購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
南京工程學院
車輛工程系
本科畢業(yè)設計(論文)
題目: 電動助力轉向系統(tǒng)試驗臺結構設計
專業(yè): 機械設計制造及其自動化(汽車技術)
班 級: 學 號:
學生姓名:
指導教師: 副教授
起迄日期: 2011.2~2011.6
設計地點: 車輛工程實驗中心_
Graduation Design (Thesis)
Electric Power Steering System Test Platform Design
By
Zhou Yunpeng
Supervised By
Associate Prof. Luo Shaoxin
Department of Vehicle Engineering
Nanjing Institute of Technology
June, 2011
南京工程學院車輛工程系本科畢業(yè)設計(論文)
摘 要
本論文對電動助力轉向(EPS)系統(tǒng)試驗臺進行了分析和設計。在本文中,對EPS試驗臺的兩種布置形式進行了對比和選擇,結合現(xiàn)代EPS系統(tǒng)試驗臺的發(fā)展趨勢,對EPS系統(tǒng)試驗臺進行了分析和設計。通過研究EPS的工作過程,進行試驗臺總體方案的設計,再對試驗臺的總體結構進行設計,設計過程中參考了東華轉向器公司的產品,運用AutoCAD畫出試驗臺的裝配圖。在設計中采用了液壓滑臺設計,并對一些關鍵部件進行了選擇、校核。
本文設計的試驗臺的優(yōu)點:
(1)檢測試驗簡單,結構緊湊
(2)裝夾控制方便
(3)改進方便,便于升級改裝
關鍵詞:EPS;試驗臺;AutoCAD;液壓滑臺
ABSTRACT
This paper aims to do some analysis and design of electric power steer (EPS) system test platform, two forms of which are compared and selected in this context. Through learning the trend of modern EPS system test platform, it includes analysis and design of EPS test platform. By studying the work process of EPS, and then design the overall structure of EPS test platform with the reference to Dong Hua steering company’s products. The assembly drawing of EPS test platform is drawn by AutoCAD. In this design, hydraulic slider is selected, and some key parts are selected and checked.
The advantages of my design are as follows:
(1)Testing simple, structure compacted
(2)Easy to clamping and control
(3) Easy to be improved and updated.
Keywords:EPS;test platform;AutoCAD;hydraulic slider
目 錄
第一章 緒 論 1
1.1引言 1
1.2選題背景與意義 1
1.3研究現(xiàn)狀 2
1.4本文研究的內容 2
第二章 電動助力轉向系統(tǒng)試驗臺的總體設計 4
2.1電動助力轉向系統(tǒng) 4
2.1.1工作原理 4
2.1.2工作特點 4
2.2典型試驗介紹 5
2.2.1名詞定義 5
2.2.2 特性試驗的性能技術要求 5
2.3試驗臺整體方案設計 6
2.4試驗臺測試項目 8
2.4.1車速 8
2.4.2系統(tǒng)的阻力矩 8
2.4.3電動機的各項參數 9
2.4.4轉向盤主扭矩與助力電動機轉矩的關系 9
第三章 電動助力轉向試驗臺各部件的選用 12
3.1系統(tǒng)主要部件 12
3.1.1電子控制單元(ECU) 12
3.1.2電動機 12
3.1.3減速機構 13
3.1.4轉向電動機 14
3.1.5磁粉制動器 14
3.2傳感器的選擇 16
3.2.1轉速傳感器 18
3.2.2轉矩傳感器 18
第四章 試驗臺的結構設計 21
4.1試驗臺的布置 21
4.2聯(lián)軸器的選擇與校核 21
4.3普通平鍵的選擇與校核 24
4.4液壓滑臺 25
4.5磁粉制動器支架 25
4.6減速機構支架 26
4.7轉向電機支架 26
第五章 結 論 27
5.1結論 27
5.2總結 27
參考文獻 28
致 謝 29
III
第一章 緒 論
1.1引言
汽車轉向系統(tǒng)是用于改變或保持汽車行駛方向的專門機構。其作用是使汽車在行駛過程中能按照駕駛員的操作要求而適當的改變其行駛方向,并在受到路面?zhèn)鱽淼呐紶枦_擊及汽車意外地偏離行駛方向時,能與行駛系統(tǒng)配合共同保持汽車的操縱穩(wěn)定性和安全性。汽車轉向系統(tǒng)是決定汽車主動安全性的關鍵總成,如何設計汽車的轉向特性,使汽車具有良好的操縱性能,始終是各汽車生產廠家和科研機構的重要研究課題。特別是在車輛高速化、駕駛人員非職業(yè)化、車流密集化的今天,針對更多不同水平的駕駛人群,汽車的操縱設計顯得尤為重要。
1.2選題背景與意義
汽車電動助力轉向系統(tǒng)(EPS)在日本最先獲得實際應用。1988年日本鈴木公司首次開發(fā)出電動助力轉向系統(tǒng),并裝在其生產的Cervo車上,隨后又配備在Alto上。此后,電動助力轉向技術得到迅速發(fā)展,其應用范圍已經從微型轎車向大型轎車和客車方向發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司,美國的Delphi公司,英國Lueas公司,德國的ZF公司,都研制出了各自的EPS。
EPS的助力形式也從低速范圍助力型向全速范圍助力型發(fā)展,并且其控制形式與功能也進一步加強。日本早期開發(fā)的EPS僅僅在低速和停車時提供助力,高速時EPS將停止工作。新一代的EPS則不僅在低速和停車時提供助力,而且還能在高速時提高汽車的操縱穩(wěn)定性。隨著電子技術的發(fā)展,EPS技術日趨完善,并且其成本大幅度降低,因此其應用范圍將越來越大。電動助力轉向系統(tǒng)的優(yōu)勢主要體現(xiàn)在:
(1) 提高了汽車的操縱性能。EPS能在各種行駛工況下提供最佳助力,減少由路面不平所引起的對轉向系統(tǒng)的擾動,改善汽車的轉向特性,減小汽車低速行駛時的轉向操縱力,提高汽車高速行駛時的轉向穩(wěn)定性,進而提高汽車的主動安全性。
(2) 提高了汽車的燃油經濟性,減少了對環(huán)境的污染。電動助力轉向系統(tǒng)直接通過電動機的輸出給駕駛員提供助力,電動機只有在轉向時才工作,在不進行轉向時幾乎沒有動力消耗,提高了汽車的燃油經濟性;同時由于不需要轉向油泵,油管及控制閥等液壓元件,不會發(fā)生液壓油的泄露和損耗,減少了對環(huán)境的污染。
(3) 增強了轉向跟隨性和可靠性。在EPS系統(tǒng)中,電動機與助力機構直接相連以使其能量直接用于車輪的轉向,增加了系統(tǒng)的轉動慣量,減小了車輪的反轉和轉向前輪擺振,增強了轉向系統(tǒng)的抗擾動能力;EPS旋轉力矩產生于助力電機,沒有液壓助力系統(tǒng)的轉向遲滯效應,增強了轉向車輪對轉向盤的跟隨性能;電動助力轉向系統(tǒng)還可有各種安全保護措施和故障自診斷功能,使用可靠,維修方便。
(4) 能夠提供可變的轉向助力。對于傳統(tǒng)的液壓系統(tǒng),可變轉向力矩獲得非常困難而且費用很高,要想獲得可變轉向力矩,必須增加額外的控制器和其它硬件;電動助力轉向系統(tǒng)的轉向力來自于助力電機,可變轉向力矩寫入控制模塊中,通過對軟件的重新編寫即可獲得,所需費用很小。
(5) 占用空間更小,質量更輕,結構更緊湊。電動機和減速機構在轉向柱或轉向系內,直接提供轉向助力,省去了液壓動力轉向系統(tǒng)所必需的動力轉向油泵、油管、液壓油、密封件、傳送帶和裝于發(fā)動機上的皮帶輪等部件,因而其所占空間更小,質量更輕、結構更緊湊,在安裝位置的選擇方面也更容易,裝配自動化程度更高。
1.3研究現(xiàn)狀
電動助力轉向系統(tǒng)自生產至今,經過幾十年的應用與發(fā)展,已取得了較大的進步。如今,在國外己大規(guī)模采用EPS,其應用范圍也將進一步拓寬,將作為標準件裝備在汽車上,并將在動力轉向領域占據主導地位。目前,在全世界汽車行業(yè)中,電動助力轉向系統(tǒng)每年正以90%~10%的增長速度發(fā)展,年增長量達130萬~150萬套,2008年將超過1000萬套。按此速度發(fā)展,用不了幾年的時間,電動助力轉向系統(tǒng)將逐漸占領轎車市場,并向微型車、輕型車和中型車擴展。
EPS是汽車關鍵零部件之一,其質量對汽車轉向有著重要的影響。實車試驗需要消耗大量的財力、人力和物力,如果在實車試驗之前進行必要的臺架試驗,為后續(xù)實車試驗獲得某些基本參數和算法,是非常有益的,同時也可以降低直接裝車進行路試的危險性和研究成本。
汽車EPS試驗臺就是針對這一情況研制的,它采用微機為控制核心,采用傳感器對EPS系統(tǒng)輸入端的扭矩、輸入端的轉角、輸出端的扭矩進行檢測,實現(xiàn)EPS性能和可靠性試驗的自動測量和圖形的動態(tài)顯示,數據及特性曲線的自動記錄輸出。同時具有儲存、打印和再處理功能。汽車EPS試驗臺的使用將會大大提高產品的裝配質量和檢測精度,為質量管理提供了統(tǒng)計資料,且使產品的裝配、調試、檢測工作變得十分簡單,生產效率大幅度提高。
1.4本文研究的內容
(1)電動助力轉向試驗臺總體方案設計;
(2)電動助力轉向試驗臺總體結構設計;
(3)電動助力轉向試驗臺用傳感器的研究與選型;
(4)非標零件圖設計;
(5)試驗臺的布置。
第二章 電動助力轉向系統(tǒng)試驗臺的總體設計
2.1電動助力轉向系統(tǒng)
2.1.1工作原理
電動助力轉向系統(tǒng)主要由傳感器、電子控制器ECU、執(zhí)行器三個部分組成。其中傳感器主要包括車速傳感器、轉矩傳感器、轉向角傳感器;執(zhí)行器主要包括電動機、電磁離合器和減速機構。
其工作原理為:電子控制單元(ECU)根據車速傳感器和轉向盤轉矩傳感器的信號計算所需的轉向助力的大小,通過功率放大模塊控制直流電動機的轉動,助力電動機的轉矩經過減速機構減速增扭后,驅動齒輪齒條轉向機構,產生相應的轉向助力。EPS系統(tǒng)還設有故障診斷模塊和保護措施,當EPS發(fā)生故障時,故障診斷及代碼顯示模塊發(fā)出報警信號,并且以故障代碼的形式指示故障類型同時,EPS系統(tǒng)斷開電磁離合器,轉為手動純機械轉向狀態(tài)。
電動助力轉向系統(tǒng)能夠實現(xiàn)不同車速下實時地為汽車轉向提供不同的助力效果,減輕了汽車低速時的轉向盤操縱力,提高了操縱的靈便性和高速行駛的穩(wěn)定性。
2.1.2工作特點
對于電動助力轉向機構,電動機僅在汽車轉向時才工作并消耗蓄電池能量;而對于常流式液壓動力轉向機構,因液壓泵處于長期工作狀態(tài)和內泄漏等原因要消耗較多的能量。兩者比較,電動助力轉向的燃料消耗率僅為液壓動力轉向的16%~20%。
液壓轉向機構內的工作介質是油,任何部位出現(xiàn)漏油,油壓將建立不起來,不僅失去助力效能,并對環(huán)境造成污染。當發(fā)動機出現(xiàn)故障停止工作時,液壓泵也不工作,結果也會喪失助力效能,這就降低工作可靠性。電動助力轉向機構不存在漏油問題,只要蓄電池內有電提供給電動助力轉向機構,就能有助力作用,所以工作可靠。若液壓動力轉向機構的油路進入空氣或者貯油罐油面過低,工作時將產生較大噪聲,在排除氣體之前會影響助力效果;而電動助力轉向僅在電動機工作時有輕微的噪聲。
電動助力轉向與液壓動力轉向比較,轉動轉向盤時僅需克服轉向器的摩擦阻力,不存在回位彈簧阻力和反應路感的油壓阻力。電動助力轉向還有整體結構緊湊、部件少、占用的空間尺寸小、質量比液壓式動力轉向約輕20%~25%以及在車上容易布置等優(yōu)點。
2.2典型試驗介紹
2.2.1名詞定義
國家標準《汽車電動助力轉向裝置技術條件與臺架試驗方法》中對循環(huán)和損壞有如下定義:
循環(huán):轉向器輸入端由中間位置向一個方向旋轉至規(guī)定的角度后,返回中間位置再向另外一個方向旋轉之規(guī)定角度后,再回到中間位置為1個循環(huán)。
損壞:被試總成按規(guī)定的可靠性試驗項目完成試驗后,有下列情況之一出現(xiàn),則認為己損壞。
u 做功能試驗時未滿足功能技術要求。
u 試驗后的輸入、輸出特性曲線未滿足輸入、輸出特性技術要求。
u 試驗后的助力電流特性曲線未滿足設計技術要求。
u 做反向沖擊試驗,喪失反向接通能力,并未滿足反向沖擊指標技術要求。
u 回正試驗時轉向器回不到中間位置,并未滿足回正特性技術要求。
u 做噪聲試驗時未滿足噪音指標的要求。
u 做電磁特性試驗未滿足電磁特性技術要求。
u 單個電器元器件損壞。
u 任何零件出裂紋和變形。
2.2.2 特性試驗的性能技術要求
國家標準《汽車電動助力轉向裝置技術條件與臺架試驗方法》中對電動助力轉向系統(tǒng)性能技術條件有如下:
(1)功能要求
模擬不同車速轉動轉向盤的過程中感覺在轉動轉向盤的過程中應平滑、無卡滯;轉向盤無明顯振動,轉動轉向盤至任意角度停下時轉向器輸出端不應有慣性延時現(xiàn)象。
(2)輸入、輸出特性
按照不同的車速測量輸入、輸出力矩/力并繪制力矩特性曲線,電動助力裝置的助力特性應符合設計要求,各車速下的曲線對稱度不小于85%。
(3)助力電流特性
按照不同的車速,測量輸入軸力矩并繪制助力電流特性曲線,該特性應符合設計要求。
(4)反向沖擊指標
在轉向器輸出端施加沖擊力,電動機應迅速反應制止轉向盤轉動,沖擊時電流響應時間不超過10毫秒,在轉向盤上不能產生大于3度的轉動角度。
(5)空載轉動力矩
檢查電動助力轉向裝置在電源關閉和接通狀態(tài)下轉動的機械摩擦以及任何可能的機械阻力,轉動阻力矩及其波動應符合設計要求。
(6)回正特性
1)低速行駛回正時,回正特性曲線應通過原點;
2)高速行駛回正時,回正特性曲線允許有殘留角,該值不大于5度。
(7)報警要求
任一元件及線路損壞,故障代碼或故障報警顯示燈應立即顯示。
2.3試驗臺整體方案設計
查閱相關資料發(fā)現(xiàn)有多種電動助力轉向試驗臺架。
圖2-1 EPS試驗臺
如圖2-1所示,此試驗臺架結構簡單,體積小,占用空間小;不過只能完成相對較簡單的電動助力轉向試驗,自動化程度低,無法通過工業(yè)計算機操作試驗,觀察試驗的圖像,而且車輪不能模擬多種路況的轉向阻力矩,更不能滿足電動助力轉向系統(tǒng)出廠時的耐久性檢測,綜合以上幾個方面,此種方案不能滿足此次設計的要求。
參考東華轉向器公司的試驗臺,我做了少許改變,得到下圖的總體設計框圖,此試驗臺能滿足此次設計的要求,且自動化程度高。
圖2-2 試驗臺總體設計框圖
試驗臺總體設計框圖如圖2-2所示。電動助力轉向系統(tǒng)的電子控制單元根據轉矩信號、模擬車速信號,模擬發(fā)動機轉速信號來控制助力電機的電流大小,這時助力電機會給EPSECU一個反饋電流,EPSECU會根據這個反饋電流和下面的轉矩傳感器的轉矩信號時時控制電流大小,EPSECU會把這些數據傳給數據采集系統(tǒng),然后進行數據處理,數據處理系統(tǒng)會根據情況來控制磁粉制動器的阻力矩,來模擬路面的阻力情況。本試驗臺會把助力電動機的電流和轉向盤的轉矩曲線圖與數據庫中的曲線圖進行比較,來判定電動助力轉向系統(tǒng)的好壞。此試驗臺也可以作電動助力轉向系統(tǒng)的耐久性試驗。
整個試驗臺主要有三個部分:
(1)是機械部分,包括EPS轉向機械系統(tǒng)和驅動電動機;
(2)是控制部分,包括電子控制系統(tǒng)以及程序調試系統(tǒng);
(3)是數據采集分析系統(tǒng)。
汽車電動助力轉向試驗臺的組成:
1)轉向電動機;
2)直流電動機,額定電壓12V,額定轉矩1.6N.m,額定輸出功率170W,額定轉速1050r/min,額定電流30A,通過減速機構和轉向柱連接;
3)試驗臺架,用于安裝固定各個部件;
4)模擬轉向負載的阻尼器,安裝在轉向軸徑上;
5)轉矩傳感器,電壓測量范圍0~10V
6)車速信號模擬裝置和控制電路板;
7)電源,為系統(tǒng)提供所需電壓380V/220V,電源總電流DC50A,臺架人體可觸及部分元器件配電:24V;
8)多功能數據采集卡:PCI-8310數據采集卡。
試驗臺系統(tǒng)總體結構框圖如圖2-1所示,通過傳感器來測量一些電量和非電量,這些量為:車速、EPS裝置中轉向盤的主扭矩、轉向盤的轉向角度和制動器阻力矩,助力電動機的電流、電壓和轉矩等。把這些量以及ECU(電子控制器)中的一些控制量一起,通過PCI-8310多功能板傳送到工業(yè)控制計算機上,并適時顯示系統(tǒng)運行各項數據及主要參數曲線,并最終存到數據庫系統(tǒng)中,據此來分析EPS的性能,然后通過改變EPS裝置中ECU(電子控制器)硬件和軟件的某些方面,從而能使該裝置達到最佳的工作狀態(tài),為以后汽車電動助力轉向裝置的研制提供可借鑒的數據和經驗。
2.4試驗臺測試項目
2.4.1車速
由于車速傳感器的信號經過整形后發(fā)出的是脈沖信號,每個脈沖表示磁電式車速傳感器的被測齒盤輪齒轉過一齒,那么汽車的行駛速度就可以用單位時間內的脈沖數、被測齒盤齒輪齒數與車輪的行駛半徑計算出來。
其計算公式如下:
V=2πnTZrd (2-1)
其中:V-汽車行駛速度
n-測量的脈沖數
Z-被測齒盤的齒輪齒數
T-測量時間周期
rd-車輪的滾動半徑
2.4.2系統(tǒng)的阻力矩
駕駛員在轉向時所需克服的阻力矩包括兩個主要部分:一是回正力矩,二是摩擦力矩。汽車轉彎時,前輪上作用著與轉向力相應的“繞主銷的阻力矩”,通?;\統(tǒng)地稱為回正力矩。回正力矩除以傳動比,就是駕駛員為了使汽車轉彎所經常需要克服的力矩。除了回正力矩以外,駕駛員還需要克服主銷的摩擦阻力矩,轉向機構的摩擦力矩(其大小取決于轉向機效率),各個球頭的摩擦力矩以及原地轉向時輪胎與地面的摩擦力矩等。
通?!稗D向阻力矩”按汽車不同的行車方式分成“原地轉向阻力矩”和“行車轉向阻力矩”兩種。原地轉向:指對靜止不動的汽車進行轉向時,首先是輪胎發(fā)生扭轉變形,繼之以路面和路面之間發(fā)生滑移,稱這一情況所產生的轉向阻力矩為原地轉向阻力矩。行車轉向阻力矩指對行駛時的汽車進行轉向時產生的阻力矩。行車轉向比原地轉向車速增加了,接地面積滾動成分增加,轉向阻力矩也突然減小。
因此影響“阻力矩”的因素有輪胎接地的單位面積壓力、接地面積、摩擦系數等。顯然,負荷愈大,輪胎氣壓愈低,原地轉向阻力矩也將愈大。同時輪胎和路面間的摩擦系數增大,原地轉向阻力矩也將增大。
2.4.3電動機的各項參數
電動機助力轉矩是電動機為了提高汽車操縱的輕便性而對轉向系外加的力矩,其大小由EPS的ECU根據傳感器傳來的車速信號、轉向盤扭矩等參數決定。
在本測試系統(tǒng)中除了對轉向盤的主扭矩、電動機的助力轉矩和整個轉向裝置所受的阻力矩的采集以外,還對車速和轉向盤轉角進行采集,對車速進行采集是因為一般的汽車電動助力轉向裝置EPS中的電子控制單元ECU需要車速這個量;而采集汽車轉向盤角這個量是為了測量助力轉矩和轉向盤轉角的關系。同時也對助力電動機的電流、電壓、輸出轉矩這些量進行采集,以此來檢測電動機的工作狀態(tài)。
2.4.4轉向盤主扭矩與助力電動機轉矩的關系
助力特性對電動助力轉向系統(tǒng)的性能,包括輕便性、回正性、路感等有重要影響。在傳統(tǒng)液壓動力轉向中助力特性主要由閥的結構決定,調整困難,且設計完成助力特性便確定,不隨車速變化;而EPS不同,助力特性曲線是電動助力轉向的控制目標,由軟件來設置,可以設計成車速感應型特性曲線,并可方便地進行調節(jié)。圖2-3所示為傳統(tǒng)液壓動力轉向的助力特性曲線,俗稱盆形曲線。圖2-4為幾種典型EPS助力特性曲線。對于永磁直流電動機,電磁轉矩與電樞電流成比例,因此EPS的助力特性常用電動機電流與轉向盤輸入力矩之間的關系曲線表示。
圖2-3 傳統(tǒng)液壓動力轉向助力特性曲線
(a)直線型 (b)折線型 (c)曲線型
圖2-4 助力特性曲線
助力特性曲線有以下幾種類型:
(1)直線型助力特性
圖2-4(a)為典型直線型助力特性。該助力特性曲線可用下式函數表示
I=0 0≤Td
0.5%
150%F.S
≥200Mo
-20~60℃
≤0.5%F.S
≤90%RH
第四章 試驗臺的結構設計
4.1試驗臺的布置
由試驗臺的總體方案設計,運用CAD軟件設計試驗臺架。如圖4-1從右到左為液壓缸,滑臺,轉向電動機,彈性聯(lián)軸器,轉矩傳感器,萬向節(jié)聯(lián)軸器,減速器,助力電機,萬向聯(lián)軸器,轉矩傳感器,凸緣聯(lián)軸器,磁粉制動器,滑臺,液壓缸。
圖4-1 試驗臺的布置
4.2聯(lián)軸器的選擇與校核
聯(lián)軸器是用來聯(lián)接不同機構中的兩根軸(主動軸和從動軸)使之共同旋轉以傳遞扭矩的機械零件。在高速重載的動力傳動中,有些聯(lián)軸器還有緩沖、減振和提高軸系動態(tài)性能的作用。聯(lián)軸器由兩半部分組成,分別與主動軸和從動軸聯(lián)接。
聯(lián)軸器種類繁多,按照被聯(lián)接兩軸的相對位置和位置的變動情況,可以分為:①固定式聯(lián)軸器。主要用于兩軸要求嚴格對中并在工作中不發(fā)生相對位移的地方,結構一般較簡單,容易制造,且兩軸瞬時轉速相同,主要有凸緣聯(lián)軸器、套筒聯(lián)軸器、夾殼聯(lián)軸器等。②可移式聯(lián)軸器。主要用于兩軸有偏斜或在工作中有相對位移的地方,根據補償位移的方法又可分為剛性可移式聯(lián)軸器和彈性可移式聯(lián)軸器。剛性可移式聯(lián)軸器利用聯(lián)軸器工作零件間構成的動聯(lián)接具有某一方向或幾個方向的活動度來補償,如牙嵌聯(lián)軸器(允許軸向位移)、十字溝槽聯(lián)軸器(用來聯(lián)接平行位移或角位移很小的兩根軸)、萬向聯(lián)軸器(用于兩軸有較大偏斜角或在工作中有較大角位移的地方)、齒輪聯(lián)軸器(允許綜合位移)、鏈條聯(lián)軸器(允許有徑向位移)等,彈性可移式聯(lián)軸器(簡稱彈性聯(lián)軸器)利用彈性元件的彈性變形來補償兩軸的偏斜和位移,同時彈性元件也具有緩沖和減振性能,如蛇形彈簧聯(lián)軸器、徑向多層板彈簧聯(lián)軸器、彈性圈栓銷聯(lián)軸器、尼龍栓銷聯(lián)軸器、橡膠套筒聯(lián)軸器等。聯(lián)軸器有些已經標準化。選擇時先應根據工作要求選定合適的類型,然后按照軸的直徑計算扭矩和轉速,再從有關手冊中查出適用的型號,最后對某些關鍵零件作必要的驗算。
典型聯(lián)軸器:
(1)凸緣聯(lián)軸器:
凸緣聯(lián)軸器由兩個帶凸緣的半聯(lián)軸器和聯(lián)接螺栓組成。兩半聯(lián)軸器分別用鍵與兩軸連接,同時它們再用螺栓相互連接。凸緣聯(lián)軸器有兩種對中方式:一種是利用兩個半聯(lián)軸器接合端面上凸出的對中榫和凹入的榫槽相配合對中,其對中精度高,工作中靠預緊普通螺栓在兩個半聯(lián)軸器的接觸面間產生的摩擦力來傳遞轉矩,拆裝時軸必須作軸向移動,不太方便,多用于不常拆裝的場合;另一種是采用鉸制孔用螺栓對中,工作中靠螺栓桿的剪切和螺栓桿與孔壁間的擠壓來傳遞轉矩,其傳遞轉矩的能力較大。若傳遞的轉矩不大,可以一半采用鉸制孔用螺栓,另一半采用普通螺栓,這種結構裝拆時軸不需作軸向移動,只需拆卸螺栓即可,比較方便,可用于經常裝拆的場合。
圖4-2 凸緣聯(lián)軸器
制造凸緣聯(lián)軸器的材料可采用35、45鋼或ZG310-570,當外緣圓周速度v≤30 m/s時可采用HT200。
考慮到機器啟動、停車和工作中不穩(wěn)定運轉的動載荷影響,計算轉矩Tca可按下式計算
Tca=KAT
式中 T—聯(lián)軸器傳遞的名義轉矩,單位為Nm;
KA—聯(lián)軸器的工作情況系數。
根據聯(lián)軸器的工作情況系數表,選擇KA=1.3,磁粉制動器的最大轉矩為T=100Nm,帶入公式
Tca=1.3×100=130Nm
磁粉制動器的輸入軸的直徑d=38mm,根據《機械工程及自動化簡明設計手冊》選取凸緣聯(lián)軸器YL7,其額定轉矩為160Nm,大于130Nm,滿足要求,轉速較小,所以選取材料為HT200。
(2)彈性聯(lián)軸器:
彈性套柱銷聯(lián)軸器的結構與凸緣聯(lián)軸器的結構相似,只是用套有彈性套的柱銷代替了連接螺栓。柱銷的一端以圓錐面與一半聯(lián)軸器上的圓錐孔相配合,并用螺母固定。另一端套裝有整體式彈性套,與另一半聯(lián)軸器凸緣上的圓柱形孔間隙配合。因彈性套的彈性變形和間隙配合,從而使聯(lián)軸器具有補償兩軸相對位移的能力和緩沖吸陣的功能。兩半聯(lián)軸器與軸配合的孔可做成圓柱形或圓錐形。
半聯(lián)軸器的材料常用TH200,有時也采用ZG310-570,柱銷材料多用45鋼,彈性套采用耐油橡膠制成。
彈性套柱銷聯(lián)軸器制造容易,裝拆方便,成本較低,其彈性套易磨損,但更換方便,主要適用于起動頻繁、需要正反轉的中、小功率傳動,工作環(huán)境溫度應在-20℃~+70℃的范圍內。
彈性套柱銷聯(lián)軸器可從有關標準中選用,必要時應驗算彈性套與孔壁的擠壓強度和柱銷的剪切強度。
Tca=KAT
T=50Nm,KA=1.3
帶入公式
Tca=1.3×50=65Nm
現(xiàn)在計算柱銷的剪切應力,看能否滿足要求
T= 2FS D1
聯(lián)軸器TL4的D1為85mm柱銷直徑d=12mm
FS=50÷2÷0.085=294N
τ=Fs/A=294÷π0.0062=2.6MPa
2.6MPa<[τ]=30MPa
可以選用TL4型彈性套柱銷聯(lián)軸器。
彈性套的擠壓面積AbS=b×d
查手冊b=23mm,d=12mm
AbS=0.023×0.012=2.76×10-3m2
F=FS=AbSσbS
帶入數值
σbS=294÷2.76×10-3=0.1MPa
滿足要求
特點:緩沖吸振,可補償較大的軸向位移,微量的徑向位移和角位移。
應用:正反向變化多,啟動頻繁的高速軸。
圖4-3 彈性套柱銷聯(lián)軸器
(3)萬向聯(lián)軸器
萬向聯(lián)軸器有多種結構型式,例如:十字軸式、球籠式、球叉式、凸塊式、球銷式、球鉸式、球鉸柱塞式、三銷式、三叉桿式、三球銷式、鉸桿式等,最常用的為十字軸式,其次為球籠式,萬向聯(lián)軸器的共同特點是角向補償量較大,不同結構型式萬向聯(lián)軸器兩軸線夾角不相同,一般≤5°~45°之間。萬向聯(lián)軸器利用其機構的特點,使兩軸不在同一軸線,存在軸線夾角的情況下能實現(xiàn)所聯(lián)接的兩軸連續(xù)回轉,并可靠地傳遞轉矩和運動。萬向聯(lián)軸器最大的特點是具有較大的角向補償能力,結構緊湊,傳動效率高。在實際應用中根據所傳遞轉矩大小分為重型、中型、輕型和小型。
圖4-4 萬向聯(lián)軸器
萬向聯(lián)軸器與EPS系統(tǒng)連接,可以補償各部件高度上的微小差別,保證試驗臺的正常運轉。
4.3普通平鍵的選擇與校核
根據彈性套柱銷聯(lián)軸器的尺寸,查閱機械工程設計手冊,選擇A型普通平鍵b×h=8×7,材料為45號鋼。鍵的許用應力[τ]=60MPa,[σbs]=100MPa??紤]到磁粉制動器的輸出轉矩為100Nm,所以應校核此處的平鍵。下面對鍵的強度進行校核。
首先校核鍵的剪切強度。將平鍵沿n-n截面分成兩部分,并把n-n以下部分和軸作為一個整體來考慮。因為假設在n-n截面上切應力均勻分布,故n-n截面上的剪力FS為
FS=Aτ=blτ
對軸心取矩,由平衡方程M0=0,得
FS?d2=blπ?d2=Me
式中l(wèi)=38mm,
故有
τ=2Mebld=2×1008×38×24×10-9=27.4MPa<[τ]
可見平鍵滿足剪切強度條件。
其次校核鍵的擠壓強度??紤]鍵在n-n截面以上部分的平衡,在n-n截面上的剪力FS=blτ,一側面上的擠壓力為
F=Absσbs=h2lσbs
投影于水平方向,由平衡方程得
FS=F 或 blτ=h2lσbs
由此求得
σbs=2bτh=28×10-3(27.4×106)7×10-3=62.6×106Pa=62.6MPa<[σbs]
故平鍵也滿足擠壓強度要求。
可選用此平鍵。
4.4液壓滑臺
液壓滑臺可以實現(xiàn)試驗部件的移動,方便裝夾,這也是本設計的一個亮點,在參考東華轉向器試驗臺的時候,發(fā)現(xiàn)他的滑臺是手動的,如果改成液壓的會方便許多。液壓滑臺如圖4-5,通過控制電磁閥來控制液壓缸,實現(xiàn)滑臺的運動,在此就不設計液壓缸了。
圖4-5 液壓滑臺
4.5磁粉制動器支架
根據磁粉制動器的參數,設計了磁粉制動器的支架。如圖4-6,用于固定磁粉制動器,使其能正常工作。
圖4-6 磁粉制動器支架
4.6減速機構支架
磁粉制動器支架已設計好,根據磁粉制動器裝配好的軸線高度設計減速機構支架,如圖4-7使用最簡單的支架結構,關鍵保證支架的高度,使減速機構裝配好后,其軸線高度與磁粉制動器的高度差上下不超過10mm,滿足機構能正常運行。
4-7 減速機構支架
4.7轉向電機支架
轉向電機支架和減速機構支架相似,但要滿足轉向電機的要求,如圖4-8。
圖4-8 轉向電機支架
第五章 結 論
5.1結論
汽車電動助力轉向系統(tǒng)是汽車的關鍵部件之一,在汽車特別是乘用車上的應用和普及,是大勢所趨。本文對電動助力轉向系統(tǒng)的工作原理進行了分析。在對汽車電動助力轉向裝置技術條件與臺架試驗方法標準理解的基礎上,研究了性能測試技術和方法,設計了汽車動力轉向器試驗臺。
主要完成以下工作:
完成了電動助力試驗臺總體方案的確定和設計,根據需要選擇了試驗臺用轉矩傳感器,磁粉制動器,聯(lián)軸器,電動機,液壓滑臺。
在分析了減速器的結構尺寸后,設計了夾具,能把減速器夾緊在試驗臺上,在試驗時起固定作用。
用CAD設計了試驗臺總框架圖和總裝配圖,非標準的零件圖。
本試驗臺能幫助廠家測試剛出廠的電動助力轉向系統(tǒng),測試助力特性,工業(yè)計算機會生成助力特性曲線,并與數據庫中的標注助力特性曲線進行比較,評價EPS系統(tǒng)的好壞。
5.2總結
本設計只是對電動助力轉向試驗臺機械結構的設計,軟件設計和硬件設計由另外兩位同學來完成。試驗臺根據車速信號來控制助力電動機的電流,以此來控制施加的助力轉矩的大小,可以得到電流與轉矩的關系曲線,然后與數據庫中的曲線相比較,可檢測助力性能的好壞;次試驗臺也可以做轉向器的疲勞實驗,作為剛出廠時的檢測。由于本人能力有限,所以不足之處還請大家?guī)兔χ赋?。汽車電動助力轉向試驗臺涉及機械、汽車、電子和軟件設計等多學科領域,它的發(fā)展一定會促進EPS產品質量的提高,對中國汽車工業(yè)產生一定影響。
參考文獻
1.陳家瑞主編.汽車構造(第三版下冊)[M].北京: 機械工業(yè)出版社,2009.2
2.王望予主編.汽車設計(第四版)[M].北京: 機械工業(yè)出版社,2004.8
3.余志生主編. 汽車理論(第三版)[M].北京: 機械工業(yè)出版社,2004
4.林逸,施國標.汽車電動助力轉向技術的發(fā)展現(xiàn)狀與趨勢[J].公路交通科技,2001(3): 23-28
5.苗立東,何仁.汽車電動轉向技術發(fā)展綜述[J].長安大學學報(自然科學版), 2004(24): 34-37
6.肖生發(fā),馮櫻.電子控制式電動助力轉向系統(tǒng)的開發(fā)前景[J].汽車科技2001.(3): 17-22
7.陳于萍,周兆元主編.互換性與測量技術基礎(第二版)[M].北京: 機械工業(yè)出版社,2005.10
8.謝家瀛主編.組合機床設計簡明手冊[M].北京: 機械工業(yè)出版社,1992.10
9.楊孝劍.汽車電動助力轉向系統(tǒng)的動力學分析與控制研究[D].合肥工業(yè)大學碩士學位論文,2003
10.Jeonghoon song, Kwangsuck Boo. Model development and control methodology of a new electric power steering system[J].Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering, 2004, 218?
11.陳于萍,周兆元主編.互換性與測量技術基礎(第二版)[M].北京: 機械工業(yè)出版社,2005.10
12.肖生發(fā),馮櫻,劉洋.電動助力轉向系統(tǒng)助力特性的研究[J].湖北汽車工業(yè)學報, 2001(15): 12-17
13.葉偉昌,陳遼軍.機械工程及自動化簡明設計手冊(第二版上冊)[M].北京: 機械工業(yè)出版社,2007.6
14.徐錦康主編.機械設計[M].北京: 高等教育出版社,2004.4
15.Xu Hanbin, Zhang Zhongfu. Offline Detection of Electric Power Steering[J].Wuhan: School of Mechantronic Engineering Wuhan University of Technology