2019-2020年九年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)講座 第五講 一元二次方程的整數(shù)整數(shù)解.doc
《2019-2020年九年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)講座 第五講 一元二次方程的整數(shù)整數(shù)解.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年九年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)講座 第五講 一元二次方程的整數(shù)整數(shù)解.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年九年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)講座 第五講 一元二次方程的整數(shù)整數(shù)解 在數(shù)學(xué)課外活動(dòng)中,在各類數(shù)學(xué)競(jìng)賽中,一元二次方程的整數(shù)解問(wèn)題一直是個(gè)熱點(diǎn),它將古老的整數(shù)理論與傳統(tǒng)的一元二次方程知識(shí)相結(jié)合,涉及面廣,解法靈活,綜合性強(qiáng),備受關(guān)注,解含參數(shù)的一元二次方程的整數(shù)解問(wèn)題的基本策略有: 從求根入手,求出根的有理表達(dá)式,利用整除求解; 從判別式手,運(yùn)用判別式求出參數(shù)或解的取值范圍,或引入?yún)?shù)(設(shè)△=),通過(guò)窮舉,逼近求解; 從韋達(dá)定理入手,從根與系數(shù)的關(guān)系式中消去參數(shù),得到關(guān)于兩根的不定方程,借助因數(shù)分解、因式分解求解; 從變更主元入人,當(dāng)方程中參數(shù)次數(shù)較低時(shí),可考慮以參數(shù)為主元求解. 注:一元二次方程的整數(shù)根問(wèn)題,既涉及方程的解法、判別式、韋達(dá)定理等與方程相關(guān)的知識(shí),又與整除、奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等整數(shù)知識(shí)密切相關(guān). 【例題求解】 【例1】若關(guān)于的方程的解都是整數(shù),則符合條件的整數(shù)是的值有 個(gè). 思路點(diǎn)撥 用因式分解法可得到根的簡(jiǎn)單表達(dá)式,因方程的類型未指明,故須按一次方程、二次方程兩種情形討論,這樣確定是的值才能全面而準(zhǔn)確. 注:系數(shù)含參數(shù)的方程問(wèn)題,在沒(méi)有指明是二次方程時(shí),要注意有可能是一次方程,根據(jù)問(wèn)題的題設(shè)條件,看是否要分類討論. 【例2】 已知、為質(zhì)數(shù)且是方程的根,那么的值是( ) A. B. C. D. 思路點(diǎn)撥 由韋達(dá)定理、的關(guān)系式,結(jié)合整數(shù)性質(zhì)求出、、的值. 【例3】 試確定一切有理數(shù),使得關(guān)于的方程有根且只有整數(shù)根. 思路點(diǎn)撥 由于方程的類型未確定,所以應(yīng)分類討論.當(dāng)時(shí),由根與系數(shù)關(guān)系得到關(guān)于r的兩個(gè)等式,消去r,利用因式(數(shù))分解先求出方程兩整數(shù)根. 【例4】 當(dāng)為整數(shù)時(shí),關(guān)于的方程是否有有理根?如果有,求出的值;如果沒(méi)有,請(qǐng)說(shuō)明理由. 思路點(diǎn)撥 整系數(shù)方程有有理根的條件是為完全平方數(shù). 設(shè)△=(為整數(shù))解不定方程,討論的存在性. 注:一元二次方程 (a≠0)而言,方程的根為整數(shù)必為有理數(shù),而△=為完全平方數(shù)是方程的根為有理數(shù)的充要條件. 【例5】 若關(guān)于的方程至少有一個(gè)整數(shù)根,求非負(fù)整數(shù)的值. 思路點(diǎn)撥 因根的表示式復(fù)雜,從韋達(dá)定理得出的的兩個(gè)關(guān)系式中消去也較困難,又因的次數(shù)低于的次數(shù),故可將原方程變形為關(guān)于的一次方程. 學(xué)歷訓(xùn)練 1.已知關(guān)于的方程的根都是整數(shù),那么符合條件的整數(shù)有 . 2.已知方程有兩個(gè)質(zhì)數(shù)解,則m= . 3.給出四個(gè)命題:①整系數(shù)方程(a≠0)中,若△為一個(gè)完全平方數(shù),則方程必有有理根;②整系數(shù)方程(a≠0)中,若方程有有理數(shù)根,則△為完全平方數(shù);③無(wú)理數(shù)系數(shù)方程(a≠0)的根只能是無(wú)理數(shù);④若、、均為奇數(shù),則方程沒(méi)有有理數(shù)根,其中真命題是 . 4.已知關(guān)于的一元二次方程 (為整數(shù))的兩個(gè)實(shí)數(shù)根是 、,則= . 5.設(shè)rn為整數(shù),且4- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年九年級(jí)數(shù)學(xué)競(jìng)賽輔導(dǎo)講座 第五講 一元二次方程的整數(shù)整數(shù)解 2019 2020 九年級(jí) 數(shù)學(xué) 競(jìng)賽 輔導(dǎo) 講座 第五 一元 二次方程 整數(shù)
鏈接地址:http://m.hcyjhs8.com/p-3305777.html