壓縮包內(nèi)含有CAD圖紙和說(shuō)明書,均可直接下載獲得文件,所見(jiàn)所得,電腦查看更方便。Q 197216396 或 11970985
畢業(yè)設(shè)計(jì)(論文)任務(wù)書
學(xué)生姓名: 學(xué)號(hào):
學(xué) 院: 專業(yè):
任務(wù)起止時(shí)間:2011 年 3 月 8 日至 2011 年 7 月 2 日
畢業(yè)設(shè)計(jì)(論文)題目:
車銑加工中心左右立柱結(jié)構(gòu)與工藝面制造工藝設(shè)計(jì)
畢業(yè)設(shè)計(jì)工作內(nèi)容:
1. 技術(shù)查新、資料檢索和翻譯;(2周)
2. 左右立柱結(jié)構(gòu)的分析;(4周)
3. 左右立柱的結(jié)構(gòu)設(shè)計(jì);(5周)
4. 左右立柱與工藝面制造工藝設(shè)計(jì);(4周)
5. 論文整理、答辯。(2周)
資料:
1. 周濟(jì),周艷紅,數(shù)控加工技術(shù),國(guó)防工業(yè)出版社,2003(04).
2. 《機(jī)床設(shè)計(jì)手冊(cè)》編寫組,機(jī)床設(shè)計(jì)手冊(cè),機(jī)械工業(yè)出版社.1986(12).
3. 張伯霖. 高速切削加工技術(shù)在美國(guó)的最新發(fā)展.制造技術(shù)與機(jī)床, 1994.4
4. 劉雄偉,數(shù)控加工技術(shù)與編程技術(shù),機(jī)械工業(yè)出版社.2000(03).
5. 梁玉平. 高速切削刀具材料. 機(jī)械工程材料, 1994.5
6. 艾興. 超高速切削加工技術(shù). 機(jī)械工業(yè)出版社, 2003.1
7. 龔景安,許立忠.機(jī)械設(shè)計(jì)(第二版),機(jī)械工業(yè)出版社.1998(02)
指導(dǎo)教師意見(jiàn):
簽名:
2010年2 月28日
系主任意見(jiàn):
簽名:
2010年3月5日
教務(wù)處制表
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
課題題目及來(lái)源:
題目: 車銑加工中心左右立柱結(jié)構(gòu)與工藝面制造工藝設(shè)計(jì)
來(lái)源: 企業(yè)合作項(xiàng)目
課題研究的意義和國(guó)內(nèi)外研究現(xiàn)狀:
課題研究的意義:
立柱是數(shù)控機(jī)床中主要的構(gòu)件之一,它支撐主軸系統(tǒng)。立柱的剛性是影響加工村度的要因素之一。目前,許多立式數(shù)控機(jī)床采用了龍門式立柱。所以龍門式立柱的結(jié)構(gòu)和加工工藝對(duì)龍門機(jī)床產(chǎn)生重大影響
國(guó)內(nèi)外研究現(xiàn)狀:
我國(guó)機(jī)床立柱在進(jìn)入21世紀(jì)后連續(xù)8年保持快速發(fā)展的良好形勢(shì),我們的一些企業(yè)也能做出來(lái),與機(jī)床要求相符合的立柱,但是他們是用普通機(jī)床做出高精度的功能部件,這些產(chǎn)品也能用在一些高檔的數(shù)控機(jī)床上面,但是它的精度的穩(wěn)定性和保持性不行,再加上原材料的問(wèn)題和工藝水平問(wèn)題
目前國(guó)外的機(jī)床立柱研究和國(guó)內(nèi)最大差別是精度與可靠性,以及機(jī)床立柱的制造工藝水平與質(zhì)量,這就是國(guó)外產(chǎn)品的最大優(yōu)勢(shì)。同時(shí)國(guó)外研究趨于低碳環(huán)保的制造模式,降低生產(chǎn)成本
(龍門架立柱標(biāo)準(zhǔn)節(jié)由四角的四根角鋼和與其內(nèi)側(cè)垂直連接的方框組成,每節(jié)立柱下端所連方框底面縮進(jìn)立柱長(zhǎng)度為L(zhǎng),其上端所連方框頂面伸出立柱長(zhǎng)度為l,l<L。相鄰兩節(jié)立柱四角角鋼上下對(duì)應(yīng)插接扣合,相鄰兩節(jié)立柱相鄰方框通過(guò)連接件連接。方框由四根角鋼連接而成,組成每節(jié)立柱下端所連方框的角鋼夾角斜向上方,組成每節(jié)立柱上端所連方框的角鋼夾角斜向下方)
課題研究的主要內(nèi)容和方法,研究過(guò)程中的主要問(wèn)題和解決辦法:
課題研究的主要內(nèi)容:
1、根據(jù)其使用要求進(jìn)行受力分析
2、根據(jù)其受力和其他因素(如安裝別的零部件),并參考現(xiàn)有立柱類型,初步?jīng)Q定其形狀和尺寸
3、與機(jī)床其它部件連接處結(jié)構(gòu)設(shè)計(jì)
4、左右立柱與工藝面制造工藝設(shè)計(jì)
5、借助計(jì)算機(jī)進(jìn)行驗(yàn)算求其靜態(tài)和動(dòng)態(tài)特性。
研究過(guò)程中的主要問(wèn)題和解決辦法:
主要問(wèn)題:通過(guò)受力和各連接件確定立柱各部分結(jié)構(gòu)
解決方法:通過(guò)考察和調(diào)研,查閱相關(guān)資料,綜合應(yīng)用專業(yè)的理論知識(shí),掌握機(jī)械裝置的設(shè)計(jì)方法和步驟,在通過(guò)多次的計(jì)算校對(duì),最后確定設(shè)計(jì)方案及設(shè)計(jì)參數(shù),進(jìn)行設(shè)計(jì)安裝。
課題研究所需的參考文獻(xiàn):
[1] 戴曙.金屬切削機(jī)床.機(jī)械工業(yè)出版社,1999:217-238
[2] 杜君文.機(jī)械制造技術(shù)裝備及設(shè)計(jì).天津大學(xué)出版社,2007:26-33
[3] 周濟(jì),周艷紅.數(shù)控加工技術(shù). 國(guó)防工業(yè)出版社,2003(04)
[4] 《機(jī)床設(shè)計(jì)手冊(cè)》編寫組,機(jī)械設(shè)計(jì)手冊(cè). 機(jī)械工業(yè)出版社,1986(12)
[5] 艾興. 超高速加工技術(shù). 機(jī)械工業(yè)出版社.2003.1
[6] 梁玉平. 高速切削刀具材料. 機(jī)械工程材料.1994.5
[7] 劉雄偉. 數(shù)控加工技術(shù)與編程技術(shù). 機(jī)械工業(yè)出版社.2000(03)
[8] 張伯霖. 高速切削技術(shù)在美國(guó)的最新發(fā)展. 制造技術(shù)與機(jī)床.1994.4
[9] 龔景安,許立忠. 機(jī)械設(shè)計(jì)(第二版).機(jī)械工業(yè)出版社.1988(02)
指導(dǎo)教師審查意見(jiàn):
指導(dǎo)教師簽字:
20 年 月 日
指導(dǎo)委員會(huì)意見(jiàn)審核意見(jiàn):
組長(zhǎng)簽字:
20 年 月 日
附錄:外文原文和譯文
SIMULTANEOUS STRUCTURE AND MECHANISM DESIGN FOR AN ADAPTIVE WING USING TOPOLOGY OPTIMIZATION
James J. Joo Aerospace Mechanics Division University of Dayton Research Institute Dayton, OH 45469, USA
Brian Sanders Air Vehicles Directorate AirForce Research Laboratory Wright-Patterson AFB, Ohio 45433, USA
ABSTRACT
A synthesis technique using a topology optimization scheme for an adaptive wing structure and mechanism design will be described.This enables the design of energy efficient adaptive structures with controllable deformation characteristice.This is accomplished by using a multi-objective function that minimizes strain energy and maximizes mutual potential energy to design the structure and mechanism simultaneously.To enable simultaneous design for structure and mechanism, the reference structure is composed of three layers; a membrane layer for skin, a frame element layer for structure, and truss element layer for an efficient mechanism. The attachment points between mechanism and structure are also identified with linear springs that are located between mechanism and structure layers. We focus on a simultaneous design of a wing structure and mechanism for large shape change applications. The geometrically large deformation analysis scheme is also added to the synthesis to capture nonlinear effects in design and it will be compared with linear synthesis results.
INTRODUCTION
Adaptive structures are a multidisciplinary technology that requires the efficient integration of power systems, structures, mechanisms, and actuators to achieve the desired performance. Adaptive systems will have a dramatic impact on the design of air vehicle systems if new devices can be synergistically
integrated into systems. The basic research community has suggested a plethora of innovative concepts ranging from structural health monitoring to adaptive shape control using energy intensive smart materials. Smart material technologies have increased its potential application to provide a new opportunity for active/adaptive structure systems that fully integrate actuators and structures. The Defense Advanced Research Projects Agency (DARPA) recognizes the potential of this technology and initiated the Smart Materials and Structures Demonstration Program to demonstrate the use of smart materials to achieve aerodynamic and hydrodynamic flow control and to reduce noise and vibration in a variety of structures (Sanders, et. al, 2004).
New materials synthesized at the atomic level to produce new functionality are ideal for this application but the technology is very immature. Until now, smart materials or other adaptive technologies have been added to an existing structure to achieve a desired shape change a structure already designed to avoid deformation. For example, aircraft wings are designed to be stiff as possible to control aeroelastic effects, and then smart materials are attached on to it to get a higher lift coefficient by change airfoil shape. This system becomes very energy inefficient because you are trying to deform a structure that was alreadydesigned to prevent deformation. For this reason, researchers have designed in flexibility for their structure design. Lu and Kota (2003) have designed a compliant leading edge that matches a desired shape with a single actuation force. Others are investigating new design techniques for these applications. Maute et. al. (2005) used the topology optimization technique to design mechanisms in morphing aircraft structures including actuator characteristics. Also Mauteand Reich (2004) showed the simultaneous optimization of the mechanism layout of adaptive wing and aerodynamic tasks outperformed the decomposed two step procedure.
Designed properly, these structural concepts have the potential to revolutionize aircraft design and basic functionality. For example, the use of adaptive systems within unmanned air vehicles (UAV) will enable a multi-mission (e.g., hunter-killer) UAV by allowing the vehicle configuration to efficiently adapt to a wide range of mission roles, such as loiter and high speed dash. Here the best wings for each purpose have radically different planforms. Current research on morphing aircraft that exhibit very large shape changes requires more efficient ways of synthesizing out three major components; rigid-body mechanisms, structures and skins. In this paper, we propose to design an energy efficient adaptive structure for shape control purposes by designing structures and mechanisms simultaneously. A three-layer model is developed that is composed of a ground truss layer for mechanism design and a membrane and beam layers for structure design. A multi-objective function to maximize mutual potential energy to increase flexibility in desired direction and minimizing strain energy to withstand drag is adopted here.
NOMENCLATURE
Uo Dummy force in the desired output direction
Ui Dummy force in the input direction.
Fin Input force
Fex External force
[K] Global stiffness matrix
mzebxcnn0 Displacement vector
{f} Force vector
Km Element stiffness matrix of membrane element
Kt Element stiffness matrix of truss element
Kf Element stiffness matrix of frame element
Ks Element stiffness matrix of spring element
Maximum volume of truss element
Maximum volume of frame element
N* Maximum number of spring
P Penalty
ρf, s, t Density of frame, spring, and truss elements
REFERENCE STRUCTURE
The reference element composed of three layers is shown in Figure 1 below; the membrane element layer is for stretchable flexible skin. The truss element layer is for an energy efficient mechanism that generates motion using rigid body rotation rather than the deformation of elements to change the shape. Using frame elements, most of energy will be stored in the mechanism rather than transformed to the output port which results in an inefficient mechanism. Also this truss element with rigid body rotation is more appropriate for large shape changing applications than frame elements due to the similar reason. This truss element layer is connected to the membrane elements layer by springs and this is for identifying connection points between structure and mechanism. Spring stiffness is chosen based on the following criteria (Chandrupatla 1997) to bond mechanism and membrane layer together:
C=max∣kij∣×103 (1
收藏