《北師大版數(shù)學(xué) 理提升作業(yè):6.6直接證明與間接證明含答案》由會員分享,可在線閱讀,更多相關(guān)《北師大版數(shù)學(xué) 理提升作業(yè):6.6直接證明與間接證明含答案(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
溫馨提示:
此套題為Word版,請按住Ctrl,滑動鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,答案解析附后。關(guān)閉Word文檔返回原板塊。
課時提升作業(yè)(四十)
一、選擇題
1.在證明命題“對于任意角θ,cos4θ-sin4θ=cos2θ”的過程:“cos4θ-sin4θ=(cos2θ+sin2θ)(cos2θ-sin2θ)=cos2θ-sin2θ=cos2θ”中應(yīng)用了 ( )
(A)分析法
(B)綜合法
(C)分析法和綜合法綜合使用
(D)間接證法
2.要證明a2+b2-1-a2b2≤0,只要證明 ( )
(A)2ab-1-a2b2≤0 (B)a2+b2
2、-1-≤0
(C)-1-a2b2≤0 (D)(a2-1)(b2-1)≥0
3.(20xx西安模擬)若a,b∈R,ab>0,則下列不等式中恒成立的是 ( )
(A)a2+b2>2ab (B)a+b≥2
(C)+> (D)+≥2
4.(20xx宿州模擬)用反證法證明命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除”,則假設(shè)的內(nèi)容是 ( )
(A)a,b都能被5整除
(B)a,b都不能被5整除
(C)a不能被5整除
(D)a,b有一個不能被5整除
5.(20xx洛陽模擬)在不等邊三角形ABC中,a為最大邊,要想得到A為鈍角的結(jié)論,三邊a,b,
3、c應(yīng)滿足的條件是 ( )
(A)a2b2+c2 (D)a2≤b2+c2
6.(20xx鄭州模擬)若|loga|=loga,|logba|=-logba,則a,b滿足的條件是
( )
(A)a>1,b>1 (B)01
(C)a>1,00,則f(a1)+f(a3)+f(a5)的值( )
(A)恒為正數(shù) (B)恒為負(fù)數(shù)
(C)恒為0 (
4、D)可正可負(fù)
8.已知a,b,c都是負(fù)數(shù),則三數(shù)a+,b+,c+ ( )
(A)都不大于-2 (B)都不小于-2
(C)至少有一個不大于-2 (D)至少有一個不小于-2
二、填空題
9.如果a+b>a+b,則a,b應(yīng)滿足的條件是 .
10.(20xx九江模擬)完成反證法證題的全過程.
已知:a1,a2,…,a7是1,2,…,7的一個排列.
求證:乘積P=(a1-1)(a2-2)…(a7-7)為偶數(shù).
證明:假設(shè)P為奇數(shù),則 均為奇數(shù),因為奇數(shù)個奇數(shù)之和為奇數(shù),故有奇數(shù)= = =0,得出矛盾,所以P為偶數(shù).
11.已知f(1,1)=1,f
5、(m,n)∈N+(m,n∈N+),且對任意的m,n∈N+都有:
(1)f(m,n+1)=f(m,n)+2.
(2)f(m+1,1)=2f(m,1).
給出以下三個結(jié)論:①f(1,5)=9;②f(5,1)=16;
③f(5,6)=26.其中正確結(jié)論的序號有 .
三、解答題
12.(20xx安慶模擬)若x,y都是實數(shù),且x+y>2.求證:<2與<2中至少有一個成立.
13.(2012福建高考)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù).
(1)sin213+cos217-sin 13cos 17.
(2)sin215+cos215-sin 15cos 15
6、.
(3)sin218+cos212-sin 18cos 12.
(4)sin2(-18)+cos248-sin(-18)cos 48.
(5)sin2(-25)+cos255-sin(-25)cos 55.
①試從上述五個式子中選擇一個,求出這個常數(shù).
②根據(jù)①的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
14.(1)求證:當(dāng)a>1時,不等式a3+>a2+成立.
(2)要使上述不等式成立,能否將條件“a>1”適當(dāng)放寬?若能,請放寬條件,并簡述理由;若不能,也請說明理由.
(3)請你根據(jù)(1)(2)的結(jié)果,寫出一個更為一般的結(jié)論,且予以證明.
答案解析
1.
7、【解析】選B.從已知條件出發(fā),推出要證的結(jié)論,滿足綜合法.
2.【解析】選D.a2+b2-1-a2b2≤0
?(a2-1)(b2-1)≥0.
3.【解析】選D.A中a2+b2≥2ab,B,C中,若a<0,b<0時不成立.
4.【解析】選B.該命題意思是說“a,b有能被5整除的”,所以反設(shè)應(yīng)是“a,b都不能被5整除”.
5.【解析】選C.當(dāng)A為鈍角時,cosA<0,
因此<0,于是a2>b2+c2.
6.【思路點撥】先利用|m|=m,則m≥0,|m|=-m,則m≤0,將條件進行化簡,然后利用對數(shù)函數(shù)的單調(diào)性即可求出a和b的范圍.
【解析】選B.∵|loga|=loga,
∴l(xiāng)o
8、ga≥0=loga1,根據(jù)對數(shù)函數(shù)的單調(diào)性可知01.
7.【思路點撥】利用奇函數(shù)的性質(zhì)f(0)=0以及等差數(shù)列的性質(zhì)a1+a5=2a3,關(guān)鍵判斷f(a1)+f(a5)>0.
【解析】選A.由于f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),且a3>0,所以f(a3)>f(0)=0.
而a1+a5=2a3,所以a1+a5>0,則a1>-a5,
于是f(a1)>f(-a5),即f(a1)>-f(a5),
因此f(a1)+f(a5)>0,
所以有f(a1)+f(a3)+f(a5
9、)>0.
8.【解析】選C.假設(shè)三個數(shù)都大于-2,
即a+>-2,b+>-2,c+>-2,則得到
(a+)+(b+)+(c+)>-6.
而a,b,c都是負(fù)數(shù),
所以(a+)+(b+)+(c+)
=(a+)+(b+)+(c+)
≤-2-2-
2
=-6,
這與(a+)+(b+)+(c+)>-6矛盾,因此三個數(shù)中至少有一個不大于-2.
【變式備選】設(shè)實數(shù)a,b,c滿足a+b+c=1,則實數(shù)a,b,c中至少有一個不小于 .
【解析】假設(shè)a,b,c都小于,即a<,b<,c<,
則a+b+c<1,這與a+b+c=1矛盾,因此實數(shù)a,b,c中至少有一個不小于.
答案:
9
10、.【解析】a+b>a+b
?(-)2(+)>0?a≥0,b≥0,且a≠b.
答案:a≥0,b≥0且a≠b
10.【解析】第一個空應(yīng)填:a1-1,a2-2,…,a7-7.
第二個空應(yīng)填:(a1-1)+(a2-2)+…+(a7-7).
第三個空應(yīng)填:(a1+a2+…+a7)-(1+2+…+7).
答案:a1-1,a2-2,…,a7-7 (a1-1)+(a2-2)+…+(a7-7) (a1+a2+…+a7)-(1+2+…+7)
11.【解析】在(1)式中令m=1可得
f(1,n+1)=f(1,n)+2,
則f(1,5)=f(1,4)+2=…=9;
在(2)式中,由f(m+1,1)
11、=2f(m,1)得,
f(5,1)=2f(4,1)=…=16f(1,1)=16,
從而f(5,6)=f(5,1)+10=26,故①②③均正確.
答案:①②③
12.【證明】假設(shè)<2與<2均不成立,
則≥2且≥2,
∴1+x≥2y且1+y≥2x,
∴2+x+y≥2x+2y,
∴x+y≤2,與已知x+y>2矛盾,
∴<2與<2中至少有一個成立.
13.【解析】①選擇(2)式計算如下sin215+cos215-
sin 15cos 15=1-sin 30=.
②三角恒等式為sin2α+cos2(30-α)-sinαcos(30-α)=.
證明如下:sin2α+cos2(30
12、-α)-sinαcos(30-α)
=sin2α+(cos 30cosα+sin30sinα)2-sinα(cos30cosα+sin30sinα)
=sin2α+cos2α+sinαcosα+sin2α-
sinαcosα-sin2α
=sin2α+cos2α=.
14. 【解析】(1)a3+-a2-=(a-1)(a5-1),因為a>1,所以(a-1)(a5-1)>0,故原不等式成立.
(2)能將條件“a>1”適當(dāng)放寬.理由如下:由于a-1與a5-1對于任意的a>0且a≠1都保持同號,所以上述不等式對任何a>0且a≠1都成立,故條件可以放寬為a>0且a≠1.
(3)根據(jù)(1)(2)的證明,可推知:
若a>0且a≠1,m>n>0,
則有am+>an+.
證明如下:
am-an+-=an(am-n-1)-(am-n-1)
=(am-n-1)(am+n-1),
若a>1,則由m>n>0得am-n-1>0,am+n-1>0,知不等式成立;
若0n>0得am-n-1<0,am+n-1<0,知不等式成立.
關(guān)閉Word文檔返回原板塊。