0462-錘式破碎機(jī)設(shè)計(jì)【全套6張CAD圖】
0462-錘式破碎機(jī)設(shè)計(jì)【全套6張CAD圖】,全套6張CAD圖,破碎,設(shè)計(jì),全套,cad
外文文獻(xiàn)
Friction Lubrication of Bearing
In many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement.
Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary.
The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt.
There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement .
Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction .
Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction.
The friction caused by the wedging action of surface irregularities can be overcome partly by the precision machining of the surfaces. However, even these smooth surfaces may require the use of a substance between them to reduce the friction still more. This substance is usually a lubricant which provides a fine, thin oil film. The film keeps the surfaces apart and prevents the cohesive forces of the surfaces from coming in close contact and producing heat .
Another way to reduce friction is to use different materials for the bearing surfaces and rotating parts. This explains why bronze bearings, soft alloys, and copper and tin iolite bearings are used with both soft and hardened steel shaft. The iolite bearing is porous. Thus, when the bearing is dipped in oil, capillary action carries the oil through the spaces of the bearing. This type of bearing carries its own lubricant to the points where the pressures are the greatest.
Moving parts are lubricated to reduce friction, wear, and heat. The most commonly used lubricants are oils, greases, and graphite compounds. Each lubricant serves a different purpose. The conditions under which two moving surfaces are to work determine the type of lubricant to be used and the system selected for distributing the lubricant.
On slow moving parts with a minimum of pressure, an oil groove is usually sufficient to distribute the required quantity of lubricant to the surfaces moving on each other .
A second common method of lubrication is the splash system in which parts moving in a reservoir of lubricant pick up sufficient oil which is then distributed to all moving parts during each cycle. This system is used in the crankcase of lawn-mower engines to lubricate the crankshaft, connecting rod ,and parts of the piston.
A lubrication system commonly used in industrial plants is the pressure system. In this system, a pump on a machine carries the lubricant to all of the bearing surfaces at a constant rate and quantity.
There are numerous other systems of lubrication and a considerable number of lubricants available for any given set of operating conditions. Modern industry pays greater attention to the use of the proper lubricants than at previous time because of the increased speeds, pressures, and operating demands placed on equipment and devices.
Although one of the main purposes of lubrication is reduce friction, any substance-liquid , solid , or gaseous-capable of controlling friction and wear between sliding surfaces can be classed as a lubricant.
Varieties of lubrication
Unlubricated sliding. Metals that have been carefully treated to remove all foreign materials seize and weld to one another when slid together. In the absence of such a high degree of cleanliness, adsorbed gases, water vapor ,oxides, and contaminants reduce frictio9n and the tendency to seize but usually result in severe wear; this is called “unlubricated ”or dry sliding.
Fluid-film lubrication. Interposing a fluid film that completely separates the sliding surfaces results in fluid-film lubrication. The fluid may be introduced intentionally as the oil in the main bearing of an automobile, or unintentionally, as in the case of water between a smooth tuber tire and a wet pavement. Although the fluid is usually a liquid such as oil, water, and a wide range of other materials, it may also be a gas. The gas most commonly employed is air.
Boundary lubrication. A condition that lies between unlubricated sliding and fluid-film lubrication is referred to as boundary lubrication, also defined as that condition of lubrication in which the friction between surfaces is determined by the properties of the surfaces and properties of the lubricant other than viscosity. Boundary lubrication encompasses a significant portion of lubrication phenomena and commonly occurs during the starting and stopping off machines.
Solid lubrication. Solid such as graphite and molybdenum disulfide are widely used when normal lubricants do not possess sufficient resistance to load or temperature extremes. But lubricants need not take only such familiar forms as fats, powders, and gases; even some metals commonly serve as sliding surfaces in some sophisticated machines.
Function of lubricants
Although a lubricant primarily controls friction and ordinarily does perform numerous other functions, which vary with the application and usually are interrelated .
Friction control. The amount and character of the lubricant made available to sliding surfaces have a profound effect upon the friction that is encountered. For example, disregarding such related factors as heat and wear but considering friction alone between the same surfaces with on lubricant. Under fluid-film conditions, friction is encountered. In a great range of viscosities and thus can satisfy a broad spectrum of functional requirements. Under boundary lubrication conditions , the effect of viscosity on friction becomes less significant than the chemical nature of the lubricant.
Wear control. wear occurs on lubricated surfaces by abrasion, corrosion ,and solid-to-solid contact wear by providing a film that increases the distance between the sliding surfaces ,thereby lessening the damage by abrasive contaminants and surface asperities.
Temperature control. Lubricants assist in controlling corrosion of the surfaces themselves is twofold. When machinery is idle, the lubricant acts as a preservative. When machinery is in use, the lubricant controls corrosion by coating lubricated parts with a protective film that may contain additives to neutralize corrosive materials. The ability of a lubricant to control corrosion is directly relatly to the thickness of the lubricant film remaining on the metal surfaces and the chermical composition of the lubricant.
Other functions
Lubrication are frequently used for purposes other than the reduction of friction. Some of these applications are described below.
Power transmission. Lubricants are widely employed as hydraulic fluids in fluid transmission devices.
Insulation. In specialized applications such as transformers and switchgear , lubricants with high dielectric constants acts as electrical insulators. For maximum insulating properties, a lubricant must be kept free of contaminants and water.
Shock dampening. Lubricants act as shock-dampening fluids in energy transferring devices such as shock absorbers and around machine parts such as gears that are subjected to high intermittent loads.
Sealing. Lubricating grease frequently performs the special function of forming a seal to retain lubricants or to exclude contaminants.
The object of lubrication is to reduce friction ,wear , and heating of machine pars which move relative to each other. A lubricant is any substance which, when inserted between the moving surfaces, accomplishes these purposes. Most lubricants are liquids(such as mineral oil, silicone fluids, and water),but they may be solid for use in dry bearings, greases for use in rolling element bearing, or gases(such as air) for use in gas bearings. The physical and chemical interaction between the lubricant and lubricating surfaces must be understood in order to provide the machine elements with satisfactory life.
The understanding of boundary lubrication is normally attributed to hardy and doubleday , who found the extrememly thin films adhering to surfaces were often sufficient to assist relative sliding. They concluded that under such circumstances the chemical composition of fluid is important, and they introduced the term “boundary lubrication”. Boundary lubrication is at the opposite end of the spectrum from hydrodynamic lubrication.
Five distinct of forms of lubrication that may be defined :(a) hydrodynamic; (b)hydrostatic;(c)elastohydrodynamic (d)boundary; (e)solid film.
Hydrodynamic lubrication means that the load-carrying surfaces of the bearing are separated by a relatively thick film of lubricant, so as to prevent metal contact, and that the stability thus obtained can be explained by the laws of the lubricant under pressure ,though it may be; but it does require the existence of an adequate supply at all times. The film pressure is created by the moving surfaces itself pulling the lubricant under pressure, though it maybe. The film pressure is created by the moving surface to creat the pressure necessary to separate the surfaces against the load on the bearing . hydrodynamic lubrication is also called full film ,or fluid lubrication .
Hydrostatic lubrication is obtained by introducing the lubricant ,which is sometime air or water ,into the load-bearing area at a pressure high enough to separate the surface with a relatively thick film of lubricant. So ,unlike hydrodynanmic lubrication, motion of one surface relative to another is not required .
Elasohydrodynamic lubrication is the phenomenon that occurs when a lubricant is introduced between surfaces which are in rolling contact, such as mating gears or rolling bearings. The mathematical explanation requires the hertzian theory of contact stress and fluid mechanics.
When bearing must be operated at exetreme temperatures, a solid film lubricant such as graphite or molybdenum disulfide must be use used because the ordinary mineral oils are not satisfactory. Must research is currently being carried out in an effort, too, to find composite bearing materials with low wear rates as well as small frictional coefficients.
In a journal bearing, a shaft rotates or oscillates within the bearing , and the relative motion is sliding . in an antifriction bearing, the main relative motion is rolling . a follower may either roll or slide on the cam. Gear teeth mate with each other by a combination of rolling and sliding . pistions slide within their cylinders. All these applications require lubrication to reduce friction ,wear, and heating.
The field of application for journal bearing s is immense. The crankshaft and connecting rod bearings of an automotive engine must poerate for thousands of miles at high temperatures and under varying load conditions . the journal bearings used in the steam turbines of power generating station is said to have reliabilities approaching 100 percent. At the other extreme there are thousands of applications in which the loads are light and the service relatively unimportant. a simple ,easily installed bearing is required ,suing little or no lubrication. In such cases an antifriction bearing might be a poor answer because because of the cost, the close ,the radial space required ,or the increased inertial effects. Recent metallurgy developments in bearing materials , combined with increased knowledge of the lubrication process, now make it possible to design journal bearings with satisfactory lives and very good reliabilities.
軸承的摩擦與潤(rùn)滑
現(xiàn)在看來(lái),有很多這種情況,許多學(xué)生在被問(wèn)到關(guān)于摩擦的問(wèn)題時(shí),往往都沒(méi)引起足夠的重視,甚至是忽視它。實(shí)際上,摩擦從某種程度上說(shuō),存在于任何兩個(gè)相接觸并有相對(duì)運(yùn)動(dòng)趨勢(shì)的部件之間。而摩擦這個(gè)詞,本身就意味著,兩個(gè)或兩個(gè)以上部件的阻止相對(duì)運(yùn)動(dòng)趨勢(shì)。
在一個(gè)機(jī)器中,運(yùn)動(dòng)部件的摩擦是有害的,因?yàn)樗档土藱C(jī)械對(duì)能量的充分利用。由它引起的熱能是一種浪費(fèi)的能量。因?yàn)椴荒苡盟鋈魏问虑?。還有,它還需要更大的動(dòng)力來(lái)克服這種不斷增大的摩擦。熱能是有破壞性的。因?yàn)樗a(chǎn)生了膨脹。而膨脹可以使得軸承或滑動(dòng)表面之間的配合更緊密。如果因?yàn)榕蛎泴?dǎo)致了一個(gè)足夠大的積壓力,那么,這個(gè)軸承就可能會(huì)卡死或密封死。另外,隨著溫度的升高,如果不是耐高溫材料制造的軸承,就可能會(huì)損壞甚至融化。
在運(yùn)動(dòng)部件之間會(huì)發(fā)生很多摩擦,如
1.啟動(dòng)摩擦
2.滑動(dòng)摩擦
3.轉(zhuǎn)動(dòng)摩擦。
啟動(dòng)摩擦是兩個(gè)固體之間產(chǎn)生的傾向于組織其相對(duì)運(yùn)動(dòng)趨勢(shì)的摩擦。當(dāng)兩個(gè)固體處于靜止?fàn)顟B(tài)時(shí),這兩個(gè)零件表面的不平度傾向于相互嵌入,形成楔入作用,為了使這些部件“動(dòng)”起來(lái)。這些靜止部件的凹谷和尖峰必須整理光滑,而且能相互抵消。這兩個(gè)表面之間越不光滑,由運(yùn)動(dòng)造成的啟動(dòng)摩擦(最大靜摩擦力)就會(huì)越大。
因?yàn)?,通常?lái)說(shuō),在兩個(gè)相互配合的部件之間,其表面不平度沒(méi)有固定的圖形。一旦運(yùn)動(dòng)部件運(yùn)動(dòng)起來(lái),便有了規(guī)律可循,滑動(dòng)就可以實(shí)現(xiàn)這一點(diǎn)。兩個(gè)運(yùn)動(dòng)部件之間的摩擦就叫做滑動(dòng)摩擦。啟動(dòng)摩擦通常都稍大于滑動(dòng)摩擦。
轉(zhuǎn)動(dòng)摩擦一般發(fā)生在轉(zhuǎn)動(dòng)部件和設(shè)備上,這些設(shè)備“抵觸”極大的外作用力,當(dāng)然這種外力會(huì)導(dǎo)致部件的變形和性能的改變。在這種情況下,轉(zhuǎn)動(dòng)件的材料趨向于堆積并且強(qiáng)迫運(yùn)動(dòng)部件緩慢運(yùn)動(dòng),這種改變就是通常所說(shuō)的形變??梢允狗肿舆\(yùn)動(dòng)。當(dāng)然,最終的結(jié)果是,這種額外的能量產(chǎn)生了熱能,這是必需的。因?yàn)樗梢员WC運(yùn)動(dòng)部件的運(yùn)動(dòng)和克服摩擦力。
由運(yùn)動(dòng)部件的表面不平度的楔入作用引起的摩擦可以被部分的克服,那就需要靠?jī)杀砻嬷g的潤(rùn)滑。但是,即使是非常光滑的兩個(gè)表面之間也可能需要一種物質(zhì),這種物質(zhì)就是通常所說(shuō)的潤(rùn)滑劑,它可以提供一個(gè)比較好的、比較薄的油膜。這個(gè)油膜使兩個(gè)表面分離,并且組織運(yùn)動(dòng)部件的兩個(gè)表面的相互潛入,以免產(chǎn)生熱量使兩表面膨脹,又引起更近的接觸。
減小摩擦的另一種方式是用不同的材料制造軸承和轉(zhuǎn)動(dòng)零件??梢阅命S銅軸承、鋁合金和含油軸承合金做例子進(jìn)行解釋。也就是說(shuō)用軟的或硬的金屬組成表面。含油軸承合金是軟的。這樣,當(dāng)軸承在油中浸泡過(guò)以后,因?yàn)槊?xì)管的作用,將由帶到軸承的各個(gè)表面。這種類型的軸承把它的潤(rùn)滑劑帶到應(yīng)力最大的部位。
對(duì)運(yùn)動(dòng)部件潤(rùn)滑以減小摩擦,應(yīng)力和熱量,最常用的是油、脂、還有合成劑。每一種潤(rùn)滑劑都有其各自不同的功能和用途。兩個(gè)運(yùn)動(dòng)部件之間的運(yùn)動(dòng)情況決定了潤(rùn)滑劑的類型的選擇。潤(rùn)滑劑的分布也決定了系統(tǒng)的選擇。
在低速度運(yùn)動(dòng)的部件,一個(gè)油溝足以將所需要的數(shù)量的潤(rùn)滑劑送到相互運(yùn)動(dòng)的表面。
第二種通用的潤(rùn)滑方法是飛濺潤(rùn)滑系統(tǒng),在每個(gè)周期內(nèi)這個(gè)系統(tǒng)內(nèi)一些零件經(jīng)過(guò)潤(rùn)滑劑存儲(chǔ)的位置,帶起足夠的潤(rùn)滑油,然后將其散布到所有的運(yùn)動(dòng)零件上。這種系統(tǒng)用于草坪修剪機(jī)中發(fā)動(dòng)機(jī)的曲軸箱,對(duì)曲軸、連桿和活塞等零件進(jìn)行潤(rùn)滑。
在工業(yè)裝置中,常用的有一種潤(rùn)滑系統(tǒng)是壓力系統(tǒng)。這種系統(tǒng)中,一個(gè)機(jī)器上的一個(gè)泵,可以將潤(rùn)滑劑帶到所有的軸承表面。并且以一種連續(xù)的固定的速度和數(shù)量。
關(guān)于潤(rùn)滑,還有許多其他的系統(tǒng),針對(duì)各種類型的潤(rùn)滑劑,對(duì)不同類型的運(yùn)動(dòng)零件是有效的。由于設(shè)備或裝置的速度、壓力和工作要求的提高,現(xiàn)代工業(yè)比以前任何時(shí)候都更注重選用適當(dāng)?shù)臐?rùn)滑劑。
盡管潤(rùn)滑的主要目的之一是為了減小摩擦力,任何可以控制兩個(gè)滑動(dòng)表面之間摩擦和磨損的物質(zhì),不管是液體還是固體或氣體,都可以歸類于潤(rùn)滑劑。
潤(rùn)滑的種類
無(wú)潤(rùn)滑滑動(dòng):經(jīng)過(guò)精心處理的、去除了所有外來(lái)物質(zhì)的金屬在相互滑動(dòng)時(shí)會(huì)粘附或熔接到一起。當(dāng)達(dá)不到這么高的純凈度時(shí),吸附在表面的氣體、水蒸氣、氧化物和污染物就會(huì)降低摩擦力并減小粘附的趨勢(shì),但通常會(huì)產(chǎn)生嚴(yán)重的磨損,這種現(xiàn)象被稱為“無(wú)潤(rùn)滑”摩擦或者叫做干摩擦。
流體膜潤(rùn)滑:在滑動(dòng)面之間引入一層流體膜,把滑動(dòng)表面完全隔離開(kāi),就產(chǎn)生了流體膜潤(rùn)滑。這種流體可能是有意引入的。例如汽車主軸承中的潤(rùn)滑油;也可能是無(wú)意中引入的,例如在光滑的橡膠輪胎和潮濕的路面之間的水。盡管流體通常是油、水和其他很多種類的液體,它可以是氣體。最常用的氣體是空氣。
為了把零件隔離開(kāi),潤(rùn)滑膜中的壓力必須和作用在滑動(dòng)面上的負(fù)荷保持平衡。如果潤(rùn)滑膜中的壓力是由外源提供的,這種系統(tǒng)稱為流體靜壓潤(rùn)滑。如果滑動(dòng)表面之間的壓力是由于滑動(dòng)面本身的形狀和運(yùn)動(dòng)所共同產(chǎn)生的,這種系統(tǒng)就稱為流體動(dòng)壓力潤(rùn)滑。
邊界潤(rùn)滑:處于無(wú)潤(rùn)滑滑動(dòng)和流體膜潤(rùn)滑之間的潤(rùn)滑被稱為邊界潤(rùn)滑。它可以被定為這樣一種潤(rùn)滑狀態(tài),在這種狀態(tài)中,表面之間的摩擦力取決于表面的性質(zhì)和潤(rùn)滑劑中的其他性質(zhì)。邊界潤(rùn)滑包括大部分潤(rùn)滑現(xiàn)象,通常在機(jī)器的啟動(dòng)和停止時(shí)出現(xiàn)。
固體潤(rùn)滑。當(dāng)普通潤(rùn)滑劑沒(méi)有足夠的承受能力或者不能在溫度極限下工作時(shí),石墨和二硫化鉬這一類固體潤(rùn)滑劑得到廣泛應(yīng)用。但潤(rùn)滑劑不僅僅以脂肪、粉末和油脂這樣一些為人們所熟悉的形態(tài)出現(xiàn),在一些精密的機(jī)器中,金屬也通常作為滑動(dòng)面。
潤(rùn)滑劑的作用
盡管潤(rùn)滑劑主要是用來(lái)控制摩擦和磨損的,它們能夠而且通常也確實(shí)起到許多其他的作用,這些作用隨其用途不同而不同,但通常相互之間是有關(guān)系的。
控制摩擦力。 滑動(dòng)面之間潤(rùn)滑劑的數(shù)量和性質(zhì)對(duì)所產(chǎn)生的摩擦力有很大的影響。例如,不考慮熱和磨損這些相關(guān)因素,只考慮兩個(gè)油膜潤(rùn)滑表面見(jiàn)的摩擦力,它能比兩個(gè)同樣表面,但沒(méi)有潤(rùn)滑時(shí)小200倍。在流體潤(rùn)滑狀況時(shí),摩擦力與流體黏度成正比。一些諸如石油衍生物這類潤(rùn)滑劑,可以有很多黏度,因此能夠滿足范圍寬廣的功能要求。在邊界潤(rùn)滑狀態(tài),潤(rùn)滑劑黏度對(duì)摩擦力的影響不象其化學(xué)性質(zhì)的影響那么顯著。
磨損控制。磨蝕、腐蝕與固體和固體之間的接觸就會(huì)造成磨損。適當(dāng)?shù)臐?rùn)滑劑將能幫助克服上述提到的一些磨損現(xiàn)象。潤(rùn)滑劑通過(guò)潤(rùn)滑膜來(lái)增加滑動(dòng)面之間的距離,從而減輕磨料污染物和表面不平度造成的損傷,因此,減輕了磨損和由固體與固體之間接觸造成的磨損。
控制溫度。潤(rùn)滑劑通過(guò)減小摩擦和將產(chǎn)生的熱量帶走來(lái)降低溫度。其效果取決于潤(rùn)滑劑的用量和外部冷卻措施。冷卻劑的種類也會(huì)在較小的程度上影響表面的溫度。
控制腐蝕。潤(rùn)滑劑在控制表面腐蝕方面有雙重作用。當(dāng)機(jī)器閑置不工作時(shí),潤(rùn)滑劑起到防腐劑的作用。當(dāng)機(jī)器工作時(shí),潤(rùn)滑劑通過(guò)給被潤(rùn)滑零件涂上一層可能含有添加劑,能使腐蝕性材料中和的保護(hù)膜來(lái)控制腐蝕。潤(rùn)滑劑控制腐蝕的能力與潤(rùn)滑劑保留在金屬表面的潤(rùn)滑膜的厚度和潤(rùn)滑劑的化學(xué)成分有直接的關(guān)系。
其他作用
除了減小摩擦外,潤(rùn)滑劑還經(jīng)常有其他的用途。其中的一些用途如下所述。
傳遞動(dòng)力。潤(rùn)滑劑被廣泛用來(lái)作為液壓傳動(dòng)中的工作液體。
絕緣。在象變壓器和配電裝置這些特殊用途中,具有很高介電常數(shù)的潤(rùn)滑劑起電絕緣材料的作用。為了獲得最高絕緣性能,潤(rùn)滑劑中不能含有任何雜質(zhì)和水分。
減振。在象減振器這樣的能量傳遞裝置中和在承受很高的間隙載荷的齒輪這樣的機(jī)器零件的周圍,潤(rùn)滑劑被作為減振液使用。
密封。潤(rùn)滑脂通常還有一個(gè)特殊作用,就是形成密封層以防止?jié)櫥瑒┩鉃a和污染物進(jìn)入。
潤(rùn)滑的目的就是為了,減小摩擦力,降低能量損耗,減少機(jī)器的熱量產(chǎn)生。熱量就是因?yàn)楸砻娴南嗷ラg的相對(duì)運(yùn)動(dòng)造成的。潤(rùn)滑劑可以是任何一種物質(zhì),這樣的物質(zhì)被填充到發(fā)生相對(duì)運(yùn)動(dòng)的兩個(gè)表面之間,實(shí)現(xiàn)這一目的。大部分的潤(rùn)滑劑是液體,比如說(shuō),油,脂,合成劑等。但它們有時(shí)也可能是固體,用在干軸承上,有的用在旋轉(zhuǎn)基體的軸承上,或者也可能是氣體,如空氣等,它是用在空氣軸承上。在潤(rùn)滑劑和潤(rùn)滑表面之間這種化學(xué)的和物質(zhì)的相互滲入作用,就是為了提供給機(jī)器一個(gè)良好的工作狀態(tài)。
對(duì)潤(rùn)滑劑邊界的理解,往往是比較硬的,而且是流動(dòng)的、非常薄的一層帖附在被潤(rùn)滑的表面。這些表面通常是要發(fā)生相對(duì)滑動(dòng)。有些人推斷,按這種理解,液體的這種化學(xué)合成是十分重要的,它們提出了這樣的詞“邊界潤(rùn)滑”,邊界潤(rùn)滑是和流體潤(rùn)滑相對(duì)的另一種潤(rùn)滑。
關(guān)于潤(rùn)滑的五種不同的潤(rùn)滑形式主要有:
(1)無(wú)潤(rùn)滑潤(rùn)滑劑。
(2)流體膜潤(rùn)滑。
(3)干潤(rùn)滑。
(4)邊界潤(rùn)滑。
(5)固體潤(rùn)滑。
無(wú)潤(rùn)滑潤(rùn)滑劑是指軸承的工作表面被一種相對(duì)比較厚的液體潤(rùn)滑劑分隔開(kāi),于是阻止了金屬表面的直接接觸,這樣得到的這種穩(wěn)定性就可以用一種理論來(lái)解釋:潤(rùn)滑液在外壓力下工作的理論,盡管這只是一種可能。但確實(shí)需要在任何時(shí)候都得提供的足夠充分。這種擠壓力是運(yùn)動(dòng)表面本身施加給潤(rùn)滑劑而產(chǎn)生的,當(dāng)然這仍然是一種可能。這種由運(yùn)動(dòng)表面產(chǎn)生的擠壓力產(chǎn)生了必要的壓力來(lái)分隔工作表面來(lái)抵抗加在軸承上的載荷。所以,這種潤(rùn)滑也可以被叫做液體潤(rùn)滑。
還有一種潤(rùn)滑方式,那是一種特別的潤(rùn)滑劑,它有時(shí)是空氣或水,當(dāng)加在軸承上的外載荷足夠高時(shí),它就會(huì)以一種比較厚的狀態(tài)分隔開(kāi)相互相對(duì)運(yùn)動(dòng)的工作表面。所以,不象上面的那種潤(rùn)滑方式,并不需要兩種工作表面一定發(fā)生相對(duì)運(yùn)動(dòng)。
第三種潤(rùn)滑方式是一種現(xiàn)象,這種現(xiàn)象是,一種潤(rùn)滑劑是用在發(fā)生相對(duì)轉(zhuǎn)動(dòng)的工作表面之間。比如說(shuō)齒輪或者是滾動(dòng)軸承。從數(shù)學(xué)上的解釋就需要接觸壓力和流體機(jī)械的理論。
當(dāng)軸承不得不在較高的溫度下工作的時(shí)候,固體潤(rùn)滑劑例如合成物等,必須被使用,因?yàn)橥ǔJ褂玫臐?rùn)滑油在這種情況下都不能工作。目前,在這方面的研究正在實(shí)施,為了尋找到合成軸承的材料,并且有低損耗和小的熱量產(chǎn)生的性能。
在有的軸承上,搖桿旋轉(zhuǎn)或在軸承上轉(zhuǎn)動(dòng),相對(duì)運(yùn)動(dòng)就是滑動(dòng)。在一個(gè)自鎖的軸承裝置中,這種相對(duì)運(yùn)動(dòng)就是轉(zhuǎn)動(dòng)。其他的裝置也可能是旋轉(zhuǎn)或滑動(dòng)。齒輪的齒嚙合是轉(zhuǎn)動(dòng)與相對(duì)滑動(dòng)的合成。活塞是相對(duì)于剛體的滑動(dòng),所有的這些應(yīng)用都需要潤(rùn)滑劑來(lái)減小摩擦,降低能耗,減少熱量的產(chǎn)生。
在有些軸承的應(yīng)用領(lǐng)域是不太成熟的。有些有連接桿的軸承,比如說(shuō)汽車發(fā)動(dòng)機(jī)上的,必須在幾千度高的高溫下和各種不同性質(zhì)的載荷下工作。這種軸承用在汽輪發(fā)動(dòng)設(shè)備上可以說(shuō)是穩(wěn)定性接近100%。還有另一種極端的情況,在有些軸承有幾千種應(yīng)用,應(yīng)對(duì)各種不同的載荷。其他的輔助設(shè)施就相對(duì)不重要了。需要的是一個(gè)簡(jiǎn)單的、容易安裝的軸承。需要很少的甚至是不需要潤(rùn)滑劑。在這種情況下,有的軸承并不是最好的選擇,因?yàn)槌杀竞拖嘟墓睢W罱谳S承材料上的研究已有了一定的突破。隨著對(duì)潤(rùn)滑的研究的知識(shí)的積累,設(shè)計(jì)出有良好工作狀況和較高的穩(wěn)定性的軸承已不是很遙遠(yuǎn)了。
11
收藏