新版全國通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題28 幾何證明選講含解析
《新版全國通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題28 幾何證明選講含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版全國通用高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題28 幾何證明選講含解析(12頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 1
2、 1 【走向高考】(全國通用)20xx高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 微專題強(qiáng)化練 專題28 幾何證明選講(含解析) 一、填空題 1.(文)如圖,在△ABC中,∠A=60°,∠ACB=70°,CF是△ABC的邊AB上的高,F(xiàn)P⊥BC于點(diǎn)P,F(xiàn)Q⊥AC于點(diǎn)Q,則∠CQP的大小為________. [答案] 50° [解析] 由PF⊥BC,F(xiàn)Q⊥AC,得C、Q、F、P四點(diǎn)共
3、圓,所以∠CQP=∠CFP=∠B=180°-(∠A+∠C)=180°-(60°+70°)=50°. (理) 如圖,已知PA是圓O的切線,切點(diǎn)為A,PO交圓O于B、C兩點(diǎn),AC=,∠PAB=30°,則線段PB的長為________. [答案] 1 [解析] 因?yàn)镻A是圓O的切線,∠PAB=30°,由弦切角定理可得∠ACB=∠PAB=30°,而∠CAB=90°,∠ABC=60°,所以AB=BC,又因?yàn)锳C=,所以AB=1,BC=2,∠PBA=120°,所以∠APB=∠PAB=30°,∴PB=AB=1. 2.(文)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且DF=
4、CF=,AFFBBE=421.若CE與圓相切,則線段CE的長為________. [答案] [解析] 設(shè)BE=a,則AF=4a,F(xiàn)B=2a,根據(jù)相交弦定理:DF·FC=AF·FB,則2=8a2,∴a2=,由切割線定理:EC2=BE·AE=7a2, ∴EC2=,∴EC=. (理)(20xx·湖南理,12)如圖,已知AB、BC是⊙O的兩條弦,AO⊥BC,AB=,BC=2,則⊙O的半徑等于________. [答案] [解析] 本題考查勾股定理、相交弦定理. 設(shè)線段AO交BC于點(diǎn)D,延長AO交圓于另外一點(diǎn)E,則BD=DC=,在三角形ABD中由勾股定理可得AD=1,由
5、相交弦定理可得BD·DC=AD·DE,∴DE=2,則直徑AE=3?r=,故填. 3.(20xx·湖北理,15)如圖,PA是圓的切線,A為切點(diǎn),PBC是圓的割線,且BC=3PB,則=________. [答案] [解析] 設(shè)PB=a,則BC=3a,由PA2=PB·PC可得PA=2a;又因?yàn)椤鱌AB ∽△PCA, 所以由=可解得=. 故本題正確答案為. 4.(文)如圖,AB為圓O的直徑,PA為圓O的切線,PB與圓O相交于D,若PA=3,PDDB=916,則PD=________,AB=________. [答案] ,4 [解析] 由于PDDB=916,設(shè)PD=9a
6、,則DB=16a,根據(jù)切割線定理有PA2=PD·PB有a=,所以PD=,在直角△PBA中,AB2=PB2-AP2=16,所以AB=4. (理) (20xx·重慶理,14)如圖,圓O的弦AB,CD相交于點(diǎn)E,過點(diǎn)A作圓O的切線與DC的延長線交于點(diǎn)P,若PA=6,AE=9,PC=3,CEED=21,則BE=________. [答案] 2 [解析] 此題主要考查切割線定理,屬于簡單題型. 由切割線定理知PA2=PC·PD,易得PD=12,故CD=PD-PC=9,因?yàn)镃EED=21,故CE=6,ED=3.由相交弦定理可得AE·EB=CE·ED,又因?yàn)锳E=9,CE=6,ED=3,
7、易得EB=2. 5.(文)(20xx·廣東理,15)如圖,已知AB是圓O的直徑,AB=4,EC是圓O的切線,切點(diǎn)為C,BC=1.過圓心O作BC的平行線,分別交EC和AC于點(diǎn)D和點(diǎn)P,則OD=________. [答案] 8 [解析] 本題考查直線與圓、直角三角形的射影定理,屬于中檔題. 如下圖所示,連接OC,因?yàn)镺D∥BC,又BC⊥AC,所以O(shè)P⊥AC,又O為AB線段的中點(diǎn),所以O(shè)P=BC=,在Rt△OCD中,OC=AB=2,由直角三角形的射影定理可得OC2=OP·OD,所以O(shè)D===8. (理)在平行四邊形ABCD中,點(diǎn)E在線段AB上,且AE=EB,連接DE、AC,若AC與
8、DE相交于點(diǎn)F,△AEF的面積為1cm2,則△AFD的面積為________cm2. [答案] 3 [解析] ∵AB∥CD,∴△AEF∽△CDF, ∴==3,==3,S△AFD=3S△AFE=3cm2. 6.(文)如圖,△ABC為圓的內(nèi)接三角形,BD為圓的弦,且BD∥AC.過點(diǎn)A作圓的切線與DB的延長線交于點(diǎn)E,AD與BC交于點(diǎn)F.若AB=AC,AE=6,BD=5,則線段CF的長為________. [答案] [解析] 如圖所示: ∵AE為圓的切線,∴AE2=BE·ED, 設(shè)BE=x,∴36=x(5+x), x2+5x-36=0,∴x=4. ∵AB=AC,∴∠
9、ACB=∠ABC, 又∠EAB=∠ACB,∴∠EAB=∠ABC,∴AE∥BC, 又EB∥AC,∴四邊形BCAE為平行四邊形, ∴BC=AE=6,AC=BE=4, ∵△DFB∽△AFC, ∴=,∴=,∴FC=. (理)如圖,在△ABC中,∠ACB=90°,∠BAC=60°,過C作△ABC的外接圓的切線CD,BD⊥CD于D,BD與外接圓交于點(diǎn)E,已知DE=5,則△ABC的外接圓的半徑為________. [答案] 10 [解析] 利用切割線定理和正弦定理求解.因?yàn)镃D是圓的切線,所以∠BCD=∠BAC=60°,所以DB=DC.又由切割線定理可得DC2=DE×DB=5DC,則DC
10、=5,所以BC=2DC=10.在直角三角形ABC中,由正弦定理可得2R=AB===20,所以△ABC的外接圓的半徑R=10. 二、解答題 7. (20xx·遼寧葫蘆島市一模)如圖,P是⊙O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與⊙O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長線交⊙O于點(diǎn)E,證明: (1)BE=EC; (2)AD·DE=2PB2. [證明] (1)連接AB,AC.由題設(shè)知PA=PD, 故∠PAD=∠PDA. 因?yàn)椤螾DA=∠DAC+∠DCA, ∠PAD=∠BAD+∠PAB,∠DCA=∠PAB, 所以∠DAC=∠BAD,因此BE=EC.
11、 (2)由切割線定理得PA2=PB·PC. 因?yàn)镻A=PD=DC,所以PD2=(PD-BD)·2PD,∴PD=2BD,∴DC=2PB,BD=PB. 由相交弦定理得AD·DE=BD·DC, 所以AD·DE=2PB2. 8.(文)(20xx·沈陽市質(zhì)檢)如圖,△ABC內(nèi)接于圓O,AD平分∠BAC交圓O于點(diǎn)D,過點(diǎn)B作圓O的切線交直線AD于點(diǎn)E. (1)求證:∠EBD=∠CBD; (2)求證:AB·BE=AE·DC. [解析] (1)∵BE為圓O的切線, ∴∠EBD=∠BAD, 又∵AD平分∠BAC,∴∠BAD=∠CAD, ∴∠EBD=∠CAD. 又∵∠CBD=∠CAD
12、,∴∠EBD=∠CBD. (2)在△EBD和△EAB中,∠E=∠E,∠EBD=∠EAB, ∴△EBD∽△EAB,∴=, ∴AB·BE=AE·BD, 又∵AD平分∠BAC,∴BD=DC, 故AB·BE=AE·DC. (理)(20xx·唐山市二模)如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過AD延長線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.求證: (1)△DEF∽△EAF; (2)EF∥CB. [分析] (1)欲證△DEF∽△EAF,可證兩個(gè)三角形有兩內(nèi)角對(duì)應(yīng)相等,亦可證兩個(gè)三角形有兩邊對(duì)應(yīng)成比例,夾角對(duì)應(yīng)相等,由已知條件,F(xiàn)G、FA分別是圓的切線、割線及EF=FG可
13、知兩個(gè)三角形有兩條邊對(duì)應(yīng)成比例,關(guān)鍵是其夾角相等,而夾角是公共角,第一問獲證. (2)欲證EF∥CB,由圓想到可證角相等(同位角、內(nèi)錯(cuò)角),注意利用圓的有關(guān)角的性質(zhì)和(1)的結(jié)論. [解析] (1)由切割線定理得FG2=FA·FD. 又EF=FG,所以EF2=FA·FD,即=. 因?yàn)椤螮FA=∠DFE,所以△DEF∽△EAF. (2)由(1)得∠FED=∠FAE. 因?yàn)椤螰AE=∠DAB=∠DCB, 所以∠FED=∠BCD,所以EF∥CB. 9.(文) (20xx·洛陽市質(zhì)量監(jiān)測)如圖,AB是⊙O的切線,B為切點(diǎn),ADE是⊙O的割線,C是⊙O外一點(diǎn),且AB=AC,連接BD,
14、BE,CD,CE,CD交⊙O于F,CE交⊙O于G. (1)求證:BE·CD=BD·CE; (2)求證:FG∥AC. [證明] (1)由已知得∠ABD=∠AEB,而∠BAD=∠EAB, ∴△ABD∽△AEB, 所以==,又AB=AC, 所以BD·AE=AB·BE, ?、? 且=,又∠CAD=∠EAC,∴△ADC∽△ACE, 所以=,即DC·AE=AC·CE. ?、? 由①②兩式相除可得BE·CD=BD·CE. (2)由△ADC∽△ACE得,∠ACD=∠AEC, 又D,F(xiàn),G,E四點(diǎn)共圓,∴∠GFC=∠AEC, 因此∠GFC=∠ACD,所以FG∥AC. (理)(20x
15、x·河南八市質(zhì)量監(jiān)測)已知BC為圓O的直徑,點(diǎn)A為圓周上一點(diǎn),AD⊥BC于點(diǎn)D,過點(diǎn)A作圓O的切線交BC的延長線于點(diǎn)P,過點(diǎn)B作BE垂直PA的延長線于點(diǎn)E.求證: (1)PA·PD=PE·PC; (2)AD=AE. [證明] (1)因?yàn)锳D⊥BP,BE⊥AP,所以△APD∽△BPE, 所以=,所以AP·PE=PD·PB, 又因?yàn)镻A,PB分別為圓O的切線和割線, 所以PA2=PB·PC,所以=, 所以PA·PD=PE·PC. (2)連接AC,DE,因?yàn)锽C為圓O的直徑,所以∠BAC=90°, 即AB⊥AC,因?yàn)椋?,所以AC∥DE, 所以AB⊥DE,又因?yàn)锽E⊥AP,
16、AD⊥PB, 所以A,D,B,E四點(diǎn)共圓且AB為直徑, 又因?yàn)锳B⊥DE,所以AD=AE. 10.圓的兩條弦AB、CD交于點(diǎn)F,從F點(diǎn)引BC的平行線和直線DA的延長線交于點(diǎn)P,再從點(diǎn)P引這個(gè)圓的切線,切點(diǎn)是Q.求證:PF=PQ. [分析] 要證PF=PQ,因?yàn)镻Q為圓的切線,∴PQ2=PA·PD,故只須證PF2=PA·PD,觀察圖形及條件可以發(fā)現(xiàn),PF與PA在△APF中,PF與PD在△EPD中,若能證得這兩個(gè)三角形相似,則問題獲解,由于兩個(gè)三角形有公共角∠APF,只須再找一角相等即可.由圓的幾何性質(zhì)不難證得∠AFP=∠ADF,故△APF∽△FPD. [證明] 因?yàn)锳、B、C、D四
17、點(diǎn)共圓, 所以∠ADF=∠ABC. 因?yàn)镻F∥BC,所以∠AFP=∠ABC,所以∠AFP=∠ADF. 又因?yàn)椤螦PF=∠FPD, 所以△APF∽△FPD,所以=,所以PF2=PA·PD. 因?yàn)镻Q與圓相切,所以PQ2=PA·PD. 所以PF2=PQ2,所以PF=PQ. 11.(文)如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B、E、F、C四點(diǎn)共圓. (1)證明:CA是△ABC外接圓的直徑; (2)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值. [解析] (1
18、)因?yàn)镃D為△ABC外接圓的切線, 所以∠DCB=∠A, 由題設(shè)知=, 故△CDB∽△AEF,所以∠DBC=∠EFA. 因?yàn)锽、E、F、C四點(diǎn)共圓,所以∠CFE=∠DBC, 故∠EFA=∠CFE=90°, 所以∠CBA=90°,因此CA是△ABC外接圓的直徑. (2)連接CE,因?yàn)椤螩BE=90°,所以過B、E、F、C四點(diǎn)的圓的直徑為CE, 由DB=BE,有CE=DC, 又BC2=DB·BA=2DB2, 所以CA2=4DB2+BC2=6DB2. 而CE2=DC2=DB·DA=3DB2, 故過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值為. (理)(20x
19、x·唐山市一模)如圖,AE是圓O的切線,A是切點(diǎn),AD⊥OE于D,割線EC交圓O于B、C兩點(diǎn). (1)證明:O、D、B、C四點(diǎn)共圓; (2)設(shè)∠DBC=50°,∠OBC=30°,求∠OEC的大小. [分析] (1)由EA、EC分別為切線和割線,可利用切割線定理,由EA為切線,AD⊥EO,在Rt△EOA中可利用射影定理,這樣可得到邊的比例關(guān)系式. 要證O、D、B、C四點(diǎn)共圓,只需證明對(duì)角互補(bǔ)或外角等于內(nèi)對(duì)角,結(jié)合條件與結(jié)論可考慮證明三角形相似,即△BDE∽△OCE. (2)給出∠DBC與∠OBC的大小,欲求∠OEC的大小,由外角定理∠OEC=∠DBC-∠BDE,由OB=OC知∠OB
20、C=∠OCB,溝通兩者的橋梁是(1)的結(jié)論,∠BDE=∠OCB,于是獲解. [解析] (1)連接OA、OC,則OA⊥EA.由射影定理得EA2=ED·EO. 由切割線定理得EA2=EB·EC, 故ED·EO=EB·EC,即=, 又∠OEC=∠OEC,所以△BDE∽△OCE, 所以∠EDB=∠OCE. 因此O,D,B,C四點(diǎn)共圓. (2)因?yàn)椤螼EC+∠OCB+∠COE=180°,結(jié)合(1)得 ∠OEC=180°-∠OCB-∠COE=180°-∠OBC-∠DBE =180°-∠OBC-(180°-∠DBC)=∠DBC-∠OBC=20°. 12.(文) (20xx·江西質(zhì)量監(jiān)
21、測)如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AD·AB=AE·AC. (1)求證:B,C,D,E四點(diǎn)共圓; (2)若三角形ABC是邊長為3的正三角形,且AD=1,求B,C,D,E四點(diǎn)所在圓的半徑. [解析] (1)因?yàn)锳D·AB=AE·AG,所以=, 所以△ADE∽△ACB, 所以∠ADE=∠ACB,又∠ADE+∠BDE=180°, 所以∠ACB+∠BDE=180°, 所以B,C,D,E四點(diǎn)共圓. (2)依題意:BCED是等腰梯形,且高為,設(shè)B,C,D,E四點(diǎn)所在圓的半徑為r, 則+=, 解得r=,∴B,C,D,E四點(diǎn)所在圓的半徑為
22、. (理)(20xx·唐山市一模)如圖,圓周角∠BAC的平分線與圓交于點(diǎn)D,過點(diǎn)D的切線與弦AC的延長線交于點(diǎn)E,AD交BC于點(diǎn)F. (1)求證:BC∥DE; (2)若D,E,C,F(xiàn)四點(diǎn)共圓,且=,求∠BAC. [解析] (1)證明:因?yàn)椤螮DC=∠DAC,∠DAC=∠DAB,∠DAB=∠DCB, 所以∠EDC=∠DCB, 所以BC∥DE. (2)解:因?yàn)镈,E,C,F(xiàn)四點(diǎn)共圓,所以∠CFA=∠CED,由(1)知∠ACF=∠CED,所以∠CFA=∠ACF.設(shè)∠DAC=∠DAB=x, 因?yàn)椋剑浴螩BA=∠BAC=2x, 所以∠CFA=∠FBA+∠FAB=3x, 在等腰△ACF中,π=∠CFA+∠ACF+∠CAF=7x,則x=,所以∠BAC=2x=. [方法點(diǎn)撥] 這一部分主要命題方式是將圓的有關(guān)角、比例線段或圓內(nèi)接四邊形和三角形相似結(jié)合,求角,求線段長等,注意依據(jù)條件和結(jié)論選擇思維方向,如:①給出切線時(shí),常作輔助線是作過切點(diǎn)的半徑,考慮方向是切割線定理,直角三角形射影定理、弦切角與圓周角的互化等;②給出平行線時(shí),主要考慮角的關(guān)系及三角形相似;③有關(guān)圓的問題,求線段長時(shí),??紤]相交弦定理、切割線定理、射影定理、垂徑定理;④證明比例線段,主要通過三角形相似.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國有企業(yè)黨委書記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫之美生活之美
- 節(jié)后開工第一課輕松掌握各要點(diǎn)節(jié)后常見的八大危險(xiǎn)
- 廈門城市旅游介紹廈門景點(diǎn)介紹廈門美食展示
- 節(jié)后開工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見閥門類型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案