購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
2011屆畢業(yè)設(shè)計
材 料
系 、 部: 機 械 工 程 系
學生姓名: 鐘 文 明
指導教師: 金 瀟 明
職 稱: 教 授
專 業(yè):機械設(shè)計制造及其自動化
班 級: 機本 0701
學 號: 214070148
2011 年 6 月
湖南工學院2011屆畢業(yè)設(shè)計(論文)課題任務(wù)書
系: 機械工程系 專業(yè): 機械設(shè)計制造及其自動化
指導教師
金瀟明
學生姓名
鐘文明
課題名稱
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
內(nèi)容及任務(wù)
1、技術(shù)要求
設(shè)計需保證計算準確,設(shè)計說明書應(yīng)文理通順、條理清晰、圖文并茂。
2、工作要求
認真復習設(shè)計有關(guān)知識,并查詢有關(guān)資料、手冊,按時保質(zhì)、保量完成設(shè)計任務(wù)。設(shè)計過程中的問題及時請教老師。
3、圖紙要求
要求圖面清晰,布圖合理,所有設(shè)計的圖紙用計算機繪制,符合國家標準。
4、設(shè)計工作量
(1) 零件圖一張、毛坯圖一張;
(2) 機械加工工藝規(guī)程一套;
(3) 工序卡一套;
(4) 夾具裝配圖一張、夾具零件圖一套
(5) 計算機繪圖、手工繪圖至少一張;
(6) 畢業(yè)設(shè)計說明書一份。
進度安排
起止日期
工作內(nèi)容
備注
03.05-03.25
03.26-04.10
04.11-05.28
05.29-06.05
06.06-06.10
查閱資料,復習與設(shè)計相關(guān)的知識
進行方案設(shè)計,確定基本結(jié)構(gòu)形式
繪圖和主要的設(shè)計計算
完成畢業(yè)設(shè)計說明書的編寫
畢業(yè)答辯準備和畢業(yè)答辯
主要參考資料
[1] 浦林祥.金屬切削機床夾具設(shè)計手冊(第二版)[M].北京:機械工業(yè)出版社,1995
[2] 李洪.機械加工工藝手冊[M] 北京:北京出版社,1990
[3] 趙家齊.機械制造工藝學課程設(shè)計指導書[M]. 哈爾濱:哈爾濱工業(yè)大學,1994
[4] 薛源順.機床夾具設(shè)計[M].北京:機械工業(yè)出版社,2000
[5] 東北重型機械學院、洛陽工學院、第一汽車制造職工大學編,機床夾具設(shè)計手冊第二版[M]. 上海:上海科學技術(shù)出版社,1990
[6] 葛金印.機械制造技術(shù)基礎(chǔ)教學參考書[M]. 北京:高等教育出版社,2005.
[7] 肖繼德.機床夾具設(shè)計第2版[M]. 北京:機械工業(yè)出版社,1997
[8] 張捷 趙虎 李先民.機械制造技術(shù)基礎(chǔ)[M].成都:西南交通大學,2005.12
[9] 石光源.機械制圖[M]. 北京:高等教育出版社,2005.12
教研室
意見
年 月 日
系主管領(lǐng)導意見
年 月 日
湖南工學院畢業(yè)設(shè)計(論文)開題報告
題 目
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
學生姓名
鐘文明
班級學號
機本0701
214070148
專業(yè)
機械設(shè)計制造及其自動化
一、畢業(yè)設(shè)計的內(nèi)容及意義
箱體類是機器或部件的基礎(chǔ)零件,它將機器或部件的一些軸、套、軸承和齒輪等有關(guān)零件裝配起來,使其保持正確的相互位置關(guān)系,以傳遞轉(zhuǎn)矩或改變轉(zhuǎn)速來完成規(guī)定的運動。因此,箱體的加工質(zhì)量對機器的工作精度、使用性能和壽命都有直接的影響。
箱體零件雖然結(jié)構(gòu)多種多樣,但有共同的特點:多為鑄造件,結(jié)構(gòu)復雜,壁薄且不均勻,內(nèi)部呈腔形,加工部位多,加工難度大。既有精度要求較高的孔系和平面,也有許多精度要求較低的緊固件。箱體類零件上面的孔與孔之間有較高的位置精度(孔與孔的平行度、孔的軸線與面有垂直度要求),其加工質(zhì)量的好壞直接影響柴油機的精度和使用性能,因此柴油機汽缸的加工質(zhì)量至關(guān)重要。箱體類零件的機械加工勞動量約占整個產(chǎn)品加工量的15%~20%。
本次設(shè)計是制定175型柴油機汽缸的加工工藝及鉆前端面的8個螺紋孔的組合機床夾具設(shè)計。柴油機汽缸屬于箱體零件,其特點是:形狀復雜、具有形狀復雜的內(nèi)腔,箱壁多用于安裝軸承的軸承孔或其他用途的孔系。箱體的加工面較多,主要加工的是面和孔系,屬于整體式機體結(jié)構(gòu),即汽缸體和曲軸箱制成一個整體零件,這種整體式機體的特點是結(jié)構(gòu)緊湊,剛性好,加工制造困難。
1.機體的主要作用
1、連接柴油機的一些運動部件,使它們在工作時保持相互準確的位置關(guān)系;
2、在機體上加工有水道和油道,保證各零件工作時必要的冷卻與潤滑;
3、安裝柴油機各輔助系統(tǒng)部件;
4、作為柴油機使用安裝時的支承,將柴油機固定在底盤或支架上。 所以,柴油機汽缸的結(jié)構(gòu)較為復雜,部件結(jié)構(gòu)尺寸精度較高,受到高頻的變載荷及振動是柴油機的主要部件。
2.毛坯材料及形式的確定
由于箱體類零件形狀復雜,有腔形,故一般需要鑄造成型。機體結(jié)構(gòu)復雜,部件結(jié)構(gòu)尺寸精度較高,受到高頻的變載荷及振動,故零件材料可選用HT300(灰鑄鐵),硬度為170-240HBS,因為它強度較高、耐磨、耐熱性能好,但需人工時效處理,適用于承受較大應(yīng)力(<2942N/cm),摩擦面間單位壓力大于49N/cm和要求一定的氣密性的零件,適用于汽缸體等。其工作條件:承受高彎曲應(yīng)力(<0.49 MPa)及抗拉應(yīng)力;摩擦面間的單位面積壓力1.96MPa;要求保持高氣密性。
根據(jù)以上要求,由于零件結(jié)構(gòu)復雜、形狀材料方面的要求,批量較大,毛坯確定為砂型機器造型。
二、設(shè)計思路及工作方法
1、分析柴油機汽缸零件結(jié)構(gòu)特點
2、對汽缸零件進行工藝分析
3、確定機械毛坯種類和余量及毛坯尺寸
4、定制汽缸加工的工藝過程
5、確定切削用量及基本工時
6、鉆孔的夾具設(shè)計
三、設(shè)計任務(wù)完成的階段內(nèi)容及時間安排。
1.準備工作(收集資料和查看復習畢業(yè)設(shè)計設(shè)計的相關(guān)內(nèi)容) (3.05-3.12)
2.資料檢索 (3.13-3.20)
3.方案設(shè)計 (3.26-4.01)
4.工藝設(shè)計和夾具設(shè)計 (4.02-4.20)
5.繪圖 (4.21-5.04)
6.修改 (5.05-5.10)
7.編寫畢業(yè)設(shè)計說明書 (5.10-5.28)
指導教師批閱意見
指導教師(簽名): 年 月 日
湖南工學院畢業(yè)設(shè)計(論文)工作中期檢查表
題目
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
學生姓名
鐘文明
班級學號
機本0701
214070148
專業(yè)
機械設(shè)計制造及其自動化
指
導
教
師
填
寫
學生開題情況
學生調(diào)研及查閱文獻情況
畢業(yè)設(shè)計(論文)原計劃有無調(diào)整
學生是否按計劃執(zhí)行工作進度
學生是否能獨立完成工作任務(wù)
學生的英文翻譯情況
學生每周接受指導的次數(shù)及時間
畢業(yè)設(shè)計(論文)過程檢查記錄情況
學生的工作態(tài)度在相應(yīng)選項劃“√”
□認真
□一般
□較差
尚存在的問題及采取的措施:
指導教師簽字: 年 月 日
系部意見:
負責人簽字:
年 月 日
湖南工學院2011屆畢業(yè)設(shè)計(論文)指導教師審閱表
系:機械工程系 專業(yè):機械設(shè)計制造及其自動化
學生姓名
鐘文明
學 號
214070148
班 級
機本0701
專 業(yè)
機械設(shè)計制造及其自動化
指導教師姓名
金瀟明
課題名稱
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
1、論文選題符合專業(yè)培養(yǎng)目標,能夠達到綜合訓練目標,題目有較高難度,工作量大。
2、該生查閱文獻資料能力強,參考了豐富的文獻資料,綜合運用知識能力強。
3、文章篇幅完全符合學院規(guī)定,內(nèi)容完整,層次結(jié)構(gòu)安排科學,主要觀點突出,邏輯關(guān)系清楚,有一定的個人見解。
4、文題完全相符,論點突出,論述緊扣主題。
5、語言表達流暢,格式完全符合規(guī)范要求。
6、當然,在這其間也存在一些不足和需要提高的地方。例如,知識面不夠廣,處理問題和運用知識的能力還有待提高,不能積極主動的和老師交流工作的進程。希望該同學在以后的工作或?qū)W習中注意這些問題,爭取更大的提高和進步。
是否同意參加答辯:
是□ 否□
指導教師評定成績
分值:
指導教師簽字: 年 月 日
湖南工學院畢業(yè)設(shè)計(論文)評閱教師評閱表
題 目
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
學生姓名
鐘文明
班級學號
機本0701
214070148
專業(yè)
機械設(shè)計制造及其自動化
評閱
教師姓名
金瀟明
職稱
教授
工作單位
湖南工學院
評分內(nèi)容
具 體 要 求
總分
評分
開題情況
調(diào)研論證
能獨立查閱文獻資料及從事其他形式的調(diào)研,能較好地理解課題任務(wù)并提出實施方案,有分析整理各類信息并從中獲取新知識的能力。
10
外文翻譯
摘要及外文資料翻譯準確,文字流暢,符合規(guī)定內(nèi)容及字數(shù)要求。
10
設(shè)計質(zhì)量
論證、分析、設(shè)計、計算、結(jié)構(gòu)、建模、實驗正確合理。
35
創(chuàng)新
工作中有創(chuàng)新意識,有重大改進或獨特見解,有一定實用價值。
10
撰寫質(zhì)量
結(jié)構(gòu)嚴謹,文字通順,用語符合技術(shù)規(guī)范,圖表清楚,書寫格式規(guī)范,符合規(guī)定字數(shù)要求。
15
綜合能力
能綜合運用所學知識和技能發(fā)現(xiàn)與解決實際問題。
20
總評分
評閱教師
評閱意見
評閱成績
總評分ⅹ20%
評閱教師簽名
日期
湖南工學院畢業(yè)設(shè)計(論文)答辯資格審查表
題 目
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
學生姓名
鐘文明
學??? 號
214070148
專 業(yè)
機械設(shè)計制造及其自動化
指導教師
金瀟明
一、 設(shè)計步驟
機體是柴油機中的重要部件,屬于箱體類構(gòu)件。屬于大規(guī)模生產(chǎn)。本次設(shè)計做的是“柴油機汽缸機械加工工藝及其組合機床鉆孔夾具設(shè)計”,主要是先對汽缸進行零件分析;然后進行毛坯確定,根據(jù)尺寸畫出毛坯圖;再后進行加工工序的設(shè)定以及確定削用量和加工工時;最后進行指定工序的夾具設(shè)計。
二、 主要內(nèi)容
1、零件分析
2、毛坯的確定
3、工藝規(guī)程的設(shè)計
4、夾具設(shè)計
三、 設(shè)計任務(wù)完成的階段內(nèi)容及時間安排。
1.準備工作(收集資料和查看復習畢業(yè)設(shè)計設(shè)計的相關(guān)內(nèi)容) (3.05-3.12)
2.資料檢索 (3.13-3.20)
3.方案設(shè)計 (3.26-4.01)
4.工藝設(shè)計和夾具設(shè)計 (4.02-4.20)
5.繪圖 (4.21-5.04)
6.修改 (5.05-5.10)
7.編寫畢業(yè)設(shè)計說明書 (5.10-5.28)
?? ?
申請人簽名:鐘文明
日期:2011.6.7
資? 格? 審? 查? 項? 目
是
否
01
工作量是否達到所規(guī)定要求
?
?
02
文檔資料是否齊全(任務(wù)書、開題報告、外文資料翻譯、定稿論文及其相關(guān)附件資料等)
?
?
03
是否完成任務(wù)書規(guī)定的任務(wù)
?
?
04
完成的成果是否達到驗收要求
?
?
05
是否剽竊他人成果或者直接照抄他人設(shè)計(論文)
指導教師簽名:
畢業(yè)設(shè)計(論文)答辯資格審查小組意見:
符合答辯資格,同意答辯 □????? 不符合答辯資格,不同意答辯□
審查小組成員簽名: ?
??? 年??? 月??? 日
注:此表中內(nèi)容綜述由學生填寫,資格審查項目由指導教師填寫。
湖南工學院2011屆畢業(yè)設(shè)計(論文)答辯及最終成績評定表
系:機械工程系 專業(yè):機械設(shè)計制造及其自動化
學生姓名
鐘文明
學號
214070148
班級
機本0701
答辯
日期
2011.6.8
課題名稱
175型柴油機缸體機械加工工藝及其組合機床鉆孔夾具設(shè)計
指導
教師
金瀟明
成 績 評 定
分值
評 定
小計
教師1
教師2
教師3
教師4
教師5
課題介紹
思路清晰,語言表達準確,概念清楚,論點正確,實驗方法科學,分析歸納合理,結(jié)論嚴謹,設(shè)計(論文)有應(yīng)用價值。
30
答辯
表現(xiàn)
思維敏捷,回答問題有理論根據(jù),基本概念清楚,主要問題回答準確大、深入,知識面寬。
必
答
題
40
自
由
提
問
30
合 計
100
答 辯 評 分
分值:
答辯小組長簽名:
答辯成績a:
×40%=
指導教師評分
分值:
指導教師評定成績b:
×40%=
評閱教師評分
分值:
評閱教師評定成績c:
×20%=
最終評定成績:
分數(shù): 等級:
答辯委員會主任簽名:
年 月 日
說明:最終評定成績=a+b+c,三個成績的百分比由各系自己確定,但應(yīng)控制在給定標準的10%左右。
2011屆畢業(yè)設(shè)計
外文譯文
系 、 部: 機械工程系
學生姓名: 鐘文明
指導教師: 金瀟明 職稱 教授
專 業(yè):機械設(shè)計制造及其自動化
班 級: 機本 0701
完成時間: 2011.6.8
外語文獻翻譯
摘自: 《制造工程與技術(shù)(機加工)》(英文版)
《Manufacturing Engineering and Technology—Machining》
機械工業(yè)出版社 2004年3月第1版
美 s. 卡爾帕基安(Serope kalpakjian)
s.r 施密德(Steven R.Schmid) 著
原文
20.9 MACHINABILITY
The machinability of a material usually defined in terms of four factors:
1、 Surface finish and integrity of the machined part;
2、 Tool life obtained;
3、 Force and power requirements;
4、 Chip control.
Thus, good machinability good surface finish and integrity, long tool life, and low force And power requirements. As for chip control, long and thin (stringy) cured chips, if not broken up, can severely interfere with the cutting operation by becoming entangled in the cutting zone.
Because of the complex nature of cutting operations, it is difficult to establish relationships that quantitatively define the machinability of a material. In manufacturing plants, tool life and surface roughness are generally considered to be the most important factors in machinability. Although not used much any more, approximate machinability ratings are available in the example below.
20.9.1 Machinability Of Steels
Because steels are among the most important engineering materials (as noted in Chapter 5), their machinability has been studied extensively. The machinability of steels has been mainly improved by adding lead and sulfur to obtain so-called free-machining steels.
Resulfurized and Rephosphorized steels. Sulfur in steels forms manganese sulfide inclusions (second-phase particles), which act as stress raisers in the primary shear zone. As a result, the chips produced break up easily and are small; this improves machinability. The size, shape, distribution, and concentration of these inclusions significantly influence machinability. Elements such as tellurium and selenium, which are both chemically similar to sulfur, act as inclusion modifiers in resulfurized steels.
Phosphorus in steels has two major effects. It strengthens the ferrite, causing increased hardness. Harder steels result in better chip formation and surface finish. Note that soft steels can be difficult to machine, with built-up edge formation and poor surface finish. The second effect is that increased hardness causes the formation of short chips instead of continuous stringy ones, thereby improving machinability.
Leaded Steels. A high percentage of lead in steels solidifies at the tip of manganese sulfide inclusions. In non-resulfurized grades of steel, lead takes the form of dispersed fine particles. Lead is insoluble in iron, copper, and aluminum and their alloys. Because of its low shear strength, therefore, lead acts as a solid lubricant (Section 32.11) and is smeared over the tool-chip interface during cutting. This behavior has been verified by the presence of high concentrations of lead on the tool-side face of chips when machining leaded steels.
When the temperature is sufficiently high-for instance, at high cutting speeds and feeds (Section 20.6)—the lead melts directly in front of the tool, acting as a liquid lubricant. In addition to this effect, lead lowers the shear stress in the primary shear zone, reducing cutting forces and power consumption. Lead can be used in every grade of steel, such as 10xx, 11xx, 12xx, 41xx, etc. Leaded steels are identified by the letter L between the second and third numerals (for example, 10L45). (Note that in stainless steels, similar use of the letter L means “l(fā)ow carbon,” a condition that improves their corrosion resistance.)
However, because lead is a well-known toxin and a pollutant, there are serious environmental concerns about its use in steels (estimated at 4500 tons of lead consumption every year in the production of steels). Consequently, there is a continuing trend toward eliminating the use of lead in steels (lead-free steels). Bismuth and tin are now being investigated as possible substitutes for lead in steels.
Calcium-Deoxidized Steels. An important development is calcium-deoxidized steels, in which oxide flakes of calcium silicates (CaSo) are formed. These flakes, in turn, reduce the strength of the secondary shear zone, decreasing tool-chip interface and wear. Temperature is correspondingly reduced. Consequently, these steels produce less crater wear, especially at high cutting speeds.
Stainless Steels. Austenitic (300 series) steels are generally difficult to machine. Chatter can be s problem, necessitating machine tools with high stiffness. However, ferritic stainless steels (also 300 series) have good machinability. Martensitic (400 series) steels are abrasive, tend to form a built-up edge, and require tool materials with high hot hardness and crater-wear resistance. Precipitation-hardening stainless steels are strong and abrasive, requiring hard and abrasion-resistant tool materials.
The Effects of Other Elements in Steels on Machinability. The presence of aluminum and silicon in steels is always harmful because these elements combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive. These compounds increase tool wear and reduce machinability. It is essential to produce and use clean steels.
Carbon and manganese have various effects on the machinability of steels, depending on their composition. Plain low-carbon steels (less than 0.15% C) can produce poor surface finish by forming a built-up edge. Cast steels are more abrasive, although their machinability is similar to that of wrought steels. Tool and die steels are very difficult to machine and usually require annealing prior to machining. Machinability of most steels is improved by cold working, which hardens the material and reduces the tendency for built-up edge formation.
Other alloying elements, such as nickel, chromium, molybdenum, and vanadium, which improve the properties of steels, generally reduce machinability. The effect of boron is negligible. Gaseous elements such as hydrogen and nitrogen can have particularly detrimental effects on the properties of steel. Oxygen has been shown to have a strong effect on the aspect ratio of the manganese sulfide inclusions; the higher the oxygen content, the lower the aspect ratio and the higher the machinability.
In selecting various elements to improve machinability, we should consider the possible detrimental effects of these elements on the properties and strength of the machined part in service. At elevated temperatures, for example, lead causes embrittlement of steels (liquid-metal embrittlement, hot shortness; see Section 1.4.3), although at room temperature it has no effect on mechanical properties.
Sulfur can severely reduce the hot workability of steels, because of the formation of iron sulfide, unless sufficient manganese is present to prevent such formation. At room temperature, the mechanical properties of resulfurized steels depend on the orientation of the deformed manganese sulfide inclusions (anisotropy). Rephosphorized steels are significantly less ductile, and are produced solely to improve machinability.
20.9.2 Machinability of Various Other Metals
Aluminum is generally very easy to machine, although the softer grades tend to form a built-up edge, resulting in poor surface finish. High cutting speeds, high rake angles, and high relief angles are recommended. Wrought aluminum alloys with high silicon content and cast aluminum alloys may be abrasive; they require harder tool materials. Dimensional tolerance control may be a problem in machining aluminum, since it has a high thermal coefficient of expansion and a relatively low elastic modulus.
Beryllium is similar to cast irons. Because it is more abrasive and toxic, though, it requires machining in a controlled environment.
Cast gray irons are generally machinable but are. Free carbides in castings reduce their machinability and cause tool chipping or fracture, necessitating tools with high toughness. Nodular and malleable irons are machinable with hard tool materials.
Cobalt-based alloys are abrasive and highly work-hardening. They require sharp, abrasion-resistant tool materials and low feeds and speeds.
Wrought copper can be difficult to machine because of built-up edge formation, although cast copper alloys are easy to machine. Brasses are easy to machine, especially with the addition pf lead (leaded free-machining brass). Bronzes are more difficult to machine than brass.
Magnesium is very easy to machine, with good surface finish and prolonged tool life. However care should be exercised because of its high rate of oxidation and the danger of fire (the element is pyrophoric).
Molybdenum is ductile and work-hardening, so it can produce poor surface finish. Sharp tools are necessary.
Nickel-based alloys are work-hardening, abrasive, and strong at high temperatures. Their machinability is similar to that of stainless steels.
Tantalum is very work-hardening, ductile, and soft. It produces a poor surface finish; tool wear is high.
Titanium and its alloys have poor thermal conductivity (indeed, the lowest of all metals), causing significant temperature rise and built-up edge; they can be difficult to machine.
Tungsten is brittle, strong, and very abrasive, so its machinability is low, although it greatly improves at elevated temperatures.
Zirconium has good machinability. It requires a coolant-type cutting fluid, however, because of the explosion and fire.
20.9.3 Machinability of Various Materials
Graphite is abrasive; it requires hard, abrasion-resistant, sharp tools.
Thermoplastics generally have low thermal conductivity, low elastic modulus, and low softening temperature. Consequently, machining them requires tools with positive rake angles (to reduce cutting forces), large relief angles, small depths of cut and feed, relatively high speeds, and
proper support of the workpiece. Tools should be sharp.
External cooling of the cutting zone may be necessary to keep the chips from becoming “gummy” and sticking to the tools. Cooling can usually be achieved with a jet of air, vapor mist, or water-soluble oils. Residual stresses may develop during machining. To relieve these stresses, machined parts can be annealed for a period of time at temperatures ranging from 80 C to 160 C (175 F to315 F), and then cooled slowly and uniformly to room temperature.
Thermosetting plastics are brittle and sensitive to thermal gradients during cutting. Their machinability is generally similar to that of thermoplastics.
Because of the fibers present, reinforced plastics are very abrasive and are difficult to machine. Fiber tearing, pulling, and edge delamination are significant problems; they can lead to severe reduction in the load-carrying capacity of the component. Furthermore, machining of these materials requires careful removal of machining debris to avoid contact with and inhaling of the fibers.
The machinability of ceramics has improved steadily with the development of nanoceramics (Section 8.2.5) and with the selection of appropriate processing parameters, such as ductile-regime cutting (Section 22.4.2).
Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the individual components, i.e., reinforcing or whiskers, as well as the matrix material.
20.9.4 Thermally Assisted Machining
Metals and alloys that are difficult to machine at room temperature can be machined more easily at elevated temperatures. In thermally assisted machining (hot machining), the source of heat—a torch, induction coil, high-energy beam (such as laser or electron beam), or plasma arc—is forces, (b) increased tool life, (c) use of inexpensive cutting-tool materials, (d) higher material-removal rates, and (e) reduced tendency for vibration and chatter.
It may be difficult to heat and maintain a uniform temperature distribution within the workpiece. Also, the original microstructure of the workpiece may be adversely affected by elevated temperatures. Most applications of hot machining are in the turning of high-strength metals and alloys, although experiments are in progress to machine ceramics such as silicon nitride.
SUMMARY
Machinability is usually defined in terms of surface finish, tool life, force and power requirements, and chip control. Machinability of materials depends not only on their intrinsic properties and microstructure, but also on proper selection and control of process variables.
譯文
20.9 可機加工性
一種材料的可機加工性通常以四種因素的方式定義:
1、 分的表面光潔性和表面完整性。
2、刀具的壽命。
3、切削力和功率的需求。
4、切屑控制。
以這種方式,好的可機加工性指的是好的表面光潔性和完整性,長的刀具壽命,低的切削力和功率需求。關(guān)于切屑控制,細長的卷曲切屑,如果沒有被切割成小片,以在切屑區(qū)變的混亂,纏在一起的方式能夠嚴重的介入剪切工序。
因為剪切工序的復雜屬性,所以很難建立定量地釋義材料的可機加工性的關(guān)系。在制造廠里,刀具壽命和表面粗糙度通常被認為是可機加工性中最重要的因素。盡管已不再大量的被使用,近乎準確的機加工率在以下的例子中能夠被看到。
20.9.1 鋼的可機加工性
因為鋼是最重要的工程材料之一(正如第5章所示),所以他們的可機加工性已經(jīng)被廣泛地研究過。通過宗教鉛和硫磺,鋼的可機加工性已經(jīng)大大地提高了。從而得到了所謂的易切削鋼。
二次硫化鋼和二次磷化鋼 硫在鋼中形成硫化錳夾雜物(第二相粒子),這些夾雜物在第一剪切區(qū)引起應(yīng)力。其結(jié)果是使切屑容易斷開而變小,從而改善了可加工性。這些夾雜物的大小、形狀、分布和集中程度顯著的影響可加工性?;瘜W元素如碲和硒,其化學性質(zhì)與硫類似,在二次硫化鋼中起夾雜物改性作用。
鋼中的磷有兩個主要的影響。它加強鐵素體,增加硬度。越硬的鋼,形成更好的切屑形成和表面光潔性。需要注意的是軟鋼不適合用于有積屑瘤形成和很差的表面光潔性的機器。第二個影響是增加的硬度引起短切屑而不是不斷的細長的切屑的形成,因此提高可加工性。
含鉛的鋼 鋼中高含量的鉛在硫化錳夾雜物尖端析出。在非二次硫化鋼中,鉛呈細小而分散的顆粒。鉛在鐵、銅、鋁和它們的合金中是不能溶解的。因為它的低抗剪強度。因此,鉛充當固體潤滑劑并且在切削時,被涂在刀具和切屑的接口處。這一特性已經(jīng)被在機加工鉛鋼時,在切屑的刀具面表面有高濃度的鉛的存在所證實。
當溫度足夠高時—例如,在高的切削速度和進刀速度下—鉛在刀具前直接熔化,并且充當液體潤滑劑。除了這個作用,鉛降低第一剪切區(qū)中的剪應(yīng)力,減小切削力和功率消耗。鉛能用于各種鋼號,例如10XX,11XX,12XX,41XX等等。鉛鋼被第二和第三數(shù)碼中的字母L所識別(例如,10L45)。(需要注意的是在不銹鋼中,字母L的相同用法指的是低碳,提高它們的耐蝕性的條件)。
然而,因為鉛是有名的毒素和污染物,因此在鋼的使用中存在著嚴重的環(huán)境隱患(在鋼產(chǎn)品中每年大約有4500噸的鉛消耗)。結(jié)果,對于估算鋼中含鉛量的使用存在一個持續(xù)的趨勢。鉍和錫現(xiàn)正作為鋼中的鉛最可能的替代物而被人們所研究。
脫氧鈣鋼 一個重要的發(fā)展是脫氧鈣鋼,在脫氧鈣鋼中矽酸鈣鹽中的氧化物片的形成。這些片狀,依次減小第二剪切區(qū)中的力量,降低刀具和切屑接口處的摩擦和磨損。溫度也相應(yīng)地降低。結(jié)果,這些鋼產(chǎn)生更小的月牙洼磨損,特別是在高切削速度時更是如此。
不銹鋼 奧氏體鋼通常很難機加工。振動能成為一個問題,需要有高硬度的機床。然而,鐵素體不銹鋼有很好的可機加工性。馬氏體鋼易磨蝕,易于形成積屑瘤,并且要求刀具材料有高的熱硬度和耐月牙洼磨損性。經(jīng)沉淀硬化的不銹鋼強度高、磨蝕性強,因此要求刀具材料硬而耐磨。
鋼中其它元素在可機加工性方面的影響 鋼中鋁和矽的存在總是有害的,因為這些元素結(jié)合氧會生成氧化鋁和矽酸鹽,而氧化鋁和矽酸鹽硬且具有磨蝕性。這些化合物增加刀具磨損,降低可機加工性。因此生產(chǎn)和使用凈化鋼非常必要。
根據(jù)它們的構(gòu)成,碳和錳鋼在鋼的可機加工性方面有不同的影響。低碳素鋼(少于0.15%的碳)通過形成一個積屑瘤能生成很差的表面光潔性。盡管鑄鋼的可機加工性和鍛鋼的大致相同,但鑄鋼具有更大的磨蝕性。刀具和模具鋼很難用于機加工,他們通常再煅燒后再機加工。大多數(shù)鋼的可機加工性在冷加工后都有所提高,冷加工能使材料變硬并且減少積屑瘤的形成。
其它合金元素,例如鎳、鉻、鉗和釩,能提高鋼的特性,減小可機加工性。硼的影響可以忽視。氣態(tài)元素比如氫和氮在鋼的特性方面能有特別的有害影響。氧已經(jīng)被證明了在硫化錳夾雜物的縱橫比方面有很強的影響。越高的含氧量,就產(chǎn)生越低的縱橫比和越高的可機加工性。
選擇各種元素以改善可加工性,我們應(yīng)該考慮到這些元素對已加工零件在使用中的性能和強度的不利影響。例如,當溫度升高時,鋁會使鋼變脆(液體—金屬脆化,熱脆化,見1.4.3節(jié)),盡管其在室溫下對力學性能沒有影響。
因為硫化鐵的構(gòu)成,硫能嚴重的減少鋼的熱加工性,除非有足夠的錳來防止這種結(jié)構(gòu)的形成。在室溫下,二次磷化鋼的機械性能依賴于變形的硫化錳夾雜物的定位(各向異性)。二次磷化鋼具有更小的延展性,被單獨生成來提高機加工性。
20.9.2 其它不同金屬的機加工性
盡管越軟的品種易于生成積屑瘤,但鋁通常很容易被機加工,導致了很差的表面光潔性。高的切削速度,高的前角和高的后角都被推薦了。有高含量的矽的鍛鋁合金鑄鋁合金也許具有磨蝕性,它們要求更硬的刀具材料。尺寸公差控制也許在機加工鋁時會成為一個問題,因為它有膨脹的高導熱系數(shù)和相對低的彈性模數(shù)。
鈹和鑄鐵相同。因為它更具磨蝕性和毒性,盡管它要求在可控人工環(huán)境下進行機加工。
灰鑄鐵普遍地可加工,但也有磨蝕性。鑄造無中的游離碳化物降低它們的可機加工性,引起刀具切屑或裂口。它需要具有強韌性的工具。具有堅硬的刀具材料的球墨鑄鐵和韌性鐵是可加工的。
鈷基合金有磨蝕性且高度加工硬化的。它們要求尖的且具有耐蝕性的刀具材料并且有低的走刀和速度。
盡管鑄銅合金很容易機加工,但因為鍛銅的積屑瘤形成因而鍛銅很難機加工。黃銅很容易機加工,特別是有添加的鉛更容易。青銅比黃銅更難機加工。
鎂很容易機加工,鎂既有很好的表面光潔性和長久的刀具壽命。然而,因為高的氧化速度和火種的危險(這種元素易燃),因此我們應(yīng)該特別小心使用它。
鉗易拉長且加工硬化,因此它生成很差的表面光潔性。尖的刀具是很必要的。
鎳基合金加工硬化,具有磨蝕性,且在高溫下非常堅硬。它的可機加工性和不銹鋼相同。
鉭非常的加工硬化,具有可延性且柔軟。它生成很差的表面光潔性且刀具磨損非常大。
鈦和它的合金導熱性(的確,是所有金屬中最低的),因此引起明顯的溫度升高和積屑瘤。它們是難機加工的。
鎢易脆,堅硬,且具有磨蝕性,因此盡管它的性能在高溫下能大大提高,但它的機加工性仍很低。
鋯有很好的機加工性。然而,因為有爆炸和火種的危險性,它要求有一個冷卻性質(zhì)好的切削液。
20.9.3 各種材料的機加工性
石墨具有磨蝕性。它要求硬的、尖的,具有耐蝕性的刀具。
塑性塑料通常有低的導熱性,低的彈性模數(shù)和低的軟化溫度。因此,機加工熱塑性塑料要求有正前角的刀具(以此降低切削力),還要求有大的后角,小的切削和走刀深的,相對高的速度和工件的正確支承。刀具應(yīng)該很尖。
切削區(qū)的外部冷卻也許很必要,以此來防止切屑變的有黏性且粘在刀具上。有了空氣流,汽霧或水溶性油,通常就能實現(xiàn)冷卻。在機加工時,殘余應(yīng)力也許能生成并發(fā)展。為了解除這些力,已機加工的部分要在80-160 C(175-315 F)的溫度范圍內(nèi)冷卻一段時間,然而慢慢地無變化地冷卻到室溫。
熱固性塑料易脆,并且在切削時對熱梯度很敏感。它的機加工性和熱塑性塑料的相同。
因為纖維的存在,加強塑料具有磨蝕性,且很難機加工。纖維的撕裂、拉出和邊界分層是非常嚴重的問題。它們能導致構(gòu)成要素的承載能力大大下降。而且,這些材料的機加工要求對加工殘片仔細切除,以此來避免接觸和吸進纖維。
隨著納米陶瓷(見8.2.5節(jié))的發(fā)展和適當?shù)膮?shù)處理的選擇,例如塑性切削(見22.4.2節(jié)),陶瓷器的可機加工性已大大地提高了。
金屬基復合材料和陶瓷基復合材料很能機加工,它們依賴于單獨的成分的特性,比如說增強纖維或金屬須和基體材料。
20.9.4 熱輔助加工
在室溫下很難機加工的金屬和合金在高溫下能更容易地機加工。在熱輔助加工時(高溫切削),熱源—一個火把,感應(yīng)線圈,高能束流(例如雷射或電子束),或等離子弧—被集中在切削刀具前的一塊區(qū)域內(nèi)。好處是:(a)低的切削力。(b)增加的刀具壽命。(c)便宜的切削刀具材料的使用。(d)更高的材料切除率。(e)減少振動。
也許很難在工件內(nèi)加熱和保持一個不變的溫度分布。而且,工件的最初微觀結(jié)構(gòu)也許被高溫影響,且這種影響是相當有害的。盡管實驗在進行中,以此來機加工陶瓷器如氮化矽,但高溫切削仍大多數(shù)應(yīng)用在高強度金屬和高溫度合金的車削中。
小結(jié)
通常,零件的可機加工性能是根據(jù)以下因素來定義的:表面粗糙度,刀具的壽命,切削力和功率的需求以及切屑的控制。材料的可機加工性能不僅取決于起內(nèi)在特性和微觀結(jié)構(gòu),而且也依賴于工藝參數(shù)的適當選擇與控制。