購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
LETTER Improving the fatigue strength of the elements of a steel belt for CVT by cavitation shotless peening Hitoshi Soyama ? Masanori Shimizu ? Yuji Hattori ? Yuji Nagasawa Received: 9 May 2008 / Accepted: 19 May 2008 / Published online: 6 June 2008 C211 Springer Science+Business Media, LLC 2008 The elements of steel belts used for continuously variable transmission (CVT) are subjected to a bending load during operation. The weakest portion of the elements is at the root of the ‘‘neck’’ which works into metallic rings. In order to reduce the stress concentration, the root of the neck is rounded and the shape of element is optimized. Nevertheless, if the fatigue strength of the elements can be improved, the steel belt can be applied to larger engines. Although conventional shot peening is one way of enhancing the fatigue strength, it is very difficult for shot to reach into deep and narrow regions. Recently, a peening method using the impact produced as cavitation bubbles collapse has been developed [1–9]. This method is called ‘‘cavitation shotless peening (CSP)’’, as shot are not required [3–6, 8]. CSP can peen the surface even through deep narrow cavities, as the bubbles can reach these parts and collapse where peening is required. In the present article, improvement of the fatigue strength of the elements of a CVT metallic belt by CSP was demonstrated experimentally. Elements were treated with different processing times and evaluated by a fatigue test to find the optimum processing time. In order to evaluate the peening effect by CSP, the residual stress was measured. Note that this is the first report published on the improvement made in the fatigue strength of a part with regions that cannot be hit directly by shot. Cavitation shotless peening was applied to the element using cavitating jet apparatus, the details of which can be found in references [3–6, 8]. The jet was injected into the neck region through grooves in the elements, which were stacked and held together, and scanned perpendicularly over the elements, as shown in Fig. 1. The processing time per unit length, t p , is defined by the number of scans n and the scanning speed v; t p ? n v e1T The cavitation number,r, a key parameter for cavitating jets, is defined by the injection pressure, p 1 , the tank pressure, p 2 , and the saturated vapor pressure, p v ,as follows; r ? p 2 C0 p v p 1 C0 p 2 ? p 2 p 1 e2T r can be simplified as indicated in Eq. 2 because p 1 C29 p 2 C29 p v . Absolute pressure values were used to determine the cavitation number. Considering the results from previous work [3–6, 8], the CSP conditions shown in Table 1 were selected. The shape of the element tested was identical to actual elements used in steel belts for CVT. The element was made of Japanese Industrial Standards JIS SK5 and was heat treated in the same way as actual elements. In order to examine the improvements made in the fatigue strength, the residual stress of the elements at position A in Fig. 2 was measured using X-ray diffraction with a two-dimensional position sensitive proportional counter (2D PSPC) using the 2D method [10]. After CSP, part of the element was cut off and put into the X-ray H. Soyama (&) Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan e-mail: soyama@mm.mech.tohoku.ac.jp M. Shimizu C1 Y. Hattori Toyota Motor Corporation, 1200 Mishuku, Susono 410-1193, Japan Y. Nagasawa Toyota Central R&D Labs. Inc, 41-1 Yokomichi, Nagakute 480-1192, Japan 123 J Mater Sci (2008) 43:5028–5030 DOI 10.1007/s10853-008-2743-6 apparatus to detect diffractive X-rays, as shown in Fig. 2. A Cr tube operated at 35 kV and 40 mA was used. The diameter of the collimator was 0.1 mm. X-rays were counted for 20 min for each frame. The diffractive plane was the (211) plane of a–Fe, and the diffractive angle, 2h, was about 156 degree. The values used for Young’s modulus and the Poisson ratio were 210 GPa and 0.28, respectively. The residual stress in the longitudinal direc- tion of the element was obtained from 13 frames using the 2D method. In order to evaluate the fatigue strength of the element, a bending fatigue test was carried out on the element, as shown in Fig. 3. As shown in the figure, the element was fixed and a load F was applied perpendicularly. Figure 4 illustrates the relationship between the number of cycles to failure, N, and the normalized amplitude of the bending force, C22 F, used in the fatigue test, for various pro- cessing times per unit length, t p . The amplitude of the bending force was normalized by the fatigue strength of the non-peened specimen, which was obtained by Little’s method [11]. The fatigue tests were terminated at N = 10 6 , as it was confirmed that specimens which survived 10 6 cycles also survived 10 7 cycles. From the figure, it is clear that CSP can extend the lifetime of specimens compared to non-peened specimens. The normalized fatigue strength, C22 F FS , of specimens treated by CSP is 1.22 at t p = 2.5 s/mm, 1.38 at t p = 5 s/mm, 1.48 at t p = 10 s/mm, 1.32 at t p = 20 s/mm, and 1.28 at t p = 40 s/mm, respectively. At t p = 10 s/mm, the fatigue strength of the element has been improved by 48% compared with that of the non-peened element. Figure 5 shows the normalized fatigue strength C22 F FS as a function of CSP processing time per unit length, t p . C22 F FS increases with t p until t p = 10 s/mm and then decreases Table 1 CSP conditions Injection pressure p 1 MPa 30 Tank pressure p 2 Mpa 0.42 Cavitation number r 0.014 Nozzle diameter d mm 2 Standoff distance s mm 80 Fig. 2 Measurement position of the residual stress using X-ray diffraction Fig. 3 Schematic diagram of the bending fatigue test of the element Fig. 4 Improvement of the fatigue strength of the element by CSP Fig. 1 Setup of the elements treated by CSP J Mater Sci (2008) 43:5028–5030 5029 123 slightly. This shows that, as with shot peening, there is an optimum processing time, and that too long processing times cause the fatigue strength to decrease. For the con- ditions applied here, the optimum CSP processing time per unit length was 10 s/mm. Figure 6 shows the variation in the residual stress of the element at position A in Fig. 2 with processing time per unit length, t p . In order to evaluate the reproducibility, the residual stress of two elements was measured for each value of t p using the 2D X-ray diffraction method. Standard deviations for each measurement are shown in Fig. 6. Without CSP, the residual stress was -140 ± 50 MPa and after CSP this was greater than -600 MPa. Thus, CSP can introduce compressive residual stress into the surface even where there are deep and narrow cavities. The impact induced by collapsing cavitation bubbles can introduce compressive residual stress into surfaces that cannot be hit directly by shot (see Fig. 1). The residual stress on the surface increased to between -800 MPa and -1,000 MPa for short processing times, t p = 2.5 s/mm, then decreased slightly saturating at about -800 MPa, as shown in Fig. 6. According to a previous report [5], the compressive residual stress of the sub-surface in materials increases after the residual stress on the surface has saturated. Thus the compressive residual stress of the sub-surface would increase for t p C 2.5 s/mm. This is one of the reasons why the optimum processing time for the present conditions was t p = 10 s/mm, even though the compressive residual stress had reached its maximum at t p = 2.5 s/mm. In order to increase the fatigue strength of the elements of a steel belt for CVT, the elements were treated by CSP. The fatigue strength of the element was evaluated and the residual stress was measured by X-ray diffraction using a 2D method with a 2D PSPC. It was revealed that the fatigue strength of the element could be improved by 48% by CSP. It was also shown that CSP can introduce com- pressive residual stress even into the surface of deep and narrow cavities. This work was partly supported by Japan Society for the Promotion of Science under Grant-in-Aid for Scientific Research (A) 20246030. References 1. Soyama H, Park JD, Saka M (2000) Trans ASME J Manuf Sci Eng 122:83. doi:10.1115/1.538911 2. Soyama H, Kusaka T, Saka M (2001) J Mater Sci Lett 20:1263. doi:10.1023/A:1010947528358 3. Soyama H, Saito K, Saka M (2002) Trans ASME J Eng Mater Technol 124:135. doi:10.1115/1.1447926 4. Odhiambo D, Soyama H (2003) Inter J Fatigue 25:1217. doi: 10.1016/S0142-1123(03)00121-X 5. Soyama H, Sasaki K, Odhiambo D, Saka M (2003) JSME Int J 46A:398. doi:10.1299/jsmea.46.398 6. Soyama H, Macodiyo DO, Mall S (2004) Tribol Lett 17:501. doi: 10.1023/B:TRIL.0000044497.45014.f2 7. Soyama H (2004) Trans ASME J Eng Mater Technol 126:123. doi:10.1115/1.1631434 8. Soyama H, Macodiyo DO (2005) Tribol Lett 18:181. doi: 10.1007/s11249-004-1774-7 9. Soyama H (2007) J Mater Sci 42:6638. doi:10.1007/s10853- 007-1535-8 10. He BB (2003) Powder Diffr 18:71. doi:10.1154/1.1577355 11. Little RE (1972) ASTM STP 511:29 Fig. 5 Optimum CSP processing time per unit length Fig. 6 Introduction of compressive residual stress into the element by CSP 5030 J Mater Sci (2008) 43:5028–5030 123
附 錄1:英文文獻翻譯及原文
通過噴丸改善無級變速器鋼帶的疲勞強度
無級變速器(CVT)采用的鋼帶在操作過程中要受到彎曲載荷。元件的最薄弱的部分是在作為金屬環(huán)的“頸部”的根部。為了減少應(yīng)力集中,頸部的根部做成圓形,并對鋼帶的形狀進行了優(yōu)化。不過,如果該元件可以提高疲勞強度,鋼帶可應(yīng)用于大引擎。雖然傳統(tǒng)的噴丸是一種提高疲勞強度的方法,但卻很難到達深而窄的區(qū)域。
最近,一種用沖擊產(chǎn)生空化泡爆裂的沖擊法已經(jīng)開發(fā)出來。這種方法稱為“氣穴噴丸”,因為噴射不是必需的。由于泡沫可以通過深而窄的通道而到達凹面,并在需要的地方爆裂,所以CSP可以到達這些區(qū)域,并對表面進行加工。
在本文中,CSP對無級變速器鋼帶疲勞強度的提高已被實驗證明。元件分別進行了不同時間的處理,并進行了疲勞測試評估,以找出最佳的處理時間。為了評估CSP噴丸的效果,對殘余應(yīng)力進行了測量。請注意,這是第一篇發(fā)表的關(guān)于不直接噴射某一部分而使其疲勞強度提高的報告。
CSP使用空化射流裝置應(yīng)用于元件,詳情可見參考文獻。氣體通過堆疊的溝槽注入到元件的頸部,垂直地通過元件,如圖1。每單位長度的處理時間tp,由流動數(shù)n和流動速度v定義:
空化射流的關(guān)鍵參數(shù)空化數(shù)r,由注射壓力p1定義,罐內(nèi)壓力p2和飽和蒸氣壓力pv,如下:
σ可用式(2)簡化表示,因為p1〉〉p2〉〉pv。絕對壓力值被用來確定空化數(shù)??紤]到以??往的工作成果,表1中所示的CSP處理條件是進行了篩選的。
測試的元件形狀與無級變速器實際使用的鋼帶元件是一樣的。該元件是根據(jù)日本工業(yè)標(biāo)準(zhǔn)JIS SK5制造的,與實際元件的加熱處理相同。
為了檢測疲勞強度的提高,在圖2的A位置,通過一個二維位置X -射線衍射靈敏正比計數(shù)器,用二維的方法對元件的殘余應(yīng)力進行測量。CSP后,該元素的一部分被切斷,進入X -射線衍射儀檢測X射線,如圖2所示。鉻管在35千伏電壓和40 毫安電流的條件下使用。準(zhǔn)直器直徑為0.1毫米。 X射線計數(shù)每幀為20分鐘。衍射平面是一個α-Fe平面(211),衍射角2θ,約156度。楊氏模量和泊松比使用的值分別為210 GPa和0.28。元件的縱向殘余應(yīng)力用二維的方法從13個單位獲得。
為了評估元件的疲勞強度,對元件進行了一個彎曲疲勞測試,如圖3所示。正如圖所示,該元件是固定的,負載F為垂直方向。圖4說明了在疲勞測試中用于多種單位長度處理時間tp的循環(huán)失敗次數(shù)N和規(guī)范化的彎曲力振幅之間的關(guān)系。受彎力振幅是由非噴丸樣品的疲勞強度規(guī)范,這是用里特的方法得到的。疲勞試驗被終止在N = 106,因為它證實了能承受106次循環(huán)的樣品,也能承受107次。從圖中可明顯看出,相對于非噴丸樣品,CSP可延長樣品的壽命。經(jīng)CSP處理的樣品的歸一疲勞強度,當(dāng)tp = 2.5 s/mm時,為1.22,當(dāng)tp = 5 s/mm時,為1.38,當(dāng)tp = 10 s/mm時,為1.48,當(dāng)tp = 20 s/mm時,為1.32,當(dāng)tp = 40 s/mm時,為1.28。當(dāng)tp = 10 s/mm時,元件的疲勞強度相對于非噴丸元件提高了48%。
圖5所示為每單位長度的CSP處理時間tp的函數(shù)歸疲勞強度。隨著tp增加而升高,直到tp = 10 s/mm則有所降低。這表明,噴丸存在一個最佳的處理時間,如果處理時間過長會造成疲勞強度降低。對于在這里適用的條件,最佳的CSP每單位長度的處理時間為10 s/mm。圖6顯示的是圖2中的A位置元件的殘余應(yīng)力在單位長度處理時間tp下的變化情況。為了評估的重復(fù)性,分別對兩種元件的殘余應(yīng)力在單位長度的處理時間下用二維X射線衍射法進行了測試。
每次測量的標(biāo)準(zhǔn)偏差如圖6所示。若不用CSP處理,殘余應(yīng)力為-140 ± 50 MPa,而用CSP處理后,殘余應(yīng)力強于-600 MPa。因此,CSP可以對表面有殘余壓應(yīng)力,即使是深而窄的腔。由空化旗袍爆裂產(chǎn)生的影響可以給表面帶來殘余壓應(yīng)力,是直接噴射所不能做到的(見圖1)。當(dāng)tp = 2.5 s/mm時,短時間處理的表面的殘余應(yīng)力提高到-800 MPa and -1,000 MPa之間,然后略有下降到大約-800 MPa,如圖6所示。根據(jù)先前的一份報告,材料表面的殘余應(yīng)力飽和后,其次表面的殘余壓應(yīng)力會增加。因此次表面的殘余壓應(yīng)力在tp ≥2.5 s/mm時將增加。這就是目前條件下的最佳處理時間為tp = 10 s/mm的原因之一,即使當(dāng)tp = 2.5 s/mm時殘余壓應(yīng)力達到了最大值。
為了使無級變速器鋼帶元件的疲勞強度增加,對元件進行了CSP處理。元件的疲勞強度進行了評估,且通過一個二維位置X -射線衍射靈敏正比計數(shù)器,用二維的方法對元件的殘余應(yīng)力進行了測量。它表明經(jīng)過CSP處理后元件的疲勞強度可提高48%。也證明了CSP可以對元件表面有殘余壓應(yīng)力,即使是深而窄的腔。
附 錄2:英文文獻原文
湘潭大學(xué)興湘學(xué)院
畢業(yè)論文(設(shè)計)任務(wù)書
論文(設(shè)計)題目: 摩擦式機械無級變速器結(jié)構(gòu)設(shè)計
學(xué)號: 2007964230 姓名: 陳鍇 專業(yè): 機械設(shè)計制造及其自動化
指導(dǎo)教師: 聶 松 輝 系主任: 周 友 行
一、主要內(nèi)容及基本要求
1、無級變速器的結(jié)構(gòu)設(shè)計;
2、輸入功率P=2.2kw,輸入轉(zhuǎn)速n=1500rpm,調(diào)速范圍R=6;
3、一張裝配圖A0#1張,零件圖總量A0#1張;
4、設(shè)計說明書一份;
5、英文文獻一份。
二、重點研究的問題
1、無級變速器原理及其結(jié)構(gòu);
2、變速原理的傳動結(jié)構(gòu)的實現(xiàn)。
三、進度安排
序號
各階段完成的內(nèi)容
完成時間
1
熟悉課題及基礎(chǔ)資料
第一周
2
調(diào)研及收集資料
第二周
3
方案設(shè)計與討論
第三~四周
4
無級變速器布局設(shè)計
第五周
5
無級變速器總裝配圖設(shè)計
第六~九周
6
無級變速器工程圖設(shè)計
第十周
7
撰寫說明書
第十一周
8
英文文獻翻譯,答辯
第十二周
四、應(yīng)收集的資料及主要參考文獻
[1] 阮忠唐. 機械無級變速器[M]. 機械工業(yè)出版社.
[2] 阮忠唐.機械無級變速器設(shè)計與選用指南[M].化學(xué)工業(yè)出版社.
[3] 徐灝.機械設(shè)計手冊第3卷[M].機械工業(yè)出版社.
[4] 毛謙德.袖珍機械設(shè)計師手冊第3版[M].機械工業(yè)出版社.
[5] 機械設(shè)計手冊新版第2卷[M].機械工業(yè)出版社.
湘潭大學(xué)興湘學(xué)院
畢業(yè)設(shè)計說明書
題 目:摩擦式機械無級變速器結(jié)構(gòu)設(shè)計
專 業(yè): 機械設(shè)計及其自動化
學(xué) 號: 2007964230
姓 名: 陳 鍇
指導(dǎo)教師: 聶松輝 (教授)
完成日期: 2011年5月
湘潭大學(xué)興湘學(xué)院
畢業(yè)論文(設(shè)計)評閱表
學(xué)號 2007964230 姓名 陳鍇 專業(yè) 機械設(shè)計及其自動化
畢業(yè)論文(設(shè)計)題目: 摩擦式機械無級變速器結(jié)構(gòu)設(shè)計
評價項目
評 價 內(nèi) 容
選題
1.是否符合培養(yǎng)目標(biāo),體現(xiàn)學(xué)科、專業(yè)特點和教學(xué)計劃的基本要求,達到綜合訓(xùn)練的目的;
2.難度、份量是否適當(dāng);
3.是否與生產(chǎn)、科研、社會等實際相結(jié)合。
能力
1.是否有查閱文獻、綜合歸納資料的能力;
2.是否有綜合運用知識的能力;
3.是否具備研究方案的設(shè)計能力、研究方法和手段的運用能力;
4.是否具備一定的外文與計算機應(yīng)用能力;
5.工科是否有經(jīng)濟分析能力。
論文
(設(shè)計)質(zhì)量
1.立論是否正確,論述是否充分,結(jié)構(gòu)是否嚴(yán)謹(jǐn)合理;實驗是否正確,設(shè)計、計算、分析處理是否科學(xué);技術(shù)用語是否準(zhǔn)確,符號是否統(tǒng)一,圖表圖紙是否完備、整潔、正確,引文是否規(guī)范;
2.文字是否通順,有無觀點提煉,綜合概括能力如何;
3.有無理論價值或?qū)嶋H應(yīng)用價值,有無創(chuàng)新之處。
綜
合
評
價
1、 菱錐式無級變速器設(shè)計較合理
2、 數(shù)據(jù)正確,計算,分析科學(xué)
3、 說明書文字通暢,觀點提煉
4、 圖紙完備、正確、整潔
評閱人:
2011年5月 日