購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
英文原文
Electrical Winch Controls
by Tom Young
The form of motor control we all know best is the simple manual station with up and down pushbuttons. While these stations may still be the perfect choice for certain applications, a dizzying array of more sophisticated controls is also available. This article addresses the basic electrical requirements of the motors and user interface issues you will need to address before specifying, building or buying winch controls.
To begin with, the manual control stations should be of the hold-to-run type, so that if you take your finger off of the button the winch stops. Additionally, every control station needs an emergency stop (E-stop) that kills all power to the winch, not just the control circuit. Think about it—if the winch isn’t stopping when it should, you really need a failsafe way to kill the line power. It’s also a great idea to have a key operated switch on control stations, especially where access to the stations is not controlled.
Safe operation by authorized personnel must be considered when designing even the simplest manual controls.
Controlling Fixed Speed Motors
The actual controlling device for a fixed speed winch is a three phase reversing starter. The motor is reversed by simply switching the phase sequence from ABC to CBA. This is accomplished by two three-pole contactors, interlocked, so they can’t both be closed at the same time. The NEC requires both overload and short circuit protection. To protect the motor from overheating due to mechanical overloads a thermal overload relay is built into the starter. This has bi-metallic strips that match the heating pattern of the motor and trips contacts when they overheat. Alternatively, a thermistor can be mounted in the motor winding to monitor the motor temperature. Short circuit protection is generally provided by fuses rated for use with motors.
A separate line contactor should be provided ahead of the reversing contactor for redundancy. This contactor is controlled by the safety circuits: E-stop and overtravel limits.
This brings us to limit switches. When you get to the normal end of travel limit the winch stops and you can only move it in the opposite direction (away from the limit). There also needs to be an overtravel limit in case, due to an electrical or mechanical problem, the winch runs past the normal limit. If you hit an overtravel limit the line contactor opens so there is no way to drive off of
the limits. If this occurs, a competent technician needs to fix the problem that resulted in hitting the overtravel limit. Then, you can override the overtravels using the spring return toggle switch inside the starter—as opposed to using jumpers or hand shooting the contactors.
Variable Speed Requirements
Of course, the simple fixed speed starter gets replaced with a variable speed drive. Here’s where things start to get interesting! At the very least you need to add a speed pot to the control station. A joystick is a better operator interface, as it gives you a more intuitive control of the moving piece.
Unfortunately, you can’t just order any old variable speed drive from your local supplier and expect it to raise and lower equipment safely and reliably over kids on stage. Most variable speed drives won’t, as they aren’t designed for lifting. The drive needs to be set up so that torque is developed at the motor before the brake is released, and (when stopping) the brake is set before torque is taken away.
For many years DC motors and drives provided a popular solution as they allowed for good torque at all speeds. The large DC motors required for most winches are expensive, costing many times what a comparable AC motor costs. However, the early AC drives were not very useful, as they had a very limited speed range and produced low torque at low speeds. More recently, as the AC drives improved, the low cost and plentiful availability of AC motors resulted in a transition to AC drives.
There are two families of variable speed AC drives. Variable frequency inverters are well known and readily available. These drives convert AC to DC, then convert it
back to AC with a different frequency. If the drive produces 30 Hz, a normal 60 Hz motor will run at half speed. In theory this is great, but in reality there are a couple of problems. First, a typical 60 Hz motor gets confused at a line frequency below 2 or 3 Hz, and starts to cog (jerk and sputter), or just stops. This limits you to a speed range of as low as 20:1—hardly suitable for subtle effects on stage! Second, many lower cost inverters are also incapable of providing full torque at low speeds. Employing such drives can result in jerky moves, or a complete failure to lift the piece—exactly what you don’t want to see when you are trying to start smoothly lifting a scenic element. Some of the newer inverters are closed loop (obtain feedback from the motor to provide more accurate speed control) and will work quite well.
The other family of AC drives is flux vector drives. These units require an encoder mounted on the motor shaft allowing the drive to precisely monitor the rotation of the armature. A processor determines the exact vector of magnetic flux (thus flux vector drive) required to rotate the armature the next few degrees at a given speed. These drives allow an infinite speed range, as you can actually produce full torque at zero speed. The precise speed and position control offered by these drives make them a favorite in high performance applications.
PLC-based controls provide system status as well as control options. This screen give the operator full access to Carnegie Hall’s nine stage floor lifts.
PLC Based Systems
A PLC is a programmable logic controller. First developed to replace the relay based industrial control systems of the ’50s and ’60s, these controls are at home in rugged, industrial environments. These are modular systems with a great variety of I/O modules allowing semi-custom hardware configurations to be assembled easily at a reasonable price. These include position control modules, counters, A/D and D/A converters and all sorts of solid state or hard contact closure outputs. The great variety of I/O components and the modular nature of the PLC make this an effective way to build custom and semi-custom control systems.
The greatest drawback to PLC systems is the lack of really great displays to tell you what they are doing or to help you program them. Monochrome and medium resolution color displays are the norm, as the primary use for these components in on a factory floor.
One of the first major PLC systems used in a large entertainment venue is the complex lift and wagon system at the original MGM Grand (now Bally’s) in Las Vegas. Several manufacturers offer standard PLC-based systems and a host of semi-custom acoustic banner, shell, and lift control systems is also available. The ability to build custom systems from standard building blocks is the greatest strength of PLC-based controls.
High End Controllers
The most sophisticated rigging controllers go well beyond speed, time, and position control. They include the ability to write complex cues, record profiled moves, and manage multiple cues running at once.
Many of the larger opera houses are moving toward point hoist systems, where there is a separate winch for each lift line (the rigging equivalent of dimmer per cir cuit). When multiple winches are used to carry a single piece, the winches must be perfectly synchronized, or the load can shift so that an individual winch can become dangerously overloaded. The control system must be able to keep selected winches in synch or provide a rapid, coordinated stop if a winch is unable to stay in synch with the others. With a typical top speed of 240 fpm and a requirement to keep the winches within a 1/8″ of each other, you have less than three milliseconds to recognize a problem, attempt to correct the errant winch’s speed, determine that you’ve failed and initiate a coordinated stop of all the winches in the group. This takes a lot of computing, fast I/O, and well-written software.
There are two very different approaches to large rigging control systems. Originally, a single console was used, with the usual problem of where it should be located for the operator’s optimum view. Unfortunately this can change not only from show to show, but also from one cue to the next. This dilemma has been partially addressed by using video cameras at different locations in conjunction with 3D screen graphics that allow the operator to view the expected rigging motion three dimensionally from any viewpoint. This allows the operator to view the on screen movement of the rigging from a viewpoint that matches his actual view of the stage, or the actual view of a closed circuit camera. For complex moves with inter-related pieces this makes the control and understanding of what is happening much simpler.
The other approach is a distributed system, with several portable consoles. This allows different operators to control different aspects of the rigging, in the same manner we have done with manual sets. A dramatic example of this approach is used by the Royal Opera at Covent Garden, where there are ten consoles controlling a total of 240 motors. Each console has five playbacks, and is set up so that each motor is assigned to a single console. One operator and console could control everything, but frequently one console may be running stage lifts, another the onstage rigging, and a third is being used backstage to move stored drops.
Cutting-edge portable consoles allow multiple operators to control the action from the best vantage points and provide 3D displays.
Reprinted from PROTOCOL, the Journal of the Entertainment Services and Technology Association (www.esta.org) Fall 2003 issue. ?2003 ESTA.
Conclusion
The tremendous variety of rigging control systems currently available ranges from the pushbutton station to complex multi-user computerized control system. When shopping for rigging control systems you generally get what you pay for. The most important features are safety and reliability. These are features with real value, and you should expect to pay a fair price for this security. Work with an established manufacturer who can show you working installations and who will put you in contact with users who have requirements similar to yours.
中文譯文
電動卷揚機的控制
對于電動機的控制,我們所知道的最好方式就是使用由許多點動式按鈕組成的簡單手工操作臺。而這種操作臺在某些應用方面可能是個不錯的選擇,比如一些令人頭痛的復雜控制也可以用。這篇文章講述了在你設計、裝配或是購買卷揚機控制器之前,你必須對電動機的基本電氣設備和你將需要尋址的用戶接口命令進行編址。
首先,手動控制臺應該是手動控制型的,所以如果你把你的手指移開按鈕,卷揚機就會停車。另外,每個控制工作站都要配備緊急制動閘,緊急制動閘能切斷卷揚機的所有電源,而不僅僅是控制電路。仔細想想,如果卷揚機在需要停車時卻沒有停下來,你就真的需要一種有保障的方法去切斷線路的電源。在控制工作臺上設置一個關鍵操作的開關,也是一個很好的方法,特別是在通向工作站的線路不能被控制時,就可以用使那個開關來控制。
(在設計控制臺時,即使是最簡單的手工控制臺,也需要考慮設置由專門人員操作的安全操作按鍵。)
控制定速電動機
對于一臺定速卷揚機的實際控制設備是一臺三相起動器。電動機的轉向被反向,是通過簡單的開關控制相序從A-B-C變換到C-B-A。這些動作被完成,是通過兩個三磁極式電流接觸器,而且它們是互鎖的,因此它們不可能被同時關閉。NEC公司要求同時擁有過載和短路保護裝置。為了保護電動機免受由于機械過載引起的過熱影響,在起動器內要安裝熱量過載延遲裝置。當熱量過載延遲裝置過熱時,它所擁有的雙金屬長條斷開電動機的電源。另外還可以選擇一臺電熱調節(jié)器來用纏繞的方式安裝在電動機上,它可以用于監(jiān)控電動機的溫度變化。對于短路保護,我們一般是通過電動機常用的熔斷器來實現(xiàn)的。
一臺獨立的線性電流接觸器,被配置的電流接觸器應該超過主回路的電流接觸器,從而達到冗余的目的。這臺電流接觸器是由安全電路來控制的,如:緊急制動和越程極限。
我們可以使用限位開關來實現(xiàn)上述的操作。當你到達正常的行程極限位置末端時,卷揚機就會停車,并且你只能夠向相反的方向移動卷揚機(即遠離極限位置的方向)。這里也需要一個越程限制以防萬一,由于電氣的或者機械的問題,而使卷揚機的運行超過正常的極限位。如果你碰到越程限制器,線形電流接觸器就會打開,因此,卷揚機將無法被驅動超過這個極限位置。如果上述情況發(fā)生,就需要請專業(yè)的技術人員來檢查導致碰到越程限制器的具體原因。然后,你就能夠用起動器內部的彈力恢復撥動開關來處理越程的問題,而不是使用跳閘器或是手工切斷電流接觸器。
變速的必要條件
當然,簡單的定速起動器被變速驅動器所取代。這就使事情開始變得有趣起來了!至少,你需要在控制操作臺上增加一個速度表盤。操縱桿是一個較好的操作接口,由于它使你對部件的移動有一個更直觀的控制。
不幸的是,你不能僅僅從你的本地控制臺去發(fā)命令控制老式的變速驅動器,此外,你不能希望它在初始階段,就能安全而可靠的提升與下放設備。大多數(shù)的變速驅動器不能實現(xiàn)上述的要求,因為它們并不是設計用來做提升工作的。驅動器需要設置成在制動器松開之前,就能夠在電動機上產(chǎn)生扭矩,并且,當停車時,即在扭矩撤銷之前,制動器將先動作。
許多年來,直流電動機和驅動器提供了一些普遍的解決方案,如它們在各種速度時都具有良好的力矩特性。對于大多數(shù)的卷揚機所需求的大型直流電動機是很貴的,那要比同類型的交流電動機貴得多。雖然,早期的交流驅動器不是非常有用,如它們有一個非常有限速度適用范圍,而且僅產(chǎn)生低速小扭矩。如今,隨著直流驅動器的發(fā)展,低成本而且大量可用的交流電動機的出現(xiàn),導致了一場交流驅動的革命。
變速交流驅動器有兩個系列。變頻轉換器已經(jīng)家喻戶曉,而且的確很容易使用。這些驅動器將交流轉換成直流,然后,再把它轉換回交流,轉換后的交流已經(jīng)是不同頻率的。如果驅動器產(chǎn)生30Hz的交流,一臺正常的60Hz的電動機將以一半的速度運行。從理論上說,這非常好,但是,在實際中,這將會有很多的問題。首先,一臺典型的60Hz的電動機在線性頻率低于2Hz或是3Hz的區(qū)域會出現(xiàn)誤差,并且,開始嵌齒(即急推,猛拉),或是停車。這將限制你的速度范圍低于20:1,幾乎不適應于運行階段的細微調節(jié)。其次,許多低成本的轉換器也不能夠在低速時提供額定扭矩。使用這些驅動器,將導致急速移動,或是對于提升部件完全的失效,準確地說,當你試圖去平穩(wěn)的提升一臺科學儀器時,你不愿看到這樣的情況。一些新型的變極器是閉環(huán)系統(tǒng)(從電動機獲得反饋,提供更加準確的速度控制),并且使電動機將會工作的相當好。
交流驅動器的另一個系列是流量矢量型驅動器。這些元器件要求在電動機的主軸上安裝編碼器,使用這些編碼器會使驅動器可以準確地監(jiān)控電機電樞的旋轉。處理器測定了準確的磁性流量的矢量值,這些值要求使電樞在給定的速度下旋轉。這些驅動器允許有無窮大的速度,因此,你實際能夠在零速度時就產(chǎn)生額定扭矩。這些驅動器所提供的準確的速度和位置的控制,使這些驅動器在高性能應用方面受到歡迎。
(基于PLC的控制器提供有系統(tǒng)狀態(tài)和控制選項。這個屏幕展示給操作者全面的訪問卡內基霍爾德的九層電梯提升的控制面板。)
基于PLC的系統(tǒng)
一臺PLC的全稱是可編程序邏輯控制器。首先,PLC的控制器發(fā)展到取代了基于五六十年代的工業(yè)控制系統(tǒng)的繼電器,它們工作在室內的惡劣的工業(yè)環(huán)境中。這些是模塊化的系統(tǒng),它們具有大量的各種各樣的I/O模塊。這些模塊化的系統(tǒng)可以很容易的實現(xiàn)把半自定義的硬件配置組裝起來,而這樣得到的配置的價錢也很合理。這些模塊包括:位置控制模塊,計數(shù)器,A/D和D/A轉換器,以及各種實體狀態(tài)或是物理接觸閉式輸出模塊。大量不同類型的I/O元器件和PLC的模塊屬性使得它成為一條有效的途徑去組裝自定義和半自定義的控制系統(tǒng)。
對于PLC系統(tǒng)的最大的不足就是缺少真實的大量的顯示功能,從而告訴你PLC正在做什么和幫助你對PLC進行編程。
第一臺被用于大型娛樂場所的專業(yè)的PLC系統(tǒng)之一,是在拉斯維加斯的原米高梅電影制片公司(現(xiàn)在的貝利公司)的搭車和四輪馬車系統(tǒng)上。許多的制造商提供了標準的基于PLC的系統(tǒng)和半自動化聲學的標志的主機,設定命令行解釋器的位置,以及提升控制系統(tǒng)也是可用的。使用標準的模塊去組構用戶自定義系統(tǒng)的能力是基于PLC的控制器的最大的優(yōu)勢。
高端控制器
對于復雜的傳動裝置,控制器開始變得復雜,超過了速度,時間以及位置控制。它們包括寫出復雜的指令,記錄輪廓線的移動,以及處理可以立即運行的多點指令的能力。
許多大型的歌劇院正向著點提升系統(tǒng)的方向發(fā)展,在那里為每一條提升繩索配置有一臺獨立的卷揚機,那些繩索等同于每條電路的調光器。當多臺卷揚機被用來提升單個的部分時,這些卷揚機必須完全的同步,或是載荷能夠轉移,如此會導致一臺單獨的卷揚機變得有過載的危險??刂葡到y(tǒng)必須能夠使被選的卷揚機保持同步,或是在一臺卷揚機不能夠保持與其他卷揚機同步時,能提供高速的同等的停車能力。對于一臺典型的高速達240英尺/分鐘和一臺要保持卷揚機的彼此間的速度誤差在1/8分之內的設備,你只有少于三微秒的時間去確認問題,并嘗試糾正錯誤的卷揚機速度,在確定你失敗后,你起動組中所有卷揚機的停車。這將需要大量計算,快速I/O接口,以及好用的寫入軟件。
對于大型的繩索控制系統(tǒng)有兩種非常不同的解決方法。首先是,使用單獨的控制臺,對于一般的問題而言,這樣的控制臺應該安裝在適合于操作者視角的位置。然而,這不僅不能夠從一個角度到另一個角度觀察,而且還不可以從一條指令到另一條指令的控制。這些困難已經(jīng)被部分解決。通過使用安裝在不同位置的視頻攝像機,而且這些攝象機連接于三維屏幕圖形,這些圖形使得操作者可以從任意的視角去觀察在三個坐標方向上的預期的繩索運動。這些可以使得操作者,從一個適合他在實際的操作臺處的視角,或是實際的閉環(huán)電路照相機的視角,來觀察在屏幕上的繩索的運動。對于有內部關聯(lián)的部件的復雜的移動,上述的觀察使得實現(xiàn)控制和查出故障原因變得更加簡單。
另一個解決的方案就是分布式系統(tǒng),這個系統(tǒng)使用了多個輕便的控制臺。這將允許不同的操作者以同樣的方式控制傳動裝置的不同方面,我們已經(jīng)改進了手動控制裝置。一個生動的例子,就是在倫敦中部一個蔬菜花卉市場的皇家歌劇院使用了上述的方案,在那里用十個控制臺控制著240臺電動機。每個控制臺有五個錄音重放裝置,并且已經(jīng)被開啟,以便于每臺電動機被指派給一個單獨的控制臺。一位操作者和一個控制臺就能夠控制所有的裝置,但是,常常是一個控制臺可能是運行臺幕的提升,另一個控制臺是控制臺上的傳動裝置,以及第三個控制臺被用來在后臺將必要的背景畫面放下。
(刃口式輕便的控制臺允許多位操作者從最優(yōu)點出發(fā)來控制機器的運動,并且提供三維圖象的顯示。)
結論
有巨大變化的繩索控制系統(tǒng),已經(jīng)從按鈕式的工作站發(fā)展到復雜的多用戶的計算機化的控制系統(tǒng)。當要購買繩索控制系統(tǒng)時,你總是可以找到滿足你需要的。控制系統(tǒng)最重要的性能是安全性和可靠性。這些是有真實價值的性能,而且你會期望能以一個合適的價格買到這樣的安全性。與某個確定的產(chǎn)品制造商共事,他會使你知道如何進行安裝。而且,他將會讓你和用戶接觸,那些用戶有著與類似的要求。
湖南科技大學 2011 屆畢業(yè)設計(論文)開題報告
題 目
慢動卷揚機的傳動裝置的設計
作者姓名
廖彪
學號
1103010215
所學專業(yè)
機械設計制造及其自動化
1、 研究的意義,同類研究工作國內外現(xiàn)狀、存在問題(列出主要參考文獻)
卷揚機又稱絞車,是起重垂直運輸機械的重要組成部分,配合井(門)架、桅桿、滑輪組等輔助設備,用來提升物料、安裝設備等作業(yè)。由于它結構簡單、操作方便、維護保養(yǎng)簡單、使用成本低、可靠性高等優(yōu)點,廣泛應用于建筑、水利、冶金起重作業(yè)。
提升重物是卷揚機的一種主要功能,所以各類卷揚機的設計都是根據(jù)這一要求為依據(jù)的。雖然目前塔吊、汽車吊等取代了卷揚機的部分工作,但由于塔吊成本高,一股在大型工程中使用,而且靈活性較差,故一般中小型工程仍然廣泛應用卷揚機,汽車吊雖然靈活方便,但也因為成本太高,而不能在工程中廣泛應用,故大多設備的安裝仍然是由卷揚機承擔的。
盡管其應用非常廣泛,但在實際應用過程中目前仍存在著許多急待解決的問題,普遍存在的不足是:體積大、過載能力差、噪音大、效率低、使用壽命短、工作不夠安全可靠等,有些產(chǎn)品還已列入國家淘汰產(chǎn)品,開展卷揚機機設計、性能分析及應用研究,具有較大的實用價值和重要的現(xiàn)實意義。
我國在很久以前的古代,就知道采用轆轤等來提升重物,以減輕體力勞動的強度和提高工作效率。但由于舊中國的工業(yè)落后,勞動力便宜,所以在物料的提升和搬運過程中大都是靠工人的肩挑背扛,而卷揚機只有在一些大型企業(yè)中才被使用,應用很少,而且所適用的卷揚機也均為國外生產(chǎn),國內基本沒有生產(chǎn)卷揚機的廠家。
要和第一個五年計劃的需要,卷揚機的生產(chǎn)被提到了日程上。原沈陽國泰機器廠(阜新礦山機械廠前身)等成批仿制了兩種卷揚機,一種為日本的JIS8001型動力卷揚機,它是一種原動機為電動機,傳動形式是開式圓柱齒輪傳動,雙錐體摩擦離合器,操作為手扳腳踩的快速卷揚機;另一種是按蘇聯(lián)圖紙制造的1011型和1012型普通蝸桿傳動、電控慢速卷揚機。
隨著生產(chǎn)的發(fā)展,到了60年代,卷揚機的生產(chǎn)和使用越來越多。為了協(xié)調生產(chǎn),主要卷揚機生產(chǎn)廠家(阜新礦山機械廠、天津卷揚機廠、山西機器廠、寶雞起重運輸機廠等)組成了卷揚機行業(yè)組織,隸屬于第一機械工業(yè)部礦山機械行業(yè)下。為了發(fā)展卷揚機的生產(chǎn),行業(yè)組織了相關廠家的人員對全國卷揚機的生產(chǎn)和應用情況進行了調查。在調查的基礎上,開始自行設計和制造新的卷揚機,先后試制了0.5t、1t、3t電動卷揚機,但由于對當時各廠家的生產(chǎn)能力估計不足,無法推廣。
從70年代起,我國卷揚機的生產(chǎn)進入了技術提高、品種增多、定性生產(chǎn)的新階段。在各廠自行設計和生產(chǎn)的基礎上,1973年,由卷揚機行業(yè)組織了有關廠家和院校聯(lián)合進行了卷揚機基型設計,并充分考慮到了當時中小廠家的生產(chǎn)能力??焖倬頁P機的基型采用半開半閉式齒輪傳動,離合器采用單錐面石棉橡膠摩擦帶結構,操縱用手扳剎車帶制動。慢速卷揚機的基型為閉式傳動(圓柱齒輪傳動或蝸桿傳動減速器)、電磁鐵制動結構。這兩種基型一直到今天還在生產(chǎn)。為了適應生產(chǎn)發(fā)展的需要,當時第一機械工業(yè)部發(fā)布了JB926-74《建筑卷揚機形式與基本參數(shù)》和JB1803-76《建筑卷揚機技術條件》兩個部標準,并把卷揚機行業(yè)劃歸常德建筑機械研究所(長沙建筑機械研究院前身)領導。隨著部標準的頒布,使卷揚機有了大發(fā)展的基礎。為了滿足經(jīng)濟發(fā)展的需要,各廠家相繼生產(chǎn)了20t和32t卷揚機。
從70年代末開始,我國實行了改革開放政策,國民經(jīng)濟大發(fā)展,作為國民經(jīng)濟的動力,煤炭產(chǎn)業(yè)現(xiàn)代化和機械化的要求日益強烈,許多產(chǎn)品逗進行了防爆改造,從而進入到煤礦井下,其中卷揚機是最成功的一種產(chǎn)品,JD系列的調度卷揚機和JH系列的回柱卷揚機至今還在大量的生產(chǎn),是礦山井下,運輸調度不可替代的機械設備。但這種設備的自動化的程度不高,無法實現(xiàn)無人值守的自動操作,往往由于卷揚機操作工的操作失誤或精神不集中造成安全生產(chǎn)事故。
礦山卷揚機的發(fā)展是伴隨著煤炭產(chǎn)業(yè)發(fā)展,九十年代中后期,是我國煤炭生產(chǎn)的一個低潮,礦用卷揚機的發(fā)展十分緩慢,沒有什么新的結構,產(chǎn)品出現(xiàn)。但是,2000年以后,國際油價居高不下,煤炭再一次被人們所重視,煤炭價格一路上漲,卷揚機等一系列的礦山機電產(chǎn)品需求量劇增,促進了卷揚機的發(fā)展,這一時期卷揚機品種增加,自動化水平增加,新結構、新功能不斷出現(xiàn),但是仍然具有一定的技術瓶頸,即自動控制設備的防爆問題?,F(xiàn)在,變頻調速技術和PLC控制技術十分的成熟,但是,也只是在礦井的主井和副井的提升系統(tǒng)中得到了最廣泛的最成熟的應用。然而,自動化和數(shù)字化是礦井發(fā)展的必然趨勢,為了實現(xiàn)這一目的,礦山設備的自動化和數(shù)字化是實現(xiàn)這一目的的基礎。
窗體頂端
窗體底端
參考文獻:《機械零件》 張紹甫主編.鄭州機械專科學校.1991
《建筑卷揚機設計》齊治國,張義舉,趙燦等.機械工業(yè)出版社,1996
2、 研究目標、內容和擬解決的關鍵問題(根據(jù)任務要求進一步具體化)
1. 了解題目:已知鋼繩拉力F=60KN、鋼繩速度V=10m/min、滾筒直徑D=500mm;工作情況:三班制、間歇工作、載荷變動??;工作環(huán)境:室內、灰塵較大,環(huán)境最高溫度35攝氏度左右;使用折舊期15年,三年大修一次;制造條件及生產(chǎn)批量:專門機械廠制造,小批量生產(chǎn);傳動方案:蝸輪-蝸桿傳動。
2. 設計計算慢動卷揚機傳動裝置的零件尺寸和零件之間的裝配尺寸。
3. 編寫慢動卷揚機傳動裝置的零件尺寸的計算過程和零件之間裝配尺寸的計算過程。
4. 根據(jù)傳動裝置繪制慢動卷揚機傳動裝置零件圖1張、裝配圖1張。
5. 總結計算與繪圖過程,編寫慢動卷揚機傳動裝置的設計說明書1份。
3、 特色與創(chuàng)新之處
電動卷揚機由電動機、聯(lián)軸節(jié)、制動器、齒輪箱和卷筒組成,共同安裝在機架上。對于起升高度和裝卸量大工作頻繁的情況,調速性能好,能令空鉤快速下降。對安裝就位或敏感的物料,能以微動速度下降。它有結構簡單、操作方便、維護保養(yǎng)簡單、使用成本低、可靠性高等特點。
4、 擬采取的研究方法、步驟、技術路線
1. 選擇電動機類型
2. 選擇和計算傳動裝置的運動和動力參數(shù)
3. 設計計算傳動零件
4. 設計和校核齒輪
5. 設計和校核軸
6. 軸承的校核
7. 鍵和螺栓的設計和校核
8. 減速箱的潤滑及密封設計
9. 聯(lián)軸器和制動器的選型設計
10. 裝配圖和零件圖的繪制
11.編寫說明書
5、 擬使用的主要設計、分析軟件及儀器設備
AutoCAD計算機繪圖、SolidWorks、機械設計手冊
6、參考文獻
[1] 齊治國,張義舉,趙燦等.《建筑卷揚機設計》.北京: 機械工業(yè)出版社,1996
[2] 西北工業(yè)大學機械原理教研室.《機械設計》.西安:高等教育出版社,2005
[3] 秦曾煌.《電工學》北京:高等教育出版社,2008
[4] 哈爾濱工業(yè)大學理論力學教研室.《理論力學》.高等教育出版社,2002
[5] 劉鴻文.《材料力學》. 北京:高等教育出版社,2010
[6] 王文斌.《機械設計手冊》,新版.北京:機械工業(yè)出版社,2004
[7] 聞邦椿. 《現(xiàn)代機械設計師手冊》.北京:機械工業(yè)出版社,2012
[8] 成大先.《機械設計手冊》.單行本.減(變)速器·電機與電器·北京:化學工業(yè)出版社,2004
[9] 成大先.《機械設計手冊》,第2 卷.北京:化工工業(yè)出版社,1999
[10] 機械設計手冊編委會.《機械設計手冊》.單行本·齒輪傳動.北京.機械工業(yè)出版社,2007
[11] 蔣乃順,肖華輝,甘繼光等. 《礦用小卷揚機設計計算中不可忽略的問題》.江西煤炭科技.2004,第4期:65~66
[12] 王功勇,欒有均. 《卷揚機構減速器選型方案的探討》.港口裝卸.2000,第4期:21~22
注:
1、開題報告是本科生畢業(yè)設計(論文)的一個重要組成部分。學生應根據(jù)畢業(yè)設計(論文)任務書的要求和文獻調研結果,在開始撰寫論文之前寫出開題報告。
2、參考文獻按下列格式(A為期刊,B為專著)
A:[序號]、作者(外文姓前名后,名縮寫,不加縮寫點,3人以上作者只寫前3人,后用“等”代替。)、題名、期刊名(外文可縮寫,不加縮寫點)年份、卷號(期號):起止頁碼。
B:[序號]、作者、書名、版次、(初版不寫)、出版地、出版單位、出版時間、頁碼。
3、表中各項可加附頁。
4