《2018屆中考數(shù)學(xué)復(fù)習(xí) 專題22 反證法、命題與定理試題(B卷含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018屆中考數(shù)學(xué)復(fù)習(xí) 專題22 反證法、命題與定理試題(B卷含解析)(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
反證法、命題與定理
一、選擇題
1. ( 廣東茂名,7,3分)下列說法正確的是( )
A.長(zhǎng)方體的截面一定是長(zhǎng)方形
B.了解一批日光燈的使用壽命適合采用的調(diào)查方式是普查
C.一個(gè)圖形和它平移后所得的圖形全等
D.多邊形的外角和不一定等于360°
【答案】C
【逐步提示】本題考查了長(zhǎng)方體的截面形狀、抽樣調(diào)查與普查概念、圖形平移的特征以及多邊形外角和的性質(zhì),解題的關(guān)鍵是掌握截幾何體的角度、抽樣調(diào)查與普查的適用情境、以及圖形平移的特征以及多邊形外角和的性質(zhì).
【詳細(xì)解答】解:根據(jù)長(zhǎng)方體的截面,最多可以經(jīng)過6個(gè)面,所以邊數(shù)最多的截面是六邊形,也可以是三
2、角形,不一定是長(zhǎng)方形,選項(xiàng)A錯(cuò)誤;檢測(cè)日光燈的使用壽命,帶有破壞性,因此調(diào)查一批日光燈的使用壽命適合采用抽樣調(diào)查,選項(xiàng)B錯(cuò)誤;圖形的平移只改變圖形的位置,不改變圖形的形狀與大小,因此平移前后圖形是全等的,選項(xiàng)C正確;任意多邊形的外角和總等于360°,選項(xiàng)D錯(cuò)誤. 故選擇 C.
【解后反思】(1)在分析幾何體截面的邊數(shù)時(shí),看截線可能經(jīng)過幾個(gè)面,即是幾邊形;(2)抽樣調(diào)查和普查的區(qū)別:一般來說,對(duì)于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價(jià)值不大時(shí),應(yīng)選擇抽樣調(diào)查,對(duì)于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對(duì)象的特征靈活選用.
【關(guān)鍵詞】截一個(gè)
3、幾何體;普查與抽樣調(diào)查;圖形平移的特征;多邊形的外角和
2. (貴州省畢節(jié)市,11,3分)下列語句正確的是( )
A.對(duì)角線互相垂直的的四邊形是菱形
B.有兩邊及一角對(duì)應(yīng)相等的兩個(gè)三角形全等
C.矩形的對(duì)角線相等
D.平行四邊形是軸對(duì)稱圖形
【答案】C
【逐步提示】本題考查特殊四邊形的判定與性質(zhì),三角形全等的判定,軸對(duì)稱圖形的識(shí)別.解題的關(guān)鍵是掌握菱形的判定,矩形的性質(zhì),全等三角形的判定定理及軸對(duì)稱圖形的定義、常見的軸對(duì)稱圖形.可以逐項(xiàng)進(jìn)行分析,或畫圖證明或畫圖舉反例排除不正確的語句.
【詳細(xì)解答】解:若四邊形僅是對(duì)角線互相垂直,而沒有互相平分這個(gè)條件,也不是菱形,故A錯(cuò);
4、兩個(gè)三角形有兩邊及一角對(duì)應(yīng)相等,若這一角是其中一邊的對(duì)角,這兩個(gè)三角形也不一定全等,故B錯(cuò);矩形的對(duì)角線相等是矩形的性質(zhì),C正確;平行四邊形是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故D錯(cuò),故選C.
【解后反思】本題容易因舉不出反例而誤認(rèn)為A或B正確,因?qū)⑤S對(duì)稱與中心對(duì)稱的概念搞混而誤認(rèn)為D正確.
【關(guān)鍵詞】 菱形的判定;全等三角形的判定;矩形的性質(zhì);軸對(duì)稱圖形的概念;
3. ( 河北省,10,3分)如圖,已知鈍角△ABC,依下列步驟尺規(guī)作圖,并保留作圖痕跡.
步驟1:以C為圓心,CA為半徑畫??;
步驟2:以B為圓心,BA為半徑畫弧,將弧于點(diǎn)D;
步驟3:連接AD,交BC延長(zhǎng)線于點(diǎn)H.
下
5、列敘述正確的是( )
A.BH垂直分分線段AD B.AC平分∠BAD
C.S△ABC=BC·AH D.AB=AD
【答案】A
【逐步提示】由尺規(guī)作圖的作法可得到相等的線段,進(jìn)而根據(jù)垂直平分線性質(zhì)定理的判定定理可知直線BH是線段AD的垂直平分線,由此容易判斷選項(xiàng)A和C;對(duì)于選項(xiàng)B和D,用反證法可判斷它們都是不成立的.
【詳細(xì)解答】解:如圖,連接CD、BD,由步驟一可知CD=CA,由步驟二可知BD=BA,根據(jù)線段垂直平分線的性質(zhì)定理的逆定理可知點(diǎn)C和點(diǎn)B都在線段AD的垂直平分線上,故直線BH是線段AD的垂直平分線,故選項(xiàng)A正確;若AC平分∠BAD,則∠BAC=∠
6、CAH. ∵直線BH是線段AD的垂直平分線,∴∠AHC=90°,∠ACH=90°-∠CAH=90°-∠BAC.∵∠ACH是△ABC的外角,∴∠ABC=∠ACH-∠BAC=90°-∠BAC-∠BAC=90°-2∠BAC.但已知中沒有“∠ABC=90°-2∠BAC” 這一條件,故“AC平分∠BAD”不一定成立,選項(xiàng)B不正確;S△ABC=BC·AH,故選項(xiàng)C不正確;當(dāng)AB=AD時(shí),AB=AD=BD,此時(shí)△ABD是等邊三角形,∠ABC=∠ABD=×60°=30°,但已知中沒有“∠ABC=30°”這一條件,故“AB=AD”不一定成立,選項(xiàng)D不正確
【解后反思】1.線段的垂直平分線的性質(zhì):線段的垂直
7、平分線上的點(diǎn)到這條線段的兩個(gè)端點(diǎn)距離相等,根據(jù)其可得到相等的線段.其逆定理是:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上,根據(jù)其可證明一個(gè)點(diǎn)是否在已知線段的垂直平分線上或一條直線是否為已知線段的垂直平分線.2.反證法時(shí)證明一個(gè)命題是假命題的常用方法.
【關(guān)鍵詞】 線段垂直平分線性質(zhì)定理的逆定理;三角形的面積;反證法
4. (湖南常德,8,3分)某氣象臺(tái)發(fā)現(xiàn):在某段時(shí)間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.已知這段時(shí)間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時(shí)間有
A.9天 B.11天 C.13天 D.22天
【答案】B
8、
【逐步提示】“6天晚上是晴天”中除去早晨和晚上都是晴天,就是“早晨下雨天數(shù)”;“7天早晨是晴天”中除去早晨和晚上都是晴天,就是“晚上下雨天數(shù)”,而“早晨下雨天數(shù)”與“晚上下雨天數(shù)”的總和為9天.
【詳細(xì)解答】解:設(shè)有x天早晨和晚上都是晴天,則早晨下雨天數(shù)=6-x,晚上下雨天數(shù)=7-x,據(jù)題意得7-x+6-x=9,解方程得x=2,這一段時(shí)間全部天數(shù)=9+x=9+2=11天.故選B.
【解后反思】:本題主要考查了邏輯推理能力,即思維和判斷能力.解題的關(guān)鍵是充分閱讀和理解題意,從中找出隱含條件.本題中“如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天.” 隱含了“早晨和晚上都是晴天
9、”這一條件.
【關(guān)鍵詞】邏輯推理.
5. (湖南省衡陽市,11,3分)下列命題是假命題的是( )
A.經(jīng)過兩點(diǎn)有且只有一條直線 B.三角形的中位線平行且等于第三邊的一半
C.平行四邊形的對(duì)角線相等 D.圓的切線垂直于經(jīng)過切點(diǎn)的半徑
【答案】C
【逐步提示】本題考查了判定數(shù)學(xué)命題真假的方法,解題的關(guān)鍵是理解命題的題設(shè)與結(jié)論之間的關(guān)聯(lián).結(jié)合“直線性質(zhì)公理”、“三角形中位線定理”、“平行四邊形性質(zhì)”、“圓的切線性質(zhì)定理”對(duì)各個(gè)選項(xiàng)逐項(xiàng)甄別判斷.
【詳細(xì)解答】解:根據(jù)性質(zhì)“平行四邊形的對(duì)角線互相平分”可判斷出C錯(cuò)誤,故答案為C
10、 .
【解后反思】判斷一個(gè)命題的正確或錯(cuò)誤,有兩種最常用的的方式:①將所給命題與已知的定理、公理、定義作比較,如果一致,則命題正確,否則,命題錯(cuò)誤;②沿題設(shè)出發(fā),舉一個(gè)例子說明該命題不成立即可判定該命題錯(cuò)誤.
【關(guān)鍵詞】命題;假命題
6.(湖南省永州市,7,4分)對(duì)下列生活現(xiàn)象的解釋其數(shù)學(xué)原理運(yùn)用錯(cuò)誤的是( )
A.把一條彎曲的道路改成直道可以縮短路程是運(yùn)用了“兩點(diǎn)之間線段最短”的原理
B.木匠師傅在刨平的木板上任選兩個(gè)點(diǎn)就能畫出一條筆直的墨線是運(yùn)用了“直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短”的原理
C.將自行車的車架設(shè)計(jì)為三角形形狀是
11、運(yùn)用了“三角形的穩(wěn)定性”的原理
D.將車輪設(shè)計(jì)為圓形是運(yùn)用了“圓的旋轉(zhuǎn)對(duì)稱性”的原理
【答案】B
【逐步提示】本題考查了用數(shù)學(xué)原理解釋生活中的現(xiàn)象,解題的關(guān)鍵在于正確理解數(shù)學(xué)原理的內(nèi)涵,再據(jù)此分別對(duì)各選項(xiàng)進(jìn)行判斷.
【詳細(xì)解答】解:選項(xiàng)B中的原理是“兩點(diǎn)確定一條直線”,錯(cuò)誤,故選擇B .
【解后反思】“兩點(diǎn)之間線段最短”運(yùn)用于縮短路程;“兩點(diǎn)確定一條直線”運(yùn)用于“直”但不涉及到“短”, “垂線段最短”涉及到線段的大小比較;“三角形的穩(wěn)定性”運(yùn)用于三點(diǎn)定形;“圓的旋轉(zhuǎn)對(duì)稱性”也即圓的旋轉(zhuǎn)不變性,即繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能與原位置重合.
【關(guān)鍵詞】直線公理;線段公理;三角形
12、的穩(wěn)定性;圓的對(duì)稱性
7. (湖南省岳陽市,7,3)下列說法錯(cuò)誤的是 ( )
A. 角平分線上的點(diǎn)到角的兩邊的距離相等
B. 直角三角形斜邊上的中線等于斜邊的一半
C. 菱形的對(duì)角線相等
D. 平行四邊形是中心對(duì)稱圖形
【答案】C
【逐步提示】根據(jù)角平分線上性質(zhì)、直角三角形斜邊上的中線性質(zhì)、平行四邊形、菱形的性質(zhì)對(duì)各支項(xiàng)逐項(xiàng)加以分析。
【詳細(xì)解答】菱形的對(duì)角線互相垂直,但不一定相等,故選擇C.
【解后反思】對(duì)于這類性質(zhì)辨別是否正確的命題,關(guān)鍵在于正確熟練掌握?qǐng)D形的相關(guān)性質(zhì)。
【關(guān)鍵詞】角平分線
13、上性質(zhì);直角三角形斜邊上的中線性質(zhì);平行四邊形、菱形的性質(zhì)
二、填空題
1. (江蘇省無錫市,15,2分)寫出命題“如果a=b,那么3a=3b”的逆命題:____.
【答案】如果3a=3b,那么a=b.
【逐步提示】本題考查了命題與逆命題的關(guān)系,解題的關(guān)鍵是找到命題的題設(shè)和結(jié)論,本題中的這個(gè)命題題設(shè)為a=b,結(jié)論是3a=3b,交換題設(shè)和結(jié)論的位置,即可得到這個(gè)命題的逆命題.
【詳細(xì)解答】如果3a=3b,那么a=b.
【解后反思】互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的題設(shè)是第二個(gè)命題的結(jié)論,而第一個(gè)命題的結(jié)論是第二個(gè)命題的題設(shè),那么這兩個(gè)命題叫做互逆命題。如果把其中一個(gè)命題叫做
14、原命題,那么另一個(gè)命題叫做它的逆命題.
【關(guān)鍵詞】逆命題;
三、解答題
1. (廣東茂名,18,7分)某同學(xué)要證明命題“平行四邊形的對(duì)邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD, .
(1)補(bǔ)全求證部分;
(2)請(qǐng)你寫出證明過程.
證明:
【逐步提示】本題考查了平行四邊形的性質(zhì)以及三角形全等的判定方法與性質(zhì),解題的關(guān)鍵是添設(shè)輔助線,構(gòu)造一組全等三角形.(1)平行四邊形的對(duì)邊有2組,除了AB=CD,還有另一組BC=DA;(2)連接AC,利用ASA證△ABC≌△CDA,
15、從而得出BC=DA.
【詳細(xì)解答】解:
(1)BC=DA
(2)如圖,連接AC.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,BC∥DA,
∴∠BAC=∠DCA,∠BCA=∠DAC.
∵AC=CA,
∴△ABC≌△CDA.
∴AB=CD,BC=DA.
【解后反思】(1)本題也可以連接BD,證明△ABD≌△CDB,得出結(jié)論;(2)本題證明過程,要防止出現(xiàn)直接利用“平行四邊形的對(duì)邊相等”得出結(jié)論的錯(cuò)誤證法.
【關(guān)鍵詞】平行四邊形的性質(zhì);三角形全等的判定與性質(zhì)
2. (江蘇省南京市,21,8分)用兩種方法證明“三角形的外角和等于360°”.
如圖,∠BAE、∠CBF、
16、∠ACD 是△ABC 的三個(gè)外角.
求證∠BAE+∠CBF+∠ACD=360°.
證法1:∵ ▲ ,
∴ ∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.
∴ ∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).
∵ ▲ ,
∴ ∠BAE+∠CBF+∠ACD=540°-180°=360°.
請(qǐng)把證法1 補(bǔ)充完整,并用不同的方法完成證法2.
【逐步提示】本題考查了三角形的外角和定理的證明,解題的關(guān)鍵是運(yùn)用平角的性質(zhì)和平行線的性質(zhì)進(jìn)行角度是轉(zhuǎn)化.原來的證法是用三角形的三個(gè)內(nèi)角所在的三個(gè)平角之和減去三角形的內(nèi)角和;而新的證明方法是要通過平行線把三
17、個(gè)外角集中到一個(gè)頂點(diǎn)圍成一個(gè)周角進(jìn)行證明.
【詳細(xì)解答】∠BAE+∠1=∠CBF+∠2=∠ACD+∠3=180°.
∠1+∠2+∠3=180°.
證法2:如圖,過點(diǎn)A 作射線AP,使AP∥BD.
∵ AP∥BD,
∴ ∠CBF=∠PAB,∠ACD=∠EAP.
∵ ∠BAE+∠PAB+∠EAP=360°,
∴ ∠BAE+∠CBF+∠ACD=360°.
【解后反思】證明三角形的外角和是360°,方法很多.解題的突破口是如何通過轉(zhuǎn)化得到360°,可以運(yùn)用平角或者互補(bǔ)的兩個(gè)角,也可以運(yùn)用周角,還可以運(yùn)用三角形的外角性質(zhì)(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)和三角形的內(nèi)角和證明.
【關(guān)鍵詞】三角形;與三角形有關(guān)的線段、角;三角形的內(nèi)角和;三角形的外角和;化歸思想
5