購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
鞍山科技大學(xué)本科生畢業(yè)設(shè)計(jì)(論文) 第6 頁(yè)
附錄
中文翻譯
四輥軋機(jī)上的板形控制模擬
形狀和輪廓是板材的重要指標(biāo),對(duì)于板帶軋機(jī)斑形控制是主要的技術(shù).對(duì)于板形控制的研究對(duì)于板形控制和軋制技術(shù)的發(fā)展有主要意義.在CVC軋機(jī)上,冷軋的板形控制可以被模仿在Ref[1]中.因?yàn)殛P(guān)于缺陷區(qū)域的形成金屬側(cè)邊的影響沒有被考慮.在CVC冷軋機(jī)上三維塑性板形控制沒有被準(zhǔn)確分析.4輥熱連軋的板形控制正在研究中.Ref[2]和Ref[3]關(guān)于缺陷區(qū)域的形成,金屬側(cè)邊流的影響也沒有被考慮.沿著厚度方向,缺陷和壓力的分布被認(rèn)為是均勻的,它們不能被用于熱軋薄板或厚板軋制.FEM適于模仿熱板連軋的過程Ref[4].因?yàn)檐堓伇徽J(rèn)為是堅(jiān)硬的,在板帶三維塑性缺陷和軋輥的彈性缺陷區(qū)之間的聯(lián)系能夠被準(zhǔn)確的認(rèn)識(shí).在某種意義上講,軋制過程的模擬是可以被執(zhí)行的.在這種研究中,有限元法被用于準(zhǔn)確的分析板材的三維缺陷區(qū),影響系數(shù)法被用于分析軋輥的彈性缺陷的熱缺陷.此外,在四輥CVC軋機(jī)中,這兩種方法的結(jié)合構(gòu)建了板形控制的數(shù)學(xué)模型.在四輥CVC板帶軋機(jī)上,板形控制可以被模擬. Ref[5].由于沒有考慮沿厚度方向,缺陷和壓力的變化.
1. 理論模型
1.1三維板材塑性缺陷----有限元法
有限元法的基本假設(shè):(1)軋制過程關(guān)于XOY平面是穩(wěn)定的且對(duì)稱的,因此,因下面的分析和假設(shè)只考慮對(duì)稱的XOY平面的上半部分.(2)板材在輥縫中是硬塑性的和有彈性的.
在圖1.1中所展示的軋制缺陷區(qū),根據(jù)在圖1.2中的方法,被分成了曲面線型元素沿著板展方向.在圖1.1中是工作輥的半徑,L是缺陷區(qū)的長(zhǎng)度; 是板材入口厚度和出口厚度;是板材入口寬度;是寬展量.在其他位置的縱坐標(biāo).在進(jìn)口(X=0)板材元素被表示Y(i=0,1,2,…n).在其他位置.縱坐標(biāo)在其他位置是不知道的.為了數(shù)字分析和假設(shè)的方便,在坐標(biāo)系x,y,z被貼在坐標(biāo)系為的平面中,入圖3所示,在缺陷區(qū)中,側(cè)面的換置功能和金屬高度換置功能被假定是:
(1) 從Ref[10].和Ref[11].有:
,是在缺陷區(qū)(X=1)的出口處的側(cè)面和高度置換功能.
在坐標(biāo)系中,長(zhǎng)條元素寬度是:
和沿著側(cè)面方向被示為第三少量的功能,假定沿著高度方向是二次曲線,如圖1.3所示.而且被在第0行,第1行和第2行未向替代方法解決.出口分別是側(cè)面和高度的換置和節(jié)派的衍生物.
和使和第一衍生物和第二衍生物滿足,且是連續(xù)的.根據(jù)和(i=0,1,2…n; j=0,1,2…n).取決于重現(xiàn)方法.因此有個(gè)未知參數(shù), 和(i=0,1,2..n;j=0,1,2)在Ref[10].- Ref[13].中,根據(jù)連續(xù)、體積和理論的原理。前張力和后張力能被得到:分別是交叉橫截面入口橫截面;分別是面積和平面的長(zhǎng)度坐標(biāo)系;分別是平均前后張力,E是板材的柔性度;V是板材系數(shù)是長(zhǎng)度壓力系數(shù)。且能根據(jù)多項(xiàng)式作用被表達(dá)出來,當(dāng)入口板材很好,。
以塑性方程中,屈服條件和連續(xù)體積原理,在缺陷區(qū)域中的三維壓力可被解決。從不同的平衡方程中,在缺陷區(qū)的進(jìn)口和出口處的壓力邊界條件和在邊界面的壓力邊界條件是:在和方向中,是普通的應(yīng)力和剪應(yīng)力,是交界面處的普通應(yīng)力;是在三個(gè)方向交界面的普通應(yīng)力的余弦。在缺陷區(qū)中,用有限元法單位軋制力能夠被計(jì)算。
1.2軋輥的彈性缺陷區(qū)-影響系數(shù)法。
在軋輥的長(zhǎng)度范圍中,輥身用和的中央縱線的單位寬度區(qū)域分為節(jié)。下載的圖表和劃分軋輥的部分在圖4和圖5中所被顯方出來。是上工作輥調(diào)節(jié)距離。時(shí)是凹形輥縫,是凸形輥縫,是單位寬度軋制力。是工作輥和支承輥之間的接觸壓力。是工作輥和支承輥的彎曲應(yīng)力;分別是左右兩側(cè)的支反力。整個(gè)坐標(biāo)系的原點(diǎn)正好在左邊壓力點(diǎn)之下,即軸線超過了左邊支持點(diǎn)。
工作輥和支承輥軸線錯(cuò)位表示為:在工作輥與支承輥間的彈性平坦度。被用一半空間輥體模型,如下:
在工作輥和支承輥之間的變形能力方程是:
工作輥計(jì)算模型是:
板材橫向分布是:
是下段輥,是工作輥和支承輥的偏移影響系數(shù),并且表示了在點(diǎn)的偏移,其由作用在點(diǎn)的單位力引起的。是工作輥和支承輥的彎曲應(yīng)力系數(shù),表示了被單位彎輥力引起的在點(diǎn)的偏移。是工作輥?zhàn)笥夷┒说妮S線錯(cuò)位。是左端壓力支承點(diǎn)和工作輥?zhàn)蠖碎g的距離。是工作輥和支承輥間的軸線偏移,分別是工作輥和支承輥間的平坦系數(shù)和平坦度。是工作輥和支承輥頭;是最初的輥頭和熱輥頭和更低的工作輥,是上下輥的硬度替換之和,并且取決于機(jī)架和其他載荷零件;是軋輥原始輥縫。
把方程(12)和方程(14)代入方程(16),就構(gòu)成了個(gè)方程組。與此同時(shí),加入里的平衡方程和工作輥的工作時(shí)間,因此方程的總數(shù)是個(gè)。在方程組中,方程(15)和方程(16)代入方程(19),然后軋制板材的厚度能夠被解出。
1.3關(guān)于四輥CVC軋機(jī)板形的模型分析和計(jì)算,對(duì)于四輥軋機(jī)形狀流的分析和計(jì)算被表示在圖6中。三維的塑性缺陷區(qū)分析被用于確定橫軸的單位寬度的壓力的分布。前張力是后張力是等。軋輥彈性缺陷區(qū)的分析用于確定在工作輥和支承輥之間的接觸應(yīng)力和有載輥縫的形狀(即出口板材厚度的橫軸分布情況)。在某種特定的情況下,出口形狀(的橫軸分布)是能夠獲得的。
基于對(duì)于4輥CVC軋機(jī)的實(shí)踐,已經(jīng)研究了板形控制。板材進(jìn)口寬度是1235。進(jìn)口寬度是39.214,出口厚度是24.477。板材進(jìn)口屈服強(qiáng)度是100。進(jìn)口板材屈服是700。前張力是186.50,后張力是0。工作輥的彎曲力1077。工作輥有一個(gè)直徑850,寬為2250的工作輥,支承輥的直徑為1500,長(zhǎng)度是2050,在工作輥兩端彎曲力間的間隙是3150。最大和最小工作輥直徑是1300。最大和最小工作輥直徑是15998。工作輥之間空間CVC工作輥的最初移動(dòng)距離是-10,CVC工作輥的移動(dòng)距是-95。
2.1通過工作輥的移動(dòng)的板形控制的模擬
圖7中顯示了出口板材頭部的橫向分布和在條件為為1077下的單位寬度軋制,是-75,-25,25,75,隨著寬度的增加,極劇減少。的橫向變化更加迅速。
圖8中.顯示了在條件為為1077下的分布,是-75,-25,25,75,隨著增加的橫向差在=-75從33增加到=75時(shí)的75。對(duì)原板材這一點(diǎn)很明顯,頭部的變化越大,對(duì)的影響越大。
2.2工作輥彎輥特點(diǎn)的模擬
圖9中顯示了,和間的聯(lián)系。隨著的增加,的變化很小,的橫向變化增加,但的影響比更弱。
圖10中顯示在為-95,是0,300,600和900的條件。的橫向分布。的橫向增加,尤其在邊部。
2.3關(guān)于形狀和板材頭部的寬度的影響
為了研究熱軋板材的形狀和頭部的寬度影響,并消除了其他影響因素,在模擬中,是10(即),是0,在相同比例下是變化的。
圖11顯示了對(duì)于不同的;和的分布。隨著的增加,先是增加,然后減少。在=1635時(shí),(=274.355)。同時(shí)軋輥間隙分布變得更加均勻。此外隨著增加,的橫向差先是減少然后增加,向摩擦力隨著的增加,作用寬度增加,使橫向變化增加。
圖12中顯示了在不同下的分布情況,的橫向差先是減少然后的變化很小,甚至寬度和厚度不斷成比例增加,板材的壓力和缺陷沿著高度方向的變化并不明顯。
3結(jié)論
(1).隨著增加,極劇減少,的橫向差增加。隨著增加,輕微減少,的橫向差別增加,尤其左邊緣,隨著增加,先是增加然后減少,同時(shí)輥更加平坦。橫向差則先減少然后增加。
(2).關(guān)于板形和頭部,的影響是很大的,它適于板形和板材頭部的預(yù)設(shè)定,關(guān)于板形和板材頭部影響的很小,他適于板材形狀和頭部的在線調(diào)整。
第74頁(yè)
鞍山科技大學(xué)本科生畢業(yè)設(shè)計(jì)(論文)
方板坯開坯軋機(jī)設(shè)計(jì)
摘要
方、板坯開坯軋機(jī)既可軋制板坯,又可軋制方坯,生產(chǎn)比較靈活。又稱為大開口度二輥可逆式初軋機(jī)。
初軋機(jī)的主要技術(shù)性能有:輥徑為1150~1350mm,輥身長(zhǎng)度為3100mm,軋輥的工作行程為1700mm,最大行程為1905mm,軋制壓力為3000T,電動(dòng)機(jī)功率50002KW,轉(zhuǎn)速0~35~70rpm,壓下速度為142~284mm/sec,兩牌坊中心矩為4140mm,牌坊窗口開口度操作側(cè)為1400mm,傳動(dòng)側(cè)為1390mm。
此軋機(jī)的設(shè)計(jì)包括軋制力的計(jì)算,電機(jī)容量的選擇,壓下系統(tǒng)的選擇,壓下螺絲、螺母尺寸的確定,壓下電機(jī)的選擇,平衡方法的計(jì)算,軋輥、萬向連軸器、機(jī)架、軋輥軸承、齒輪、壓下螺絲、螺母等主要零件的強(qiáng)度校核,以及潤(rùn)滑方法的選擇,對(duì)控制系統(tǒng)的要求,設(shè)備的可靠性分析等內(nèi)容。
初軋機(jī)較多地采用了液壓傳動(dòng),機(jī)械化程度比較高。
關(guān)鍵詞 初軋機(jī),軋制力,壓下系統(tǒng)
Square billet and board billet bloomers design
Abstract
Square billet and board billet bloomer since can roll square billet and board billet,produce more vivid,is called again big openings degree two reollrs go against type rolling mill.
Main technique function of the bloomer: diameter of the roller is 1150mm~1350mm, corporeity of the roller is 3100mm, the work route of travel is 1700mm, the biggest route of travel is 1905mm,the rolling pressure is 3000T, electric motor power is 50002KW, the rotate speed is 0~35~70 rpm, the depressive speed is 142~284 mm/sec, the center distance of two toriis is 4140mm, openings degree of the toriis window: the operate profile is1400mm,the transmission profile is 1390mm.
The design of this rolling mill include the count of the rolling force,the choice of the electromotor capacitance, the choice of the depressive system, make certain the size of the depressive screm and nut, the choice of the depressive electromotor, the count of the balance means, verify the strength of the roller、the universal coupling、the machine shelf、the roller bearings、the wheel gear、the depressive screm and nut ect..And the choice of the lubricating means,the demand of the contral system,the dependability analyse of the equipment ect.
Bloomer adopte the liquid drive morely, mechanisation degree is higher.
Descriptors bloomer,rolling force,depressive system
目錄
1 概述·······························································1
1.1初軋機(jī)在軋鋼生產(chǎn)中的作用··········································1
1.2初軋機(jī)的分類······················································1
1.3初軋機(jī)在生產(chǎn)中存在的問題··········································2
1.4方案的選擇和評(píng)述··················································2
2 初軋機(jī)力能參數(shù)的計(jì)算···············································5
2.1軋制規(guī)程 ·························································5
2.2軋輥主要參數(shù)的確當(dāng)················································5
2.2.1 軋輥的名義直徑··················································5
2.2.2 輥身長(zhǎng)度························································5
2.2.3 輥頸直徑和長(zhǎng)度··················································5
2.3軋制力的計(jì)算······················································6
2.3.1 平均單位壓力的計(jì)算··············································6
2.3.2 軋制力P的計(jì)算··················································9
2.4電機(jī)容量的選擇····················································9
2.4.1 初選電機(jī)的容量··················································9
2.4.2電機(jī)軸上的力矩··················································11
2.4.3電機(jī)容量的校核··················································17
3.壓下系統(tǒng)的計(jì)算·····················································19
3.1 壓下螺絲和螺母尺寸的確定·········································19
3.2 壓下系統(tǒng)的選擇···················································19
3.2.1 1300初軋機(jī)的工藝特點(diǎn)···········································19
3.2.2壓下系統(tǒng)的選擇··················································19
3.2.3壓下裝置示意圖··················································19
3.3 轉(zhuǎn)動(dòng)壓下螺絲的力矩···············································20
4平衡力的計(jì)算·······················································23
4.1 平衡方法的確定···················································23
4.2 平衡力的計(jì)算·····················································23
5主要零件的強(qiáng)度計(jì)算·················································24
5.1 軋輥的強(qiáng)度計(jì)算···················································24
5.2 萬向接軸的強(qiáng)度計(jì)算···············································26
5.2.1開口式扁頭的受力分析和強(qiáng)度計(jì)算··································26
5.2.2叉頭受力分析和強(qiáng)度計(jì)算··········································28
5.2.3軸體的強(qiáng)度計(jì)算··················································29
5.3 機(jī)架的強(qiáng)度計(jì)算···················································30
5.3.1機(jī)架的受力分析··················································30
5.3.2立柱、橫梁的慣性矩和斷面系數(shù)的計(jì)算······························31
5.3.3橫梁和立柱的強(qiáng)度計(jì)算············································34
5.4 軋輥軸承的計(jì)算···················································36
5.5 齒輪的計(jì)算·······················································36
5.6 壓下輥螺母和螺絲的強(qiáng)度校核·······································41
5.6.1壓下螺母的強(qiáng)度校核··············································41
5.6.2壓下螺絲的強(qiáng)度校核··············································42
6潤(rùn)滑方法的選擇·····················································44
6.1 軋輥軸承的潤(rùn)滑···················································44
6.2 萬向接軸的潤(rùn)滑···················································44
6.2.1并合環(huán)式潤(rùn)滑····················································44
6.2.2稀油噴霧潤(rùn)滑裝置················································45
6.3 壓下螺母和壓下螺絲的潤(rùn)滑·········································45
6.4 齒輪的潤(rùn)滑·······················································45
7對(duì)控制系統(tǒng)的要求···················································46
7.1 壓下傳動(dòng)裝置·····················································46
7.2 軋輥·····························································46
7.3 下軋輥調(diào)整裝置···················································46
7.4 低速傳動(dòng)裝置·····················································46
8設(shè)備的可靠性分析···················································47
8.1 設(shè)備的平均壽命···················································47
8.2 設(shè)備的有效度·····················································47
8.3 設(shè)備的經(jīng)濟(jì)壽命···················································47
結(jié)論·································································48
致謝·································································49
參考文獻(xiàn)·····························································50
附錄·································································51
1概述
1.1初軋機(jī)在軋鋼生產(chǎn)中的作用
在連鑄技術(shù)成熟之前,煉鋼生產(chǎn)出來的鋼水只能鑄成鋼錠,由于鋼錠澆注、脫模和運(yùn)輸?shù)奶攸c(diǎn)所決定,鋼錠形狀只能是方形斷面或是矩形斷面,并且是上大下小的幾何體。這種幾何體不可能同時(shí)適用于板材軋制、型材軋制和管材軋制,在這三種鋼材軋制廠和煉鋼廠之間需要有一個(gè)中間環(huán)節(jié),將鋼錠按軋材廠的要求軋成板坯、型材坯或管坯,這種軋制鋼錠開坯的生產(chǎn)工序就叫做初軋。
按老式的鋼錠生產(chǎn)體系布局,一個(gè)大型鋼鐵聯(lián)合企業(yè),應(yīng)該是板材、型材和管材都能生產(chǎn),當(dāng)一個(gè)或幾個(gè)煉鋼廠的鋼錠分別供應(yīng)板材廠、型材廠和管材廠時(shí),初軋廠是整個(gè)生產(chǎn)體系的咽喉,一旦咽喉不暢,后果是可想而知的,因此可以說明在老式的鋼鐵生產(chǎn)體系中初軋的地位是非常重要的。
1.2初軋機(jī)的分類
初軋機(jī)按其結(jié)構(gòu)形式可分為以下幾類:
1.二輥可逆式初軋機(jī)
又可分為方坯初軋機(jī)和方-板坯初軋機(jī)。軋機(jī)大小以軋輥公稱直徑表示。方坯初軋機(jī)的上輥升高量較小,經(jīng)多次翻鋼軋成方坯、矩形坯、異形坯或圓坯。方-板坯初軋機(jī)即軋方坯又軋板坯,生產(chǎn)比較靈活。由于有立軋道次故上輥升降量大,又稱大開口度初軋機(jī),其后亦常跟1~2組水平-立式交替布置的鋼坯連軋機(jī)。
2.萬能板坯初軋機(jī)
屬板坯專用初軋機(jī),在水平方向上有兩個(gè)軋輥,在垂直方向上有兩個(gè)立輥。與大開口度的板坯初軋機(jī)相比,在初軋過程中不需翻鋼,所以效率較高。在水平軋輥具有相同動(dòng)力的情況下,萬能初軋機(jī)與大開口度初軋機(jī)相比軋制時(shí)間約可縮短30%,而且對(duì)軋件的側(cè)面有良好的鍛造效果。在萬能初軋機(jī)的水平軋輥上切出的孔型也能進(jìn)行大方坯的軋制。
3.三輥開坯機(jī)
該開坯機(jī)有三個(gè)軋輥,軋輥不用逆轉(zhuǎn),軋機(jī)建設(shè)費(fèi)較低,而且能耗低,其運(yùn)轉(zhuǎn)動(dòng)力70%使用于鋼錠的變形。由于孔型是一定的,所以產(chǎn)品規(guī)格靈活性小,產(chǎn)品范圍比較窄,此外,在軋機(jī)前后都必須配備擺動(dòng)升降臺(tái)。三輥式開坯機(jī)主要應(yīng)用于中小型企業(yè)。
4.鋼錠連鑄機(jī)
這種軋機(jī)是幾臺(tái)二輥式軋機(jī)的串列布置。軋輥轉(zhuǎn)動(dòng)方向不變,它的坯料及成品的適應(yīng)性差,但可以對(duì)需要量大且斷面形狀一定的中小型鋼坯或薄板坯進(jìn)行高效率軋制。
1.3初軋機(jī)在生產(chǎn)中存在的問題
初軋機(jī)在生產(chǎn)中存在的問題有:
1.機(jī)所用的原料是具有鑄造組織的鋼錠,其內(nèi)部晶粒大且有方向性,化學(xué)成分亦不均勻,均熱和初軋可以破碎鑄造組織,使晶粒細(xì)化,成分趨于均勻,各項(xiàng)性能均得以改善和提高,但由于斷面較大,加熱時(shí)容易產(chǎn)生較大的溫度應(yīng)力,故冷錠加熱應(yīng)謹(jǐn)慎,對(duì)某些合金鋼錠還需要有較大的保溫時(shí)間,以均勻其組織和成分。
2.軋制中鋼錠端面高度與軋輥直徑之比較大,頭幾道的壓下量又小,因此變形不深透,必然形成表面變形。除表面延伸形成“魚尾”外,軋件側(cè)表面還產(chǎn)生雙鼓形,軋件中心會(huì)承受拉應(yīng)力,容易產(chǎn)生拉裂,或使原有缺陷擴(kuò)大,為此在咬入時(shí)和電機(jī)能力允許的條件下,應(yīng)盡可能增大壓下量,并適當(dāng)增加翻鋼道次以保證質(zhì)量。
1.4方案的選擇和評(píng)述
該軋機(jī)為大開口度二輥可逆式初軋機(jī),即可軋制板坯又可軋制方坯的方-板坯初軋機(jī)。
1.機(jī)架
機(jī)架由兩片閉式牌坊與上下橫梁組成。牌坊是鑄鋼件,內(nèi)側(cè)窗口安裝鋼滑板,左右牌坊窗口開口度不等,傳動(dòng)側(cè)為1390毫米,操作側(cè)為1400毫米,便于換輥時(shí)軋輥軸承座的進(jìn)出,機(jī)架橫梁是鋼材焊接件,連接左右牌坊上部與下部。
閉式機(jī)架的優(yōu)點(diǎn)是強(qiáng)度和剛度較大,常用在受力大或要求軋件精度高而不經(jīng)常換輥的軋鋼機(jī)上。
2.壓下傳動(dòng)裝置
采用快速壓下裝置,其工藝特點(diǎn)是:
(1)工作時(shí)要求大行程,快速和頻繁地升降軋輥。
(2)軋輥調(diào)整時(shí),不“帶鋼”壓下,即不帶軋制負(fù)荷壓下。
為適應(yīng)上述特點(diǎn),就要求傳動(dòng)系統(tǒng)慣性小,以便在頻繁的啟動(dòng)和制動(dòng)情況下實(shí)現(xiàn)快速調(diào)整;由于其工作條件繁重,要有較高的傳動(dòng)效率和工作可靠性;快速壓下裝置中還有克服壓下螺絲阻塞事故(軋卡、坐輥)的回松裝置。
快速壓下裝置采用雙臥式直流電動(dòng)機(jī)通過一級(jí)齒輪變速和蝸輪減速后傳給壓下絲桿進(jìn)行壓下傳動(dòng),這種結(jié)構(gòu)布局與雙立式電動(dòng)機(jī)和齒輪減速機(jī)形式比較,可降低廠房軌面標(biāo)高,減少?gòu)S房造價(jià)。
3.上軋輥平衡裝置
上軋輥采用液壓平衡,液壓平衡是用液壓缸的液壓推力來平衡上軋輥等零件的重量的。
液壓平衡與反扣螺絲平衡、重錘平衡相比較有工作可靠,動(dòng)作迅速及時(shí),結(jié)構(gòu)緊湊,維修量少等優(yōu)點(diǎn)。
4.軋輥軸承和軸承座
軋輥軸承用來支撐轉(zhuǎn)動(dòng)的軋輥,并保持軋輥在機(jī)架中正確的位置,軋輥軸承應(yīng)具有小的摩擦系數(shù),足夠的強(qiáng)度和剛度,壽命長(zhǎng),并便于換輥。
軋輥軸承采用四列圓柱滾動(dòng)軸承,在操作側(cè)裝有雙列圓錐軸承作止推作用。軸承的內(nèi)圈是用感應(yīng)加熱器熱裝在軋輥上,在一般情況下,軸承內(nèi)線是拆不下來的。
軸承座為鑄鋼件(蓋是焊接件),兩側(cè)裝有青銅襯板。
5.軋輥的軸向調(diào)整
上軋輥不動(dòng),對(duì)下軋輥進(jìn)行軸向調(diào)整來完成對(duì)軋輥的調(diào)整。下軋輥調(diào)整裝置采用電動(dòng)同步雙斜楔式的調(diào)整裝置,此結(jié)構(gòu)固定在操作側(cè)機(jī)架上,它的優(yōu)點(diǎn)是保證了孔型軸向調(diào)整正確,節(jié)省了調(diào)整時(shí)間,改善了勞動(dòng)條件。
2初軋機(jī)力能參數(shù)的計(jì)算
2.1軋制規(guī)程
軋制鋼種16Mn,鋼錠斷面760670mm,錠重78KN,成品斷面300300mm,開軋溫度1200℃。
2.2軋輥主要參數(shù)的確定
2.2.1軋輥的名義直徑
按軋輥的咬入條件確定
D (2.1)
=
=888.23 mm
式中,——最大壓下量,=119mm
——最大壓下角,查表3-1取=30°
取D=1300mm。
2.2.2輥身長(zhǎng)度
查表3-2,L/D=2.2~2.7,則L=2860mm~3510mm,取L=3100mm。
L/D=3100/1150=2.696
L/D=3100/1350=2.296
所以取L=3100mm合適。
2.2.3輥頸直徑和長(zhǎng)度
使用滾動(dòng)軸承時(shí),由于軸承外徑較大,軸頸尺寸不能過大,所以取
d=830mm,l=850mm。
計(jì)算結(jié)果如圖
圖2.1 軋輥尺寸
2.3軋制力的計(jì)算
2.3.1平均單位壓力的計(jì)算
在初軋機(jī)單位壓力的計(jì)算中采用西姆斯公式,
第一道次平均單位壓力的計(jì)算:
1.應(yīng)力狀態(tài)系數(shù)的計(jì)算
(2.2)
=(760-675)/760
=0.112
(2.3)
=
+
=0.175
(2.4)
=1+(650/675) ×0.175
=1029
= (2.5)
+(1/2)
=
=0.808
2.變形阻力的計(jì)算
利用北京科技大學(xué)變形阻力經(jīng)驗(yàn)公式,
= (2.6)
式中,——基準(zhǔn)變形阻力,即變形溫度t=1000℃時(shí),變形速度u=10s,變形程度
=40%時(shí)的變形阻力,=159.9,
——變形溫度影響系數(shù),當(dāng)變形溫度t=1000℃時(shí),k=1,
k=exp(A+BT) (2.7)
查表2-1,得A=3.466,B= -2.723,
T=(t+273)/1000 (2.8)
=(1200+273)/1000
=1.473
由公式(2.7)得,k=exp[3.466+(-2.723)×1.473] =0.580,
——變形速度影響系數(shù),當(dāng)u=10s時(shí),k=1,
k=(u/10) (2.9)
查表2-1,得C= -0.220,D=0.254,
u=(v/l)×(/) (2.10)
=(2.382/0.23505) ×(0.085/0.760)
=1.133m/s
由公式(2.9)得,k=(1.133/10)=0.715,
——變形程度影響系數(shù),當(dāng)平均變形程度=40%時(shí),=1,
=E(/0.4)-(E-1) (/0.4) (2.11)
查表2-1,得E=1.566,N=0.466,
=(2/3) (2.12)
= (2/3) ×0.112
=0.0747
=ln1/(1-)=0.078 (2.13)
由公式(2.11)得,=1.566(0.078/0.4)=0.621,
由公式(2.6)得,=159.9×0.580×0.715×0.621=41.178N/mm。
3.平均單位壓力P的計(jì)算
k=1.15 (2.14)
=1.15×41.178
=47.356 N/mm
由西姆斯公式,
P=k (2.15)
得,=0.808×47.356=38.264 N/mm。
2.3.2軋制力P的計(jì)算
軋件對(duì)軋輥的總壓力P為軋制平均單位壓力P與軋件和軋輥接觸面積F之乘積,即
P= PF (2.16)
接觸面積F的一般形式為
F=[()/2]l (2.17)
式中,、——軋制前、后軋件的寬度,=670mm, =674mm,
l——接觸弧水平投影,l===235.05mm,
由公式(2.17),得F=[(670+674)/2]×235.05=157953.6mm。
由公式(2.16),得P=38.264×157953.6=6043881.0N。
依此方法,可分別計(jì)算13道次的平均單位壓力和各道次的軋制總壓力。
2.4電機(jī)容量的選擇
2.4.1初選電機(jī)的容量
初選電機(jī)的容量按軋輥上的力矩M,即軋制力矩M與軋輥軸承處的摩擦力矩M之和,
M= M+ M (2.18)
的最大值初選。
1.各道次軋輥軸上的力矩
(1) 軋制力矩M
M=2PL (2.19)
式中,——力臂系數(shù),取=0.5
因?yàn)槭请p電機(jī)驅(qū)動(dòng),所以
M=PL (2.20)
由公式(2.20),得M=6043881.0×0.23505×0.5=710307.11Nm。
(2) 軋輥軸承處的摩擦力矩M
M=P(d/2) (2.21)
式中,——軋輥軸承摩擦系數(shù),取=0.02,
由公式(2.21),得M=6043881.0×0.830/2×0.02=50164.21 Nm。
由公式(2.18),得M=710307.11+50164.21=760471.32 Nm。
其它各道次見附表。
2.初選電機(jī)容量
根據(jù)過載條件選擇電機(jī)功率
N= M (2.22)
式中,M——取各道次的最大值,M=1359091.9 Nm,
——軋輥轉(zhuǎn)速,=60v/(D)=60×2.382/(×1.3)=35r/min,
K——電機(jī)過載系數(shù),K=2,
——總機(jī)械效率,=0.96,
由公式(2.22),得N=1359091.9×35/(9550×2×0.96)=2594.3KW??紤]電機(jī)軸上還有其它力矩,故初選N=5000KW。
= (2.23)
=35×1
=35 r/min
式中,——電動(dòng)機(jī)與軋輥之間的傳動(dòng)比,因?yàn)殡妱?dòng)機(jī)直接驅(qū)動(dòng)軋輥,所以=1。
以上計(jì)算是雙電機(jī)驅(qū)動(dòng),只計(jì)算一個(gè)軋輥,最后選擇直流電機(jī)轉(zhuǎn)速n=0~35~70 r/min,軋機(jī)電機(jī)N=5000×2KW。
2.4.2電機(jī)軸上的力矩
1.軋制力矩
M= M/ (2.24)
=710307.11 Nm
2.摩擦力矩
M= M/ (2.25)
=50164.21 Nm
M=[(1/M/ (2.26)
=[(1/0.96)-1] ×1359091.9/1
=31686.31 Nm
3.空轉(zhuǎn)力矩
M=(0.03~0.06)M (2.27)
將
M=9550 N/ (2.28)
=9550×5000/35
=1364285.7 Nm
代入式(2.27)中,得M=0.05×1364285.7=68214.29 Nm
4.起動(dòng)力矩
(1) 起動(dòng)力矩
M=(GD) (2.29)
式中,GD——轉(zhuǎn)化到電機(jī)軸的各構(gòu)件的飛輪矩,GD=187500 kg m,
——起動(dòng)加速度,取=a=30 r/min/s,
由公式(2.29),得=187500/38.2×30=147251.31 Nm。
(2) 制動(dòng)力矩
=(GD) (2.30)
式中,GD——轉(zhuǎn)化到電機(jī)軸的各構(gòu)件的飛輪矩,GD=187500 kg m,
——制動(dòng)減速度,取=b=40 r/min/s,
由公式(2.30) ,得=187500/38.2×40=196335.08 Nm。
5.電機(jī)軸的負(fù)載圖和速度圖
(1) 空載起動(dòng)階段
空載起動(dòng)階段,轉(zhuǎn)速由變化到咬入軋件時(shí)的轉(zhuǎn)速,取=9 r/min, =15 r/min,所以,此階段所需的時(shí)間為
=(-)/a (2.31)
=(15-9)/30
=0.2s
力矩為
M= M+ M (2.32)
=68214.29+147251.31
=215465.6 Nm
(2) 咬入加速階段
咬入加速階段,轉(zhuǎn)速由變化到軋制時(shí)最大穩(wěn)定轉(zhuǎn)速,通過能量原理可以計(jì)算出,
= (2.33)
式中,——拋鋼時(shí)的轉(zhuǎn)速,取=20 r/min/s,
——當(dāng)量長(zhǎng)度,
= (2.34)
式中,
(1-a%) / r (2.35)
=78000(1-2%)/(0.00000078×675×674)
=2154.1mm
式中,G——軋件重量,G=78 KN,
r ——軋件比重,
a%——燒損率,取a%=2%,
——軋制后的高度,
——軋制后的寬度,
(2.36)
=
=235.05 mm
由公式(2.34),得=(2154.1+235.05)/(×1300)=0.58。
將以上結(jié)果代入公式(2.33)中,得=
=39.91 r/min<60 r/min。
咬入加速階段所需時(shí)間
=(-)/a (2.37)
=(39.91-15)/30
=0.830s
力矩為
M=M+M (2.38)
式中,M——推算到電機(jī)軸上的總靜力矩
M=M/+M (2.39)
=760471.32/1+31686.31+68214.29
=860371.9 Nm
由公式(2.38),得M=860371.9+147251.31=1007623.21 Nm。
(3) 穩(wěn)定軋制階段
穩(wěn)定軋制階段的力矩為M=M=860371.9 Nm。
并非每道軋制都達(dá)到穩(wěn)定軋制轉(zhuǎn)速,經(jīng)常情況下幾道次軋件較短,未達(dá)到穩(wěn)定轉(zhuǎn)速時(shí),軋件已經(jīng)軋完,M不存在,即t<0。
軋制時(shí)間
t=60L (2.40)
=60×2154.1/()
=0.793s
= (2.41)
=0.793-0.830-0.498
= -0.535s
這時(shí)取等于電機(jī)的額定轉(zhuǎn)速,則=35r/min。
(4) 帶鋼減速階段
帶鋼減速階段,轉(zhuǎn)速由變化到拋鋼時(shí)的轉(zhuǎn)速,此時(shí)的力矩為
M M- M (2.42)
=860371.9-196335.08
=840738.4 Nm
式中,M——制動(dòng)力矩
帶鋼減速階段所需時(shí)間為
(2.43)
=(39.9-20)/40
=0.498 s
(5) 制動(dòng)階段
電機(jī)轉(zhuǎn)速由變化到0,電機(jī)軸上的力矩為
M= M- M (2.44)
=68214.29-196335.08
=-128120.79 Nm
制動(dòng)階段所需時(shí)間為
(2.45)
=20/40
=0.5s
同類方法可以計(jì)算出其它道次電機(jī)軸上的力矩和時(shí)間,見附表。
(6)速度圖n=f(t)和負(fù)載圖M= f(t)
當(dāng)轉(zhuǎn)速超過電動(dòng)機(jī)的基本轉(zhuǎn)速時(shí),此時(shí)由于調(diào)節(jié)電動(dòng)機(jī)的激磁電流而會(huì)使電動(dòng)機(jī)力矩降低,但軋機(jī)所要求的力矩并未減少,因而增大電樞電流才能使電動(dòng)機(jī)力矩與負(fù)載力矩平衡,由于電樞電流的增大而使電動(dòng)機(jī)發(fā)熱增高,所以當(dāng)計(jì)算電動(dòng)機(jī)的等值力矩時(shí),電動(dòng)機(jī)力矩在超過基本轉(zhuǎn)速的情況下并未加大,此時(shí)必需考慮到由于電流增加對(duì)發(fā)熱的影響,即當(dāng)>=35 r/min時(shí),負(fù)載圖力矩值要進(jìn)行修正,其修正值為
M= M (2.46)
=1007623.21×39.91/35
=1148978.4 Nm
(2.47)
=(39.91-35)/30
=0.163 s
MM (2.48)
=860371.9×39.91/35
=981069.78 Nm
M M (2.49)
=840738.4×39.91/35
=958681.99 Nm
(2.50)
=(35-20)/40
=0.375s
(2.51)
=0.498-0.375
=0.123s
其它道次結(jié)果見附表。
2.4.3電機(jī)容量的校核
1.電機(jī)的過載校核
按過載驗(yàn)算電動(dòng)機(jī),則
MKM (2.52)
式中,K——電動(dòng)機(jī)的過載系數(shù),直流電機(jī)K=3,
M——電機(jī)負(fù)載圖的最大力矩,M=2796397.0 Nm。
M=9550 (2.53)
=9550×5000/35
=1364285.7 Nm
由公式(2.52),得MK=2796397.0/3=932132.33 Nm<M=1364285.7 Nm,所以電機(jī)的過載校核通過。
2.電機(jī)的發(fā)熱校核
經(jīng)過載驗(yàn)算的合適的電機(jī)還需進(jìn)行發(fā)熱驗(yàn)算,依據(jù)電機(jī)負(fù)載圖求出等值力矩,
M (2.54) =
=773131.83<M=1364285.7 Nm
所以電機(jī)的發(fā)熱校核通過。
其它道次用類似方法計(jì)算,經(jīng)計(jì)算均通過發(fā)熱校核。
3.壓下系統(tǒng)的計(jì)算
3.1壓下螺絲和螺母尺寸的確定
壓下螺絲直徑由最大軋制力決定,選壓下螺絲外徑d為500mm,中徑d為450mm,內(nèi)徑d為414mm,螺距t為68mm。
壓下螺母的主要尺寸是它的外徑D和高度H,H=(1.2~2)d=600~1000mm,選H=780mm,D=(1.5~1.8)d=750~900mm,選D=850mm。
3.2壓下系統(tǒng)的選擇
3.2.1 1300初軋機(jī)的工藝特點(diǎn)
1300初軋機(jī)的工藝特點(diǎn)是:
(1) 工作時(shí),要求上軋輥快速、大行程、頻繁地調(diào)整;
(2) 軋輥調(diào)整時(shí)不帶軋制負(fù)荷,即不“帶鋼”壓下。
3.2.2壓下系統(tǒng)的選擇
為了適應(yīng)以上工藝特點(diǎn),對(duì)壓下裝置要求是:
(1) 采用慣性小的傳動(dòng)系統(tǒng),以便頻繁地啟動(dòng)、制動(dòng);
(2) 有較高的傳動(dòng)效率和工作可靠性;
(3) 必需有克服壓下螺絲阻塞事故(“坐輥”或卡鋼)的措施。
由于以上原因選擇雙電機(jī)快速壓下裝置。
3.2.3壓下裝置示意圖
1.壓下傳動(dòng)用電動(dòng)機(jī) 2.齒輪增速器3.齒形離合器用液壓缸 4.齒形離合器5.中間軸 6.蝸輪減速機(jī) 7.低速傳動(dòng)用蝸輪蝸桿減速機(jī) 8.低速傳動(dòng)用電動(dòng)機(jī) 9.凸塊聯(lián)軸器 10.空氣制動(dòng)器 11.壓下指示傘齒輪箱12.自整角機(jī) 13. 壓下指示調(diào)零用電動(dòng)機(jī) 14.控制器 15.指針 16.減速機(jī) 17.壓下傳動(dòng)用蝸輪減速器 18.壓下絲桿
圖3.1 壓下指示系統(tǒng)圖
3.3轉(zhuǎn)動(dòng)壓下螺絲的力矩
轉(zhuǎn)動(dòng)壓下螺絲所需的靜力矩也就是壓下螺絲的阻力矩,它包括止推軸承的摩擦力矩和螺紋之間的摩擦力矩,其計(jì)算公式是:
(3.1)
式中,——螺紋中徑,
——螺紋上的摩擦角,即=arctan,為螺紋接觸面的摩擦系數(shù),取=0.1,故=5°40′,
——螺紋升角,壓下時(shí)用正號(hào)提升時(shí)用負(fù)號(hào),=t/ (d)=68/(500)=0.04°,
——作用在一個(gè)壓下螺絲上的力,=(0.1~0.2)G=0.2420000=84000N,G為被平衡部件(包括軋輥組件及壓下螺絲)的總重量,
——止推軸承的阻力矩,
=1/3) (3.2)
=1/30.284000(700
=3965948.72 N mm
式中,——止推軸頸的摩擦系數(shù),取=0.2,
——壓下螺絲止推軸頸直徑,=700mm,
——球面銅墊凹槽直徑,=80mm,
——螺紋摩擦阻力矩。
由公式(3.1),得
M=3965948.72+84000450/2tan(5.67°+0.04°)
=5855751.11 N mm。
初選ZD142-2B型壓下電機(jī),N=250KW,n=500/1200 r/min, =91.2﹪。
n=60v/t=60142/68=125.29 r/min (3.3)
N=M n/(9550) (3.4)
式中,——傳動(dòng)系統(tǒng)的總速比,=3.467,
——傳動(dòng)系統(tǒng)總的機(jī)械效率,=91.2﹪,
由公式(3.4),得N=5855751.11c125.29/(95503.4670.912)=24.90KW
所以選用ZD142-2B型電機(jī)合適。
4平衡力的計(jì)算
4.1平衡方法的確定
上軋輥采用液壓平衡,由平衡缸、平衡拉桿、平衡臂與橫梁組成。
圖4.1 上輥平衡簡(jiǎn)圖
4.2平衡力的計(jì)算
Q (4.1)
式中,D——軋輥直徑,D=1.3m,
GD——飛輪力矩,GD=187500 Kg,
——工作輥角加速度,=20 r/min/s,
——工作輥與支撐輥間滑動(dòng)摩擦系數(shù)=0.1。
由公式(4.1),得 Q1.3/(0.11.3)187500/19.120=25183.25 N。
= M/W= M/0.1D (5.2)
=943156710.31/(0.11150)
=62.01MPa<[]=96 MPa
2.輥頸
軋輥輥頸彎矩為
M=Rc (5.3)
=6859321.53870/2
=2983804805.55 Nmm
軋輥承受由主電機(jī)經(jīng)減速器傳到軋輥的全部扭矩,則輥頸危險(xiǎn)斷面上的彎曲應(yīng)力和扭轉(zhuǎn)應(yīng)力分別為
= M/W= M/(0.1d) (5.4)
=2983804805.55/(0.1830)
=52.18 MPa
=M/W=M/(0.2 d) (5.5)
=1078582470/(0.2830)
=9.43 MPa
合成應(yīng)力按第四強(qiáng)度理論計(jì)算
(5.6)
=
=54.68 MPa<[]=96 MPa
3.輥頭
軋輥傳動(dòng)端輥頭只承受扭矩,輥頭受力情況是屬于非圓截面扭轉(zhuǎn)問題。
= M/W= M/(b) (5.6)
= 1078582470/(0.208650)
=18.88 MPa<[]=57.6 MPa
圖5.1
所以軋輥的強(qiáng)度符合要求。
5.2萬向接軸的強(qiáng)度計(jì)算
5.2.1開口式扁頭的受力分析和強(qiáng)度計(jì)算
開口式扁頭受力簡(jiǎn)圖
圖5.2
實(shí)驗(yàn)表明,由月牙行滑塊作用在開口式扁頭上的負(fù)荷近似地按三角形分布,因此,合力的作用點(diǎn)位于三角形的面積型心,即在離斷面邊緣1/3b處,當(dāng)萬向接軸傳遞的扭轉(zhuǎn)力矩為M時(shí),合力P為
P=M/() (5.7)
=1078582470/(1229-2/3×525)
=1227056.28 N
式中,——扁頭的總寬度,
——扁頭一個(gè)分支的寬度,
在合力P作用下,斷面Ⅰ—Ⅰ中的彎曲力矩M和扭轉(zhuǎn)力矩M分別為
M=Px (5.8)
式中,x——合力P對(duì)斷面Ⅰ—Ⅰ力臂,
x=0.5(-2/3b)+x (5.9)
=0.5(1229-2/3×525)sin8°+230
=291.17mm
式中,x——萬向接軸鉸鏈中心至斷面Ⅰ—Ⅰ的距離
由公式(5.8),得M=1227056.28×291.17=357277.28 Nmm
M=Pb/6 (5.10)
=1227056.28×525/6
=107367.42 Nmm
根據(jù)以上分析,斷面Ⅰ—Ⅰ承受彎曲應(yīng)力和扭轉(zhuǎn)應(yīng)力。
計(jì)算應(yīng)力按以下經(jīng)驗(yàn)公式計(jì)算
=1.1M[3 (5.11)
式中,s——扁頭的寬度,
——計(jì)算矩形斷面抗扭斷面系數(shù)時(shí)的轉(zhuǎn)化系數(shù),它取決于矩形斷面尺寸b與s之比,按表7-3選取,=0.350。
由公式(5.11),得=1.1×1078582470[3×291.17+]
/[(1229-2/3×525)×525×320]=44.73 MPa<[]=128 MPa
5.2.2叉頭受力分析和強(qiáng)度計(jì)算
圖5.3
根據(jù)試驗(yàn)數(shù)據(jù),叉頭最大應(yīng)力點(diǎn)的主應(yīng)力數(shù)值,決定于萬向接軸傾斜角和叉頭鏜孔直徑與叉頭外徑的比值(d/D),其計(jì)算應(yīng)力為,
=35M/D[D/(D-d)]K (5.12)
式中,d——叉頭鏜孔直徑,
D——叉頭外徑,
K——考慮萬向接軸傾斜角的一個(gè)系數(shù),可根據(jù)傾斜角確定,K=1+0.05=1.2
比值(d/D)取為0.46,則計(jì)算應(yīng)力為
75.6MK/D (5.13)
=75.6×1078582470×1.2/1150
=64.34 MPa<[]=128 MPa
5.2.3軸體的強(qiáng)度計(jì)算
當(dāng)>4°時(shí),軸體扭轉(zhuǎn)應(yīng)力為
=5M(1+sin)/d=5×1078582470×(1+sin8°)/600 (5.14)
=28.44 MPa<[]=76.8 MPa
所以,萬向接軸強(qiáng)度符合要求。
5.3機(jī)架的強(qiáng)度計(jì)算
5.3.1機(jī)架的受力分析
1300初軋機(jī)采用閉式機(jī)架,為了簡(jiǎn)化計(jì)算作出如下假設(shè):
1.機(jī)架在上下橫梁受到垂直力R作用,大小相對(duì)方向相反,作用在中心線上,即載荷對(duì)稱;
2.機(jī)架結(jié)構(gòu)對(duì)窗口的垂直中心線是對(duì)稱的,不考慮上下橫梁斷面慣性矩不同引起的水平內(nèi)力,即結(jié)構(gòu)對(duì)稱;
3.上下橫梁和立柱交界處是剛性的。
根據(jù)這些可以取垂直中心線剖開框架為計(jì)算對(duì)象,其尺寸如圖,
圖5.4
其應(yīng)力圖為
圖5.5
M=(R/4)[ (/2+)/ (/+)] (5.15)
M= R/4-M (5.16
式中,R——上下橫梁的中間斷面處受到的垂直力,
——機(jī)架橫梁的中性線長(zhǎng)度,
——機(jī)架立柱的中性線長(zhǎng)度,
——機(jī)架上下橫梁的慣性矩,
——機(jī)架立柱的慣性矩。
5.3.2立柱、橫梁的慣性矩和斷面系數(shù)的計(jì)算
1.立柱
圖5.6
立柱尺寸如圖,則在立柱的慣性矩和斷面系數(shù)分別為
=bh/12 (5.17)
=540×780/12
=2 .1355×10mm
W=bh/6 (5.18)
=540×780/6
=5.5×10mm
2.上橫梁
上橫梁尺寸如圖,
圖5.7
z=∑Fz/∑F