秋霞电影网午夜鲁丝片无码,真人h视频免费观看视频,囯产av无码片毛片一级,免费夜色私人影院在线观看,亚洲美女综合香蕉片,亚洲aⅴ天堂av在线电影猫咪,日韩三级片网址入口

新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析

上傳人:無*** 文檔編號(hào):62771264 上傳時(shí)間:2022-03-16 格式:DOC 頁數(shù):9 大?。?90.69KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析_第1頁
第1頁 / 共9頁
新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析_第2頁
第2頁 / 共9頁
新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)江蘇專用理科專題復(fù)習(xí):專題專題3 導(dǎo)數(shù)及其應(yīng)用 第24練 Word版含解析(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、                   訓(xùn)練目標(biāo) (1)導(dǎo)數(shù)的綜合應(yīng)用;(2)壓軸大題突破. 訓(xùn)練題型 (1)導(dǎo)數(shù)與不等式的綜合;(2)利用導(dǎo)數(shù)研究函數(shù)零點(diǎn);(3)利用導(dǎo)數(shù)求參數(shù)范圍. 解題策略 (1)不等式恒成立(或有解)可轉(zhuǎn)化為函數(shù)的最值問題,函數(shù)零點(diǎn)可以和函數(shù)圖象相結(jié)合;(2)求參數(shù)范圍可用分離參數(shù)法. 1.(20xx·常州一模)已知函數(shù)f(x)=lnx-x-,a∈R. (1)當(dāng)a=0時(shí),求函數(shù)f(x)的極大值; (2)求函數(shù)f(x)的單調(diào)區(qū)間. 2.(20xx·課標(biāo)全國Ⅱ)設(shè)函數(shù)f(x)=emx+x2-mx. (1)證明:f(x)在(-∞,0)上單調(diào)遞

2、減,在(0,+∞)上單調(diào)遞增; (2)若對(duì)于任意x1,x2∈-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍. 3.(20xx·課標(biāo)全國Ⅰ)已知函數(shù)f(x)=x3+ax+, g(x)=-lnx. (1)當(dāng)a為何值時(shí),x軸為曲線y=f(x)的切線; (2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),討論h(x)零點(diǎn)的個(gè)數(shù). 4.(20xx·山東)已知f(x)=a(x-lnx)+,a∈R. (1)討論f(x)的單調(diào)性; (2)當(dāng)a=1時(shí),證明f(x)>f′(x)+對(duì)于任意的x∈1,2]成立. 5.已

3、知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R). (1)m=1時(shí),求方程f(x)=g(x)的實(shí)根; (2)若對(duì)任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍; (3)求證:++…+>ln(2n+1)(n∈N*). 答案精析 1.解 函數(shù)f(x)的定義域?yàn)?0,+∞). (1)當(dāng)a=0時(shí),f(x)=lnx-x,f′(x)=-1. 令f′(x)=0,得x=1. 當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表: x (0,1) 1 (1,+∞) f′(x) + 0 - f(x)  極大值

4、  所以f(x)的極大值為f(1)=-1. (2)f′(x)=-1+=. 令f′(x)=0,得-x2+x+a=0,則Δ=1+4a. ①當(dāng)a≤-時(shí),f′(x)≤0恒成立, 所以函數(shù)f(x)的單調(diào)減區(qū)間為(0,+∞); ②當(dāng)a>-時(shí),由f′(x)=0, 得x1=,x2=. (i)若-<a<0,則x1>x2>0, 由f′(x)<0,得0<x<x2,x>x1; 由f′(x)>0,得x2<x<x1. 所以f(x)的單調(diào)減區(qū)間為 (0,),(,+∞),單調(diào)增區(qū)間為(,). (ii)若a=0,由(1)知f(x)的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+∞). (iii)若a

5、>0,則x1>0>x2, 由f′(x)<0,得x>x1; 由f′(x)>0,得0<x<x1. 所以f(x)的單調(diào)減區(qū)間為(,+∞), 單調(diào)增區(qū)間為(0,). 綜上所述, 當(dāng)a≤-時(shí), f(x)的單調(diào)減區(qū)間為(0,+∞); 當(dāng)-<a<0時(shí),f(x)的單調(diào)減區(qū)間為(0,),(,+∞),單調(diào)增區(qū)間為(,); 當(dāng)a≥0時(shí),f(x)的單調(diào)減區(qū)間為(,+∞), 單調(diào)增區(qū)間為(0,). 2.(1)證明 f′(x)=m(emx-1)+2x. 若m≥0,則當(dāng)x∈(-∞,0)時(shí), emx-1≤0,f′(x)<0; 當(dāng)x∈(0,+∞)時(shí),emx-1≥0,f′(x)>0. 若m<0,則當(dāng)

6、x∈(-∞,0)時(shí), emx-1>0,f′(x)<0; 當(dāng)x∈(0,+∞)時(shí),emx-1<0,f′(x)>0. 所以函數(shù)f(x)在(-∞,0)上單調(diào)遞減, 在(0,+∞)上單調(diào)遞增. (2)解 由(1)知,對(duì)任意的m, f(x)在-1,0]上單調(diào)遞減,在0,1]上單調(diào)遞增,故f(x)在x=0處取得最小值.所以對(duì)于任意x1,x2∈-1,1], |f(x1)-f(x2)|≤e-1的充要條件是 即① 設(shè)函數(shù)g(t)=et-t-e+1, 則g′(t)=et-1. 當(dāng)t<0時(shí),g′(t)<0;當(dāng)t>0時(shí),g′(t)>0. 故g(t)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞

7、增. 又g(1)=0,g(-1)=e-1+2-e<0, 故當(dāng)t∈-1,1]時(shí),g(t)≤0. 當(dāng)m∈-1,1]時(shí),g(m)≤0,g(-m)≤0,即①式成立; 當(dāng)m>1時(shí),g(m)>0,即em-m>e-1; 當(dāng)m<-1時(shí),g(-m)>0, 即e-m+m>e-1. 綜上,m的取值范圍是-1,1]. 3.解 (1)設(shè)曲線y=f(x)與x軸相切于點(diǎn)(x0,0), 則f(x0)=0,f′(x0)=0, 即 解得x0=,a=-. 因此,當(dāng)a=-時(shí), x軸為曲線y=f(x)的切線. (2)當(dāng)x∈(1,+∞)時(shí),g(x)=-lnx<0,從而h(x)=min{f(x),g(x)}≤g

8、(x)<0,故h(x)在(1,+∞)上無零點(diǎn). 當(dāng)x=1時(shí),若a≥-,則f(1)=a+≥0,h(1)=min{f(1),g(1)}=g(1)=0,故1是h(x)的一個(gè)零點(diǎn);若a<-,則f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故1不是h(x)的零點(diǎn). 當(dāng)x∈(0,1)時(shí),g(x)=-lnx>0.所以只需考慮f(x)在(0,1)上的零點(diǎn)個(gè)數(shù). (ⅰ)若a≤-3或a≥0,則f′(x)=3x2+a在(0,1)上無零點(diǎn),故f(x)在(0,1)上單調(diào).而f(0)=,f(1)=a+,所以當(dāng)a≤-3時(shí),f(x)在(0,1)上有一個(gè)零點(diǎn);當(dāng)a≥0時(shí),f(x)在(0,1)上沒有零

9、點(diǎn). (ⅱ)若-3<a<0,則f(x)在(0, )上單調(diào)遞減,在( ,1)上單調(diào)遞增,故在(0,1)中,當(dāng)x=時(shí),f(x)取得最小值,最小值為f( )=+. ①若f( )>0,即-<a<0, f(x)在(0,1)上無零點(diǎn); ②若f( )=0,即a=-, 則f(x)在(0,1)上有唯一零點(diǎn); ③若f( )<0,即-3<a<-,由于f(0)=,f(1)=a+,所以 當(dāng)-<a<-時(shí),f(x)在(0,1)上有兩個(gè)零點(diǎn);當(dāng)-3<a≤-時(shí), f(x)在(0,1)上有一個(gè)零點(diǎn). 綜上,當(dāng)a>-或a<-時(shí),h(x)有一個(gè)零點(diǎn);當(dāng)a=-或a=-時(shí), h(x)有兩個(gè)零點(diǎn);當(dāng)-<a<-時(shí),h(x

10、)有三個(gè)零點(diǎn). 4.(1)解 f(x)的定義域?yàn)?0,+∞), f′(x)=a--+=. 當(dāng)a≤0時(shí),x∈(0,1)時(shí),f′(x)>0, f(x)單調(diào)遞增, x∈(1,+∞)時(shí),f′(x)<0, f(x)單調(diào)遞減. 當(dāng)a>0時(shí),f′(x)=· . ①當(dāng)0<a<2時(shí),>1, 當(dāng)x∈(0,1)或x∈時(shí), f′(x)>0,f(x)單調(diào)遞增, 當(dāng)x∈時(shí),f′(x)<0, f(x)單調(diào)遞減. ②當(dāng)a=2時(shí),=1,在x∈(0,+∞)內(nèi),f′(x)≥0,f(x)單調(diào)遞增. ③當(dāng)a>2時(shí),0<<1, 當(dāng)x∈或x∈(1,+∞)時(shí), f′(x)>0,f(x)單調(diào)遞增, 當(dāng)x∈時(shí)

11、,f′(x)<0, f(x)單調(diào)遞減. 綜上所述,當(dāng)a≤0時(shí),f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)單調(diào)遞減; 當(dāng)0<a<2時(shí),f(x)在(0,1)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減, 在內(nèi)單調(diào)遞增; 當(dāng)a=2時(shí),f(x)在(0,+∞)內(nèi)單調(diào)遞增; 當(dāng)a>2時(shí),f(x)在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減, 在(1,+∞)內(nèi)單調(diào)遞增. (2)證明 由(1)知,a=1時(shí), f(x)-f′(x)=x-lnx+- =x-lnx++--1,x∈1,2]. 設(shè)g(x)=x-lnx,h(x)=+--1,x∈1,2],則f(x)-f′(x)=g(x)+h(x).由g′(x)=≥0, 可得g(x

12、)≥g(1)=1,當(dāng)且僅當(dāng)x=1時(shí)取得等號(hào). 又h′(x)=, 設(shè)φ(x)=-3x2-2x+6,則φ(x)在x∈1,2]上單調(diào)遞減. 因?yàn)棣?1)=1,φ(2)=-10,所以?x0∈(1,2), 使得x∈(1,x0)時(shí),φ(x)>0,x∈(x0,2)時(shí),φ(x)<0. 所以h(x)在(1,x0)內(nèi)單調(diào)遞增,在(x0,2)內(nèi)單調(diào)遞減. 由h(1)=1,h(2)=, 可得h(x)≥h(2)=, 當(dāng)且僅當(dāng)x=2時(shí)取得等號(hào). 所以f(x)-f′(x)>g(1)+h(2)=, 即f(x)>f′(x)+對(duì)于任意的x∈1,2]成立. 5.(1)解 m=1時(shí),f(x)=g(x), 即x

13、lnx=x2-1, 而x>0,所以方程即為lnx-x+=0. 令h(x)=lnx-x+, 則h′(x)=-1-= =<0, 而h(1)=0,故方程f(x)=g(x)有唯一的實(shí)根x=1. (2)解 對(duì)于任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方, 即?x∈(1,+∞),f(x)<g(x), 即lnx<m(x-), 設(shè)F(x)=lnx-m(x-),即?x∈(1,+∞),F(xiàn)(x)<0, F′(x)=-m(1+) =. ①若m≤0,則F′(x)>0,F(xiàn)(x)>F(1)=0,這與題設(shè)F(x)<0矛盾. ②若m>0,方程-mx2+x-m=0的判別

14、式Δ=1-4m2, 當(dāng)Δ≤0,即m≥時(shí),F(xiàn)′(x)≤0, ∴F(x)在(1,+∞)上單調(diào)遞減, ∴F(x)<F(1)=0,即不等式成立. 當(dāng)Δ>0,即0<m<時(shí),方程-mx2+x-m=0有兩個(gè)實(shí)根,設(shè)兩根為x1,x2且x1<x2,則 ∴方程有兩個(gè)正實(shí)根且0<x1<1<x2. 當(dāng)x∈(1,x2)時(shí),F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增, F(x)>F(1)=0與題設(shè)矛盾. 綜上所述,實(shí)數(shù)m的取值范圍是 . (3)證明 由(2)知,當(dāng)x>1時(shí),m=時(shí), lnx<(x-)成立. 不妨令x=>1(k∈N*), ∴l(xiāng)n< =, ln(2k+1)-ln(2k-1)<(k∈N*), 累加可得++… +>ln(2n+1)(n∈N*).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!