1643-油泵殼體的模具設(shè)計(jì)
1643-油泵殼體的模具設(shè)計(jì),油泵,殼體,模具設(shè)計(jì)
1The fast mould integrates the systematic precision and guarantees that the system is studied Summary : Recommend with RP fast of technology and cast maturity manufacture functional CAE system of products of craft, have analysed the factor influencing precision of the products, has proposed analysing the precision at stage of three main shaping with the non-linear finite element, adopt pattern-recognition theory, error theory, neural network method to deal with the error and feedback the problem, carry on error compensate revise and prediction of machining accuracy , improve final method of product quality. Keyword: CAE; RT; Feedback 1 preface Fast prototype technology (& of Rapid Prototyping Manufacturing, abbreviate RP or RPM as, urged directly by the part CAD model, adopt the material accurate prototype or part manufacturing technology which piles up the complicated three-dimensional entity, it is each on the basis of being dispersed /pile up by shaping manufacturing approach not new-type of the principles. Rapid shaping technique already can make and include resin, plastics, paper, paraffin wax, pottery prototype of material successfully very much, but can only do the function experiment in the limited metal used for substituting really of occasion and other type function parts as the functional part. With increase and constant development of technology of demand, fast prototype technology to fast prototype / direction in which the part is being made develop. Utilize RP technological shaping function part, especially metal a kind of main method of part a switch technology, called the fast technology of mould(RT, Rapid tooling). Because traditional mould complicated consuming time and long costly to make course, become design and bottleneck that make often, use RP technology make fast economic mould become RP main motive force of technical development one of. Paul 2think from PR to RT shaping the second leap of technical development fast. The final purpose of making and shaping is products and service offered and meet the demands. RP technology become front technology of manufacturing industry with a great deal of superiority their, but because limitation restriction extensive application their of material; Traditional technology such as cast, forge and press and develop for a long time, relatively ripe already, but can't meet the needs of fast flexibility of information age , within future one period, must conbine rapid shaping technique and traditional shaping technology together , realize melting quickly and make. 2 RP and RT system integration New product development most high cost have, man-hour longest stage to make the physical model involved, namely prototype manufacture process. RP technology use fast inspection and fast manufactures of different model that part design for mainly. Its basic principle and forming process are: Designed the computer three-dimensional curved surface entity's model of the necessary part by CAD software first , namely electronic model; According to technological requirement, go on the strata it according to certain thickness , turn the original three-dimension electronic model into two-dimentional level information (sectional information); And then carry on certain treatment of the data after the strata, put into and process parameters, produce the numerical control code; Until computer control, numerical control system process by level way process each thin layer and make they automatic sticking and shaping in succession in an orderly manner. RT changes RP prototype into the technology of the tool and mould with various kinds of methods . A method among them is to change the prototype into a pottery type, utilize the method to cast to change into a metal type . And RT manufacture of technology intergration accurate to cast mould method meet modern industry towards many variety, turn batch request of development into with RP prototype, it known as" it is flexible tool " method 5 ,its craft of routes.3 integrated system make functional precision of product analyse Can find out from CAD final precision of product decide by manufacture error at each stage from model to fast prototype course in products.(1)CAD modeling among the course, because of modeling limitation of software, can describe accurate often as to complicated curved surface; (2)STL division of file among the course, because STL file layout 3mistake that modelling appear in the course sensitive to geometry, mistake these bring through STL file into and get RP modelling among the craft, some influence RP modelling course 3 these of craft seriously, 4 these . And STL file one approach the wanton surface of the room the triangle with level, therefore can only it is at CAD geometrical property among system therefore 3 on part since express approximate therefore. (3)RP craft through to pile up and succeed the object prototype next life material, a lot of craft course is also following the changing of the material , such as FDM and SLA craft. So, the forming process of RP is not only that the machinery of a material piles up course, a height coupling, non-linear thermodynamics course. There are thes influence factor of the precision of this course: Thickness of material parameter, power of laser, strata, scanning route,etc.. (4)Change precision loss of craft depend on and change craft material, conversion method used,etc.. (5)It is the stage that the precision loses the most in the whole craft course that the metal pours the course. Usually, the first several in 10*10 error of stage - 2 mm order of magnitude, and metal solidify size change of course in several even a dozen mm.s of order of magnitude, so, the improvement of the precision of the final products depends on this stage to a great extent. There are thes factor influencing its precision: Material nature, for instance material density, elastic mould amount, heat conduction rate, specific heat, line coefficient of expansion,etc., especially the high temperature hot thing parameter of the metal, the heat transfer characteristic between the metal and type, position of watering, rising head ,etc.. 4 integrate the precision of the systematic products and guarantee the system In the actual production, adopt and try on law come and guarantee final precision of product by mistake often. With the development of technology of the computer and to lowering costs, realizing the requests of digitization, course controllability, necessary to adopt computer integrated manufacturing approach, go on computer simulation emulation study to whole course. CAE (Computer Aided Engineering, project computer auxiliary ) including fairy victory make, flexible manufacturing, at the same time project, make etc. fictitiously. Introduce CAE technology, can draw the craft route again. If regard the middle course as " the black box ", from the craft route to the products of CAD model; This fast, many return circuit error with corresponding course controls and the reponse system.5 errors feedback system research In this CAE system, the error exists at every stages. 4In CAD modelling , divide in the course of STL file , it is because of the limitation of the modelling software that precision is lost, improve the quality of the software, can reduce the error .At RP prototype fabrication stage , change craft stage and metal to pour stage, involve the hot, strength coupling question, quote the non-linear finite element method , under the three-dimensional flute Karl's coordinate, according to the conservation principle of energy, can draw : (1) Exert hot stress and external force(such as border terms) that temperature cause as the strength load the object and then, try to get total deformation amount. After drawing the errors of every stages, can set up error reponse system . The error reponse system belongs to and closes the control system of the ring . A main content of it is the research that transmits function out of shape. Under it is at flute not three-dimensional Karl coordinate, whether calculate and error after being the out of shape can express for deformation that get for: e(x,y,z) =P ideal (x, y, z)- p reality (x, y,z) (2) If use Δ d (x, y, z) to show the change matrix of the real whole form , g (x, y, z) shows the matrix of controlling, the feedback control of the whole course can be described as: Δ d (x, y, z) =g(x,y,z) e (x, y,z) (3) E (x, y, z) is the algebraical sum of each course, namely, if does not consider the error of CAD modelling course , and e 1 (x, y,z),e 2 (x, y,z),e 3 (x, y,z) show respectively there aren't RP the error, the conversion craft error and the metal of course where the prototypes makes, e(x,y,z) =(x, y,z)+e 3 (x,y, z) (4) The present question is, set up proper g (x, y, z),make Δ d (x, y, z) can disappear to and smaller than range that a certain error allows δ quickly , namely satisfied: <δ of Δ d (x, y, z) (5) G (x, y, z) embodies us to the whole understanding of deforming the course, it must real-time reflection products out of shape with CAD model 5out of shape coupling relation. And will change with the changes of the border condition out of shape and material parameter . Because the whole course is that more than one variable, complicated three-dimension input more close the control system of the ring non-linearly, perhaps there is a coupling relation between each variable, so, influence g (x, y,z) factor the a lot of,very it it is difficult to be describe with unified mathematics formula, so, the author puts forward the method to use neural network, train g (x, y,z),make Δ d (x, y,z) reach require.Utilize the neural network to have advantage taught oneself to practise, can reduce the error and feedback the demand for the craft data of the question greatly , and benefit systematic expansion. And because close correcting function to the error of system of ring , may cause systematic unstability . Adopt neural self-adaptation of network, learning method, can raise system stupid and getting wonderful. 6 conclusions RP technology is a fast-developing new developing manufacturing technology, RP, and RT integrated system that technology combine together to make functional main method of part with RP technology nowadays, the precision of raising this fast flexible system is nowadays urgent problem that is solved . This text has analysed that influences the factor of the precision of the products in this flexible manufacturing system, have proposed analysing the precision at stage of three main shaping with the non-linear finite element, adopt pattern-recognition theory, error theory, neural network method to deal with the error and feedback the problem, carry on error compensate revise and prediction of machining accuracy , improve final method of product quality. Selected from " the electromechanical project "6快速模具集成系統(tǒng)精度保證體系研究摘要: 介紹了利用 RP技術(shù)的快速性和鑄造工藝的成熟性制造功能性產(chǎn)品的 CAE系統(tǒng),分析了影響產(chǎn)品精度的因素,提出了用非線性有限元分析三個(gè)主要成型階段的精度,采用模式識(shí)別理論、誤差理論、神經(jīng)網(wǎng)絡(luò)方法處理誤差反饋問(wèn)題,進(jìn)行誤差補(bǔ)償修正和加工精度的預(yù)報(bào),提高最終產(chǎn)品質(zhì)量的方法。關(guān)鍵詞:CAE;RT;反饋1 前 言快速原型技術(shù)(Rapid Prototyping & Manufacturing,簡(jiǎn)稱(chēng) RP或 RPM)是指在計(jì)算機(jī)控制與管理下,由零件 CAD模型直接驅(qū)動(dòng),采用材料精確堆積復(fù)雜三維實(shí)體的原型或零件制造技術(shù),是一種基于離散/堆積成型原理的新型制造方法??焖俪尚图夹g(shù)已經(jīng)能非常成功地制作包括樹(shù)脂、塑料、紙類(lèi)、石蠟、陶瓷等材料的原型,但往往不能作為功能性零件,只能在有限的場(chǎng)合用來(lái)替代真正的金屬和其它類(lèi)型功能零件做功能實(shí)驗(yàn)。隨著需求的增加和技術(shù)的不斷發(fā)展,快速原型技術(shù)正向快速原型/零件制造的方向發(fā)展。利用 RP技術(shù)成型功能零件尤其是金屬零件的一種主要方法是轉(zhuǎn)換技術(shù),稱(chēng)為快速模具(RT,Rapid tooling)技術(shù)。由于傳統(tǒng)模具制作過(guò)程復(fù)雜、耗時(shí)長(zhǎng)、費(fèi)用高,往往成為設(shè)計(jì)和制造的瓶頸,因此應(yīng)用 RP技術(shù)制造快速經(jīng)濟(jì)模具成為 RP技術(shù)發(fā)展的主要推動(dòng)力之一。Paul [1]認(rèn)為從 RP到 RT是快速成型技術(shù)發(fā)展的第二次飛躍。制造和成型的最終目的是要提供滿(mǎn)足要求的產(chǎn)品和服務(wù)。RP 技術(shù)以其諸多優(yōu)越性而成為制造業(yè)的前沿技術(shù),但因?yàn)椴牧系木窒扌灾萍s了其更廣泛的應(yīng)用;傳統(tǒng)技術(shù)如鑄造、鍛壓等經(jīng)過(guò)長(zhǎng)期發(fā)展,已相對(duì)成熟,但不能適應(yīng)信息時(shí)代的快速柔性要求,在未來(lái)一段時(shí)期內(nèi),必須將快速成型技術(shù)與傳統(tǒng)成型技術(shù)結(jié)合起來(lái),實(shí)現(xiàn)敏捷化制造。72 RP 與 RT系統(tǒng)集成新產(chǎn)品開(kāi)發(fā)中成本最高、工時(shí)最長(zhǎng)的階段就是制造所涉及的物理模型,即原型制造過(guò)程。RP 技術(shù)主要用于零件設(shè)計(jì)的快速檢驗(yàn)以及各種模型的快速制造。其基本原理和成型過(guò)程是:先由 CAD軟件設(shè)計(jì)出所需零件的計(jì)算機(jī)三維曲面實(shí)體模型,即電子模型;然后根據(jù)工藝要求,將其按一定厚度進(jìn)行分層,把原來(lái)的三維電子模型變成二維平面信息(截面信息);再將分層后的數(shù)據(jù)進(jìn)行一定的處理,加入加工參數(shù),生成數(shù)控代碼;在計(jì)算機(jī)控制下,數(shù)控系統(tǒng)以平面加工方式有序地連續(xù)加工出每個(gè)薄層并使它們自動(dòng)粘接而成型。RT 就是用各種方法把 RP原型轉(zhuǎn)換成工模具的技術(shù)。其中一個(gè)方法是將原型轉(zhuǎn)換成陶瓷型,再利用鑄造的方法轉(zhuǎn)換成金屬型。利用 RP原型與 RT技術(shù)集成的制造精密鑄造模具方法適應(yīng)了現(xiàn)代工業(yè)向著多品種、變批量發(fā)展的要求,被稱(chēng)為“柔性工具”方法 [5],其工藝路線. 3 集成系統(tǒng)制造功能性產(chǎn)品的精度分析從 CAD模型到快速原型到產(chǎn)品的過(guò)程可以看出,最終產(chǎn)品的精度是由每個(gè)階段的制造誤差決定的。(1)CAD建模過(guò)程中,由于建模軟件的局限性,對(duì)于復(fù)雜的曲面常常不能精確地加以描述;(2)STL 文件的劃分過(guò)程中,由于 STL文件格式對(duì)幾何造型過(guò)程中出現(xiàn)的錯(cuò)誤不敏感,這些錯(cuò)誤通過(guò) STL文件帶入到 RP造型工藝中,有的將嚴(yán)重影響 RP工藝的造型過(guò)程 [3,4] 。而且,STL 文件用平面三角形面片來(lái)逼近空間的任意表面,因而只能近似地表示零件在 CAD系統(tǒng)中的幾何特征 [3]。(3)RP 工藝是通過(guò)材料的堆積來(lái)生成物體原型,許多工藝過(guò)程還伴隨著材料的相變,如 FDM和 SLA工藝。所以,RP 成型過(guò)程不只是一個(gè)材料的機(jī)械堆積過(guò)程,還是一個(gè)高度耦合、非線性的熱力學(xué)過(guò)程。這一過(guò)程的精度影響因素有:材料參數(shù)、激光功率、分層厚度、掃描路徑等。(4)轉(zhuǎn)換工藝中的精度損失取決于轉(zhuǎn)換工藝所使用的材料、轉(zhuǎn)換方法等。(5)金屬澆注過(guò)程是整個(gè)工藝過(guò)程中精度損失最大的階段。通常,前幾個(gè)階段的誤差在 10×10-2mm數(shù)量級(jí),而金屬凝固過(guò)程的尺寸變化在幾個(gè)甚至十幾個(gè)毫米數(shù)量級(jí),因此,最終產(chǎn)品精度的提高很大程度上取決于這個(gè)階段。影響其精度的因素有:材料性質(zhì),如材料密度、彈性模量、導(dǎo)熱率、比熱、線膨脹系數(shù)等,尤其是金屬的高溫?zé)嵛镄詤?shù),金屬與型腔之間的傳熱特征,澆、冒口的位置等。4 集成系統(tǒng)產(chǎn)品精度保證體系8實(shí)際生產(chǎn)中,常常采用試錯(cuò)法來(lái)保證最終產(chǎn)品的精度。隨著計(jì)算機(jī)技術(shù)的發(fā)展以及對(duì)降低成本、實(shí)現(xiàn)數(shù)字化、過(guò)程可控性的要求,有必要采用計(jì)算機(jī)集成制造方法,對(duì)整個(gè)過(guò)程進(jìn)行計(jì)算機(jī)模擬仿真研究。CAE(Computer Aided Engineering,計(jì)算機(jī)輔助工程)包括靈捷制造、柔性制造、同時(shí)工程,虛擬制造等。引進(jìn) CAE技術(shù),可以把工藝路線重新繪制。如果把中間過(guò)程看作“黑匣子”,則由 CAD模型到產(chǎn)品的工藝路線;此過(guò)程相應(yīng)的快速、多回路誤差控制與反饋系統(tǒng)。5 誤差反饋系統(tǒng)研究在此 CAE系統(tǒng)中,誤差存在于每一階段。在 CAD造型、劃分 STL文件的過(guò)程中,精度的丟失是由于造型軟件的局限性,提高軟件的質(zhì)量,可以降低誤差。在 RP原型制造階段、轉(zhuǎn)換工藝階段和金屬澆注階段,涉及熱、力耦合問(wèn)題,引用非線性有限元方法,在三維笛卡爾坐標(biāo)下,根據(jù)能量守恒原理,可以得出:(1)再將溫度引起的熱應(yīng)力和外力(如邊界條件)之和作為力載荷施加到物體,求得總變形量。得出每一階段的誤差之后,可以建立誤差反饋系統(tǒng)。誤差反饋系統(tǒng)屬閉環(huán)控制系統(tǒng)。它的一個(gè)主要內(nèi)容是變形傳遞函數(shù)的研究。在三維笛卡爾坐標(biāo)下,由計(jì)算得到的變形前和變形后的誤差可以表示為:e(x,y,z)=p 理想 (x,y,z)-p 實(shí)際 (x,y,z) (2)如果用 Δd(x,y,z)表示實(shí)際整體形狀的變化矩陣,g(x,y,z)表示控制矩陣,則整個(gè)過(guò)程的反饋控制可以描述為:Δd(x,y,z)=g(x,y,z) e (x,y,z) (3)e(x,y,z)是每個(gè)過(guò)程的代數(shù)和,即,如果不考慮 CAD造型過(guò)程的誤差,且 e1(x,y,z),e2(x,y,z),e 3(x,y,z)分別表示 RP原型制造的誤差、轉(zhuǎn)換工藝過(guò)程的誤差和金屬澆注過(guò)程的變形量,則e(x,y,z)=e1(x,y,z)+e2(x,y,z)+e3(x,y,z) (4)現(xiàn)在的問(wèn)題就是,設(shè)置適當(dāng)?shù)?g(x,y,z),使 Δd(x,y,z)能夠很快地收斂到小于某個(gè)誤差允許的范圍 δ,即滿(mǎn)足:9Δd(x,y,z)<δ (5)g(x,y,z)體現(xiàn)出我們對(duì)整個(gè)變形過(guò)程的理解,它必須實(shí)時(shí)的反映產(chǎn)品變形和CAD模型變形的耦合關(guān)系。而且還要隨變形邊界條件和材料參數(shù)的變化而變化。由于整個(gè)過(guò)程是一個(gè)多變量、多輸入的復(fù)雜三維非線性閉環(huán)控制系統(tǒng),各個(gè)變量之間可能存在耦合關(guān)系,因此,影響 g(x,y,z)的因素很多,很難用統(tǒng)一的數(shù)學(xué)公式描述,因此,作者提出應(yīng)用神經(jīng)網(wǎng)絡(luò)的方法,訓(xùn)練 g(x,y,z),使 Δd(x,y,z)達(dá)到要求。利用神經(jīng)網(wǎng)絡(luò)具有自學(xué)習(xí)的優(yōu)點(diǎn),可以大大減少誤差反饋問(wèn)題對(duì)工藝數(shù)據(jù)的需求,并且便于系統(tǒng)的擴(kuò)展。而且由于閉環(huán)系統(tǒng)對(duì)誤差的校正作用,可能會(huì)導(dǎo)致系統(tǒng)的不穩(wěn)定。采用神經(jīng)網(wǎng)絡(luò)的自適應(yīng)、自學(xué)習(xí)方法,可以提高系統(tǒng)的魯棒性。6 結(jié)論RP 技術(shù)是一個(gè)正在快速發(fā)展的新興制造技術(shù),RP 和 RT技術(shù)相結(jié)合的集成系統(tǒng)是當(dāng)今利用 RP技術(shù)制造功能性零件的主要方法,提高此快速柔性系統(tǒng)的精度是當(dāng)今急迫解決的問(wèn)題。本文分析了影響此柔性制造系統(tǒng)中產(chǎn)品精度的因素,提出了用非線性有限元分析三個(gè)主要成型階段的精度,采用模式識(shí)別理論、誤差理論、神經(jīng)網(wǎng)絡(luò)方法處理誤差反饋問(wèn)題,進(jìn)行誤差補(bǔ)償修正和加工精度的預(yù)報(bào),提高最終產(chǎn)品質(zhì)量的方法。選自《機(jī)電工程》 摘 要本次設(shè)計(jì)的題目是油泵殼體的模具設(shè)計(jì)。通過(guò)對(duì)制件的工藝分析,確定了模具的工藝方案。共分為兩次拉深和一次沖孔翻邊。本說(shuō)明書(shū)主要闡述了油泵殼體的第一次拉深和沖孔翻邊模具設(shè)計(jì)的基本過(guò)程及主要計(jì)算數(shù)據(jù)。全篇共分為三章。第一章是設(shè)計(jì)油泵殼體模具的工藝方案的確定,主要根據(jù)所給制件特點(diǎn)加以分析,設(shè)計(jì)出合理的模具,這里共設(shè)計(jì)出兩套模具。第二章是落料拉深復(fù)合模的設(shè)計(jì),其中包括一些典型結(jié)構(gòu)的選擇和一些非標(biāo)準(zhǔn)零件的設(shè)計(jì)。第三章是沖孔翻邊復(fù)合模的設(shè)計(jì),包括各種模具零件的選擇和一些零件尺寸的計(jì)算。第一套模具是典型的結(jié)構(gòu),第二套模具則根據(jù)制件工藝要求進(jìn)行了部分創(chuàng)新。鑒于本人的水平所限,在設(shè)計(jì)中肯定有不足之處存在,也會(huì)有很多錯(cuò)誤出現(xiàn),懇請(qǐng)?jiān)u閱老師和各位讀者包涵并且批評(píng)指正。關(guān)鍵詞:拉深 沖孔 翻邊 SummaryThe topic designed this time is the mold design of the shell of an oil pump. Through analysing to the craft which makes one , have confirmed the craft scheme of the mould. Divide it in order to draw and wash hole turn-ups with once deeply twice altogether. Manual this explain oil pump shell draw dark washing hole basic course , turn-ups of mold design and mainly calculating the datum for the first time mainly.The whole one is divided into three chapters altogether. Chapter one the sureness of craft scheme of designing shell mould of the oil pump, the main foundation gives and makes a characteristic to analyse , design the rational mould, design two sets of moulds altogether here. Chapter two the blanking draws the design of the deep complex mould , including some choices of typical structure and the designs of some non-standard parts. Wash hole turn-ups complex design of mould , include various kinds of mould choice and some part calculation of size of part. The first set of moulds is the typical structure, the second set of moulds has innovated partly according to making a technological requirement. Seeing that my level restricts, must there are weak points to exist in the design, a lot of mistakes will appear too , will earnestly ask to read and appraise the teacher and every reader and forgive and make a comment.Keywords: Draw deeply Wash holes Turn-ups目 錄第一章 工藝方案的確定 ……………………………………………………… 1第二章 落料拉深復(fù)合模的計(jì) ……………………………………………… 3第三章 沖孔翻邊復(fù)合模的設(shè)計(jì) ……………………………………………… 15畢業(yè)設(shè)計(jì)總結(jié) ………………………………………………………………… 24參考文獻(xiàn) ………………………………………………………………………… 25
收藏