標(biāo)方程為(x-1)2+(y-1)2=2. (2)曲線C1的極坐標(biāo)方程為ρcos(θ-)=-1, 即ρ(cos θ+sin θ)=-1, 化為直角坐標(biāo)方程為x+y+2=0, 由(1)知曲線C2是以(1,1)為圓心,為半徑的圓,且圓心到直線C1的距離d==>r=, 于是直線與圓相離,所以動(dòng)點(diǎn)M到曲線C1的距離的最大值為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)一輪復(fù)習(xí) 第13篇 第1節(jié) 坐標(biāo)系課時(shí)訓(xùn)練 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 13 坐標(biāo)系 課時(shí) 訓(xùn)練
鏈接地址:http://m.hcyjhs8.com/p-3106555.html