《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 09第九講 坐標(biāo)平面上的直線》由會員分享,可在線閱讀,更多相關(guān)《精修版貴州省貴陽市九年級數(shù)學(xué)競賽講座 09第九講 坐標(biāo)平面上的直線(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
一般地,若 (,是常數(shù),),則叫做的一次函數(shù),它的圖象是一條直線,函數(shù)解析式 6中的系數(shù)符號,決定圖象的大致位置及單調(diào)性(隨的變化情況).如圖所示:
一次函數(shù)、二元一次方程、直線有著深刻的聯(lián)系,任意一個一次函數(shù)都可看作是關(guān)于、的一個二元一次方程;任意一個關(guān)于、的二元一次方程,可化為形如 ()的函數(shù)形式.坐標(biāo)平面上的直線可以表示一次函數(shù)與二元一次方程,而利用方程和函數(shù)的思想可以研究直線位置關(guān)系,求坐標(biāo)平面上的直線交點坐標(biāo)轉(zhuǎn)化為解由函數(shù)解析式聯(lián)立的方程組.
【例題求解】
【例1】 如圖,在
2、直角坐標(biāo)系中,直角梯形OABC的頂點A(3,0)、B(2,7),P為線段OC上一點,若過B、P兩點的直線為,過A、P兩點的直線為,且BP⊥AP,則= .
思路點撥 解題的關(guān)鍵是求出P點坐標(biāo),只需運用幾何知識建立OP的等式即可.
【例2】 設(shè)直線 (為自然數(shù))與兩坐標(biāo)軸圍成的三角形面積為 (=1,2,…2000),則S1+S2+…+S2000的值為( )
A.1 B. C. D.
思路點撥 求出直線與軸、軸交點坐標(biāo),從
3、一般形式入手,把用含的代數(shù)式表示.
【例3】 某空軍加油飛機接到命令,立即給另一架正在飛行的運輸飛機進行空中加油.在加油過程中,設(shè)運輸飛機的油箱余油量為Q1噸,加油飛機的加油油箱余油量為Q2噸,加油時間為分鐘,Q1、Q2與之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問題:
(1)加油飛機的加油油箱中裝載了多少噸油?將這些油全部加給運輸飛機需多少分鐘?
(2)求加油過程中,運輸飛機的余油量Q1 (噸)與時間 (分鐘)的函數(shù)關(guān)系式;
(3)運輸飛機加完油后,以原速繼續(xù)飛行,需10小時到達目的地,油料是否夠用?說明理由.
4、
思路點撥 對于(3),解題的關(guān)鍵是先求出運輸飛機每小時耗油量.
注:(1)當(dāng)自變量受限制時,一次函數(shù)圖象可能是射線、線段、折線或點,一次函數(shù)當(dāng)自變量取值受限制時,存在最大值與最小值,根據(jù)圖象求最值直觀明了.
(2)當(dāng)一次函數(shù)圖象與兩坐標(biāo)軸有交點時,就與直角三角形聯(lián)系在一起,求兩交點坐標(biāo)并能發(fā)掘隱含條件是解相關(guān)綜合題的基礎(chǔ).
【例4】 如圖,直線與軸、y軸分別交于點A、B,以線段AB為直角邊在第一象限內(nèi)作等腰直角△ABC,∠BAC=90,如果在第二象限內(nèi)有一點P(,),且△ABP的面積與△A ABC的面積相等,
5、求的值.
思路點撥 利用S△ABP=S△ABC建立含的方程,解題的關(guān)鍵是把S△ABP表示成有邊落在坐標(biāo)軸上的三角形面積和、差.
注:解函數(shù)圖象與面積結(jié)合的問題,關(guān)鍵是把相關(guān)三角形用邊落在坐標(biāo)軸的其他三角形面 積來表示,這樣面積與坐標(biāo)就建立了聯(lián)系.
【例5】 在直角坐標(biāo)系中,有以A(一1,一1),B(1,一1),C(1,1),D(一1,1)為頂點的正方形,設(shè)它在折線上側(cè)部分的面積為S,試求S關(guān)于的函數(shù)關(guān)系式,并畫出它們的圖象.
思路點撥 先畫出符合題意的圖形,然后對不確定折線及其中的字母的取值范圍進行分類討論,的取值決定了正方形在折線上側(cè)部分的圖形的形狀.
6、
注:我們把有自變量或關(guān)于自變量的代數(shù)式包含在絕對值符號在內(nèi)的一類函數(shù)稱為絕對值函數(shù).去掉絕對值符號,把絕對值函數(shù)化為分段函數(shù),這是解絕對值的一般思路.
學(xué)歷訓(xùn)練
1.一次函數(shù)的自變量的取值范圍是-3≤≤6,相應(yīng)函數(shù)值的取值范圍是-5≤≤-2,則這個函數(shù)的解析式為 .
2.已知,且,則關(guān)于自變量的一次函數(shù)的圖象一定經(jīng)過第 象限.
3.一家小型放影廳的盈利額(元)與售票數(shù)之間的關(guān)系如圖所示,其中超過150人時,要繳納公安消防保險費50元.試根據(jù)關(guān)系圖回答下列問題:
(1)當(dāng)售票數(shù)
7、滿足0<≤150時,盈利額 (元)與之間的函數(shù)關(guān)系式是 .
(2)當(dāng)售票數(shù)滿足150
8、圖象是( )
5.下列圖象中,不可能是關(guān)于的一次函數(shù)的圖象是( )
6.小李以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與賣瓜的千克數(shù)之間關(guān)系如圖所示,那么小李賺了( )
A.32元 B.36元 C. 38元 D.44元
7.某醫(yī)藥研究所開發(fā)了一種新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服
9、藥后2小時時血液中含藥量最高,達每毫升6微克(1微克=10-3毫克),接著逐步衰減,10小時時血液中含藥量為每毫升3微克,每毫升血液中含藥量 (微克)隨時間(小時)的變化如圖所示,當(dāng)成人按規(guī)定劑量服用后.
(1)分別求出≤2和≥2時與之間的函數(shù)關(guān)系式;
(2)如果每毫升血液中含藥量為4微克或4微克以上時在治療疾病時是有效的,那么這個有效時間是多長?
8.如圖,正方形ABCD的邊長是4,將此正方形置于平面直角坐標(biāo)系O中,使AB在軸的正半軸上,A點的坐標(biāo)是(1,0)
(1)經(jīng)過C點的直線與軸交于點E,求四邊形AECD的面積;
(2)若直線經(jīng)過點E且將正方形ABCD分成面積相等的兩
10、部分,求直線的方程,并在坐標(biāo)系中畫出直線. (2001年湖北省荊州市中考題)
9.如圖,已知點A與B的坐標(biāo)分別為(4,0),(0,2)
(1)求直線AB的解析式.
(2)過點C(2,0)的直線(與軸不重合)與△AOB的另一邊相交于點P,若截得的三角形與△AOB相似,求點P的坐標(biāo).
10.如圖,直線與軸、y軸分別交于P、Q兩點,把△POQ沿PQ翻折,點O落在R處,則點R的坐標(biāo)是 .
11.在直角坐標(biāo)系
11、O中,軸上的動點M(,0)到定點P(5,5)、Q(2,1)的距離分別為MP和MQ,那么,當(dāng)MP+MQ取最小值時,點M的橫坐標(biāo)為 .
12.如圖,在直角坐標(biāo)系中,矩形OABC的頂點B的坐標(biāo)為(15,6),直線恰好將矩形OABC分成面積相等的兩部分,那么b= .
13.如果—條直線經(jīng)過不同的三點A(a,b),B(b,a),C(a-b,b-a),那么,直線經(jīng)過( )象限.
A.二、四 B.—、三 C
12、.二、三、四 D.一、三、四
14.一個一次函數(shù)的圖象與直線平行,與軸、軸的交點分別為A、B,并且過點(一l,—25),則在線段AB(包括端點A、B)上,橫、縱坐標(biāo)都是整數(shù)的的點有( )
A.4個 B.5個 C. 6個 D.7個
15.點A(一4,0),B(2,0)是坐標(biāo)平面上兩定點,C是的圖象上的動點,則滿足上述條件的直角△ABC可以畫出( )
A. 1個 B. 2個 C.3個 D.
13、4個
16.有—個附有進、出水管的容器,每單位時間進、出的水量都是一定的,設(shè)從某時刻開始5分鐘內(nèi)只進不出水,在隨后的15分鐘內(nèi)既進水又出水,得到時間 (分)與水量(升)之間的關(guān)系如下圖.若20分鐘后只出水不進水,求這時(即≥20)y與之間的函數(shù)關(guān)系式.
17.如圖,△AOB為正三角形,點B坐標(biāo)為(2,0),過點C(一2,0)作直線交AO于D,交AB于E,且使△ADE和△DCO的面積相等,求直線的函數(shù)解析式.
18.在直角坐標(biāo)系中,有四個點A(一8,3),B(一4
14、,5),C(0,),D(,0),當(dāng)四邊形ABCD的周長最短時,求的值.
19.轉(zhuǎn)爐煉鋼產(chǎn)生的棕紅色煙塵會污染大氣,某裝置可通過回收棕紅色煙塵中的氧化鐵從而降低污染,該裝置的氧化鐵回收率與其通過的電流有關(guān).現(xiàn)經(jīng)過試驗得到下列數(shù)據(jù):
通過電流強度(單位A)
1
1.7
1.9
2.1
2.4
氧化鐵回收率(%)
75
79
88
87
78
如圖建立直角坐標(biāo)系,用橫坐標(biāo)表示通過的電流強度,縱坐標(biāo)表示氧化鐵回收率.
(1) 將試驗所得數(shù)據(jù)在右圖所給的直角坐標(biāo)系中用點表示(注:該圖中坐標(biāo)軸的交點代表點(1,70);
(2) 用線段
15、將題(1)所畫的點從左到右順次連接,若用此圖象來模擬氧化鐵回收率y關(guān)于通過電流x的函數(shù)關(guān)系,試寫出該函數(shù)在 1.7≤x≤2.4 時的表達式;
(3) 利用題(2)所得函數(shù)關(guān)系,求氧化鐵回收率大于85%時,該裝置通過的電流應(yīng)該控制的范圍(精確到0.1A).
20.如圖,直線OC、BC的函數(shù)關(guān)系式分別為和,動點P(x,0)在OB上移動(0<<3),過點P作直線與軸垂直.
(1)求點C的坐標(biāo);
(2)設(shè)△OBC中位于直線左側(cè)部分的面積為S,寫出S與之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫出(2)中的函數(shù)的圖象;
(4)當(dāng)為何值時,直線平分△OBC的面積?
參考答案
最新精品資料