3718 旋耕機傳動系統(tǒng)設計
3718 旋耕機傳動系統(tǒng)設計,旋耕機,傳動系統(tǒng),設計
UNIVERSITY本 科 畢 業(yè) 論 文(設 計)題 目: 旋耕機傳動系統(tǒng)設計 學 院: 姓 名: 學 號: 專 業(yè): 機械設計制造及其自動化 年 級: 指導教師: 職 稱: 副教授 二○一二 年 五 月 小型旋耕機傳動系統(tǒng)設計2目錄摘 要 .............................................................31 前 言 ..........................................................42 旋耕機的研究意義與發(fā)展趨勢 .......................................62.1 開發(fā)旋耕機的目的和意義 .....................................62.2 國內外旋耕機的發(fā)展現(xiàn)狀 .....................................62.3 旋耕機開發(fā)存在的問題與發(fā)展趨勢 .............................73 總體方案確定及主要參數(shù)的選擇 ......................................73.1 總體結構設計及工作原理 ......................................74 旋耕機類型、耕幅、刀軸轉速和傳動形式的選擇 ......................104.1 旋耕機類型的選擇 ..........................................104.2 旋耕機耕幅的確定 ...........................................104.3 旋耕機的傳動型式的選擇 .....................................104.4 旋耕機的刀軸轉速選定 .......................................115 耕深裝置的設計 ..................................................116 最優(yōu)傳動方案的確定 ..............................................126.1 齒輪箱傳動方式的確定 ......................................126.2 傳動系數(shù)參數(shù)的確定 ........................................136.3 各檔傳動路線的確定 ........................................136.4 各對齒數(shù)的確定 ............................................137 軸的計算 ........................................................137.1 變速箱輸出軸的設計 .........................................137.2 變速箱輸入軸的設計 ..........................................158 齒輪的設計 ....................................................188.1 選定齒輪類型、精度等級、材料及齒數(shù) .........................188.2 按齒根彎曲疲勞強度計算 .....................................188.3 計算 .......................................................198.4 按齒根彎曲強度設計 ..........................................208.5 幾何尺寸計算 ................................................218.6 驗算 ......................................................229 結構設計及繪制齒輪的零件圖 .................................2210 刀輥軸的強度計算 ................................................2210.1 旋耕機負荷最大的部件就是刀輥軸 ............................2210.2 刀輥軸的設計計算說明 .....................................2311 帶傳動的設計計算 ...............................................2411.1 皮帶設計 ..................................................2411.2 選擇帶型 ..................................................2411.3 確定帶輪的基準直徑 dd1和 dd2 ................................2411.4 帶輪設計 ...................................................2712 鏈傳動的設計計算 ...............................................27 小型旋耕機傳動系統(tǒng)設計3設計總結 ...........................................................30參考文獻 ...........................................................31旋耕機傳動系統(tǒng)設計作 者: 夏明普指導老師: 摘 要本文在分析小型步旋耕機的結構組成和工作原理的前提下,介紹說明了小型步旋旋耕機的設計遠著和設計步驟。并根據設計原則的要求,首先選擇了小型步旋耕機的類型,確定小型步旋耕機的耕幅、傳動形式、刀軸轉速,離合器工作的選擇等內容。然后具體設計了小型步旋耕機的傳動裝置,包括齒輪箱的結構設計、關鍵零件的強度校核、耕深調節(jié)裝置和工作部件總成的設計。齒輪箱的設計是本次設計的主要內容,這包括了大量的工作:資料的整理,參數(shù)的設定,相關計算,繪圖等。關鍵詞:旋耕機;變速箱;離合器 小型旋耕機傳動系統(tǒng)設計4Design of electireic rototillerStudent:xia ming puTutor:yao ming yin(jiang xi Agricultural University)Abstract: Rototiller is a kind of farming machinery which is particularly suited to the hills, mountainous areas, small plot of land, big altitude difference, no-tractor road, orchard, tea house, vegetable plots, greenhouse canopy, hill slopes and small pieces (water, dry farmland) . In order to adapt to the development of large-scale vegetables canopy, I conduct this design according to the demand of agricultural work environment and the present economic heritage requirements of technical conditions micro electric rototiller design. This rototiller is designed by making power generator based on motor. The comprehensive analysis of rototiller is conducted by analyzing overall scheme , working principle , the option of spin and plow knife transmission system and control system for a design, and the key components are calculated respectively. This rototiller has simple structure, light weight and zero emissions of waste gas ,and is used universally in rellis shallow intertillage of great pavilion.Key words:rototiller; knife; farming tool; reducer. 小型旋耕機傳動系統(tǒng)設計51 前 言 旋耕機是一種由動力驅動旋耕刀袞完成耕、耙作業(yè)的耕耘機械。旋耕機具有犁耙合一的作業(yè)效果,它的耕作部件為旋耕刀輥是由多把旋耕刀在刀軸上按螺旋線排列而成,,較好地切斷植被并將其混合于整個耕作層內,也能有效地將化肥、農藥等混施于土內,在水田中帶水旋耕后即可直接插秧。其切土、碎土能力強,一次作業(yè)能達到犁耙?guī)状蔚男Ч?耕后地表平整、松軟,能滿足精耕細作要求.旋耕機作業(yè)質量好、工效高,既能搶農時、節(jié)省勞力,又可減少機器下地次數(shù),減輕行走部件對土壤的壓實,在我國南北方均有廣泛使用。旋耕機于 19 世紀中葉問世以來,得到了迅速發(fā)展和推廣使用。日本二戰(zhàn)之后為了盡快恢復經濟發(fā)展引進旋耕機用于農業(yè)生產。但是由于日本大多為水田直角形旋耕刀不適宜于進行水田耕作。一大批日本學者開始致力于水田用旋耕刀的研究如吉田富穗、松尾昌樹、坂井純等人研制出了旋耕彎刀成功地解決了刀軸纏草等問題。為了解決刀軸纏草的問題本文對旋耕彎刀進行了設計說明。對彎刀的刃口曲線提出了相應的要求,目前能達到這種要求的刃口曲線有阿基米德螺線、等角對數(shù)螺線、正弦指數(shù)曲線等其中阿基米德螺線應用最廣。 到目前為止,旋耕機產品雖然在理論上可以配套 58.8-73.5kw 的拖拉機,但實際上因受傳動系統(tǒng)強度及結構尺寸、機架結構強度的限制,配套合理范圍僅達 48kw 的拖拉機;耕深亦局限在旱耕 12-16cm,水耕 14-18cm。我國對旋耕機的研制始于 20 世紀 50 年代末, 初期主要研制與手扶拖拉機配套的旋 耕機,后來研制出與中型輪式拖拉機配套的旋耕機;70 年代初完成了與當時國產的各類拖 拉機配套的系列旋耕機的設計,并使之得到了推廣應用;到 80 年代,與手扶拖拉機配套的 旋耕機由專用型發(fā)展到兼用型, 由于手扶拖拉機配套發(fā)展到與輪式及履帶式拖拉機配套。 旋 耕機在我國的發(fā)展經歷了單機研制、發(fā)展系列產品、新產品開發(fā)和換代 3 個階段,隨著新的 種植、 小型旋耕機傳動系統(tǒng)設計6耕作農藝的發(fā)展和推廣,在旋耕機基礎上還研制出了多種用途的聯(lián)合復式作業(yè)機。 20 世紀 90 年代以來,為適應市場需要,有些企業(yè)試圖開發(fā)大型旋耕機,但因水平有限,僅采用原有產品外延放大和堆砌材料的方法,沒有著重結構的改進和參數(shù)的優(yōu)化, 目前能與 200 馬力以上拖拉機配套的農機具在我國還完全依賴進口。 另外我國旋 耕機械生產企業(yè)規(guī)模都比較小,裝備差、制造工藝水平低,有些產品出廠質量粗 放,可靠性不高,企業(yè)低價競爭導致投入創(chuàng)新的部分過少,不利于行業(yè)的發(fā)展。 因而走了彎路。因此,現(xiàn)有旋耕機產品在品種上尚有大型和深耕型的空缺。隨著水稻集約化、規(guī)?;a的發(fā)展,水田耕整用寬幅高速型旋耕機成為發(fā)展方向。水田土壤含水率高,抗剪切、抗壓強度特別低,附著力、外摩擦力也接近為零,切土部件與土壤之間存在潤滑水膜。因此,大塊水田使用大型拖拉機旋耕機組水耕時,為充分發(fā)揮其功率,實現(xiàn)高效率、高效益,需要工作幅寬 3m 以上的寬幅旋耕機。但寬幅又受到道路行駛和入庫停機不便的制約。解決途徑有二:一是旋耕機采用寬度伸縮或折疊式結構;二是采用適中的幅寬,提高作業(yè)速度,從現(xiàn)有的 2-5km/h 提高到 4-8km/h。為滿足以上要求,需要改進旋耕機及工作部件的結構和參數(shù),研制寬幅高速旋耕機及滅茬、旋耕、旋耙和深施化肥的復式作業(yè)機械。 我國作為農業(yè)大國,不少農機學者在旋耕機方面進行了大量的研究工作。為了促進驅動型耕作機械的發(fā)展,本人選擇了旋耕機作為自己的畢業(yè)設計論文課題,借鑒了不少知名學者的重要研究成果,書寫成文。由于資料搜集的局限性和水平有限,錯誤和不足之處在所難免,歡迎讀者批評指正。 小型旋耕機傳動系統(tǒng)設計72 旋耕機的研究意義與發(fā)展趨勢2.1 開發(fā)旋耕機的目的和意義 土壤耕作是種植業(yè)生產過程中的重要一環(huán),對于農作物增產具有重要作用。因此,土壤耕作機械的發(fā)展一直受到人們的關注。由于土壤耕作是一項能耗很大的作業(yè),傳統(tǒng)的土壤耕作機械,如犁,耙等都需要多次書耕作會對土壤造成破壞,不利于水土保持,消耗較大。長期以來,人們一直在探討新的工作制度,松土和局部松土,不耕和少耕。在這種形勢下,驅動型耕作機械誕生了。這種機械之所以引人注目,一是強化土壤耕作過程,可以滿足不同條件下的不同土壤類型;二是一次耕作可以聯(lián)合作業(yè);三是有動力驅動,質量好;四是作業(yè)時幾乎不需要牽引功率,減少了功率的消耗。 驅動型機具有多種,如旋耕機,振動土壤耕作機械等,目前廣泛使用的,應用前景最好的就是旋耕機。耕機切土、碎土能力強,一次旋耕能夠達到一般犁耙作業(yè)幾次的碎土效果,耕后地表平整、松軟,能滿足精耕細作要求,且縮短工序間隔,有利于搶農時抗旱保墑,減少拖拉機進地次數(shù),減輕對土壤壓實,減少能源消耗,降低作業(yè)成本,減少機具投資,提高機具利用率,加之近年來國內還田技術和免耕少耕技術的推廣應用,旋耕機得到了迅猛發(fā)展,已成為拖拉機的主要配套機具之一。2.2 國內外旋耕機的發(fā)展現(xiàn)狀國內外旋耕機的發(fā)展動態(tài)、存在問題及發(fā)展方向 目前,水平軸旋耕部件與地輪轉向一致的旋耕機,在國內外在實際生產中得到廣泛的應用,并且旋耕工作部件結構相當完善。旋耕機的保有量也增加的很快,為了適應當前的生產規(guī)模,為不同機型拖拉機配套,生產了作業(yè)幅:為 1.25m2.8m 多種型號的旋耕機。如南昌旋耕機廠的 IGN 系列多種型號旋耕機,連云港旋耕機集團公司生產的 IGE2—210 型旋耕機,1CN-250S 型旋耕機等。在黑龍江省農業(yè)生產中,使用的機型還有 1GHL 一 280 型松旋起壟機、1GSZ-210/280 型組合式旋耕多用 小型旋耕機傳動系統(tǒng)設計8機、1GZJ 一 210 型旋耕滅茬聯(lián)合整地機、1GLT-4 型松旋滅茬起壟通用機等。很多機型為了適應黑龍江省農藝要求,在旋耕機后部安裝了起壟犁鏵。為了裝配各種不同的工作件組臺設計了專門的機架,以提高旋耕機的應用水平。有的旋耕機依據旋耕部件與耕深的相對關系,把中央調速器直接設計安裝在旋耕工作部件的軸上。這樣保證了農具的最小能耗、最少的材料消耗和較好的工作質量。由于調速器殼體下是未耕地,存在如何保護好調速器殼體的問題。國產的 1G 一 150 旋耕機和 1G 一 140 旋耕機等多種機型的旋耕軸配置在地表水平面上或低于地表。為了防止調速器外殼的損壞,在殼體上或前犁柱上安有專用的分土鏟。分土鏟開出的鏵溝被補助整地作業(yè)消滅。2.3 旋耕機開發(fā)存在的問題與發(fā)展趨勢 從近幾年國產的旋耕機配套推廣應用情況來看,存在一些問題: (1)拖拉機動力輸出軸容易損壞:(2) 、十字萬向傳動軸使用壽命短:(3) 、旋耕作業(yè)性能不穩(wěn)定和容易纏草的問題;(4) 、缺少與大功率拖拉機配套的旋耕機;(5) 、作業(yè)性能滿足不了當今的農藝要求;這些問題的解決有待于進行更深入的研究。 隨著農業(yè)機械化程度的增強,工作效率和效益的提高,現(xiàn)有的旋耕機的弊端日益突出,已滿足不了農藝要求和生產規(guī)模擴大的需要。故對旋耕機的研究有了進一步的深化,出現(xiàn)如下幾個方向的發(fā)展趨勢:(1) 、向寬幅,高速型旋耕機發(fā)展;(2) 、向聯(lián) (3) 全幅深旋耕機已起步; 、合作業(yè)機組方向發(fā)展; (4) 向可持續(xù)發(fā)展戰(zhàn)略型發(fā)展; 、小型旋耕機需求量有所增加。 小型旋耕機傳動系統(tǒng)設計93 總體方案確定及主要參數(shù)的選擇 3.1 總體結構設計及工作原理 裝配示意圖如下:1 油門控制器 2 操縱手柄 3 限深機構 4 油門拉繩 5 離合拉桿 6 旋耕工作部件 7 柴油機 圖 1 裝配示意圖主要由發(fā)動機、變速箱、機架、旋耕工作部件、限深機構、操縱手柄、三角皮帶輪、支架等組成,其工作原理是將發(fā)動機的動力經三角皮帶傳遞給變速箱主動軸,經二級減速帶動安裝在驅動輪軸上的旋耕刀片旋轉(在銑切加工土壤過程中,通過土壤反力推動機器前進) 。耕深主要靠阻力鏟柄上孔眼的位置進行上下調節(jié),同時還可通過人改變其對操縱手柄的壓力以增減力矩,調節(jié)機器的前進速度,借以達到改變耕深的目的。 另外,旋耕作業(yè)的碎土性能與土壤含水量、土壤堅實度和機器的作業(yè)速度有關, 在實際作業(yè)中應根據具體情況選擇最佳的工作速度。 為了全面實現(xiàn)設計技術指標,在結構上進行了優(yōu)化設計,體現(xiàn)在以下幾個方面; 1.變速箱殼體采用薄壁鋼板多次沖壓成型,既減 小型旋耕機傳動系統(tǒng)設計10少了加工工序, 又降低了制造造成本,也使機器重量大大減輕。 2.為滿足多項作業(yè)要求,變速箱設有三個速檔,高速檔用于旋耕、運輸作業(yè), 低速檔用于中耕、起壟作業(yè)。同時在變速箱右側有動力輸出軸,可肚帶動小水泵、脫粒機、碾米機、打漿機等進行場上固定作業(yè)。再有,驅動輪軸采用通軸結構,它與旋耕工作部件配合安裝,便于工作部件的更換。還可安上運輸輪進行短途運輸作業(yè)。 3.由于該機是旋耕作業(yè)為主,為在旋耕作業(yè)過程中,不使機器發(fā)生上跳、前滑現(xiàn)象,增強操作舒適感,整機重心的布置非常重要。實踐證明,為確保旋耕作業(yè)的穩(wěn)定性,重心設在驅動輪軸上方前后 20mm 處是適宜的。 4.為保證作業(yè)質量,使旋耕時不漏耕,變速箱下部寬度要窄為宜,該機為 45mm 基本做到了不漏耕。 5.為適應棚室空問矮小的作業(yè)條件,機器操作手柄既可上下調整,又可在 180°內前后轉動調整。 表 1 主要技術參傳動系統(tǒng)示意圖如圖 3 所示。 小型旋耕機傳動系統(tǒng)設計11旋耕機傳動路線圖 (圖 3)4 旋耕機類型、耕幅、刀軸轉速和傳動形式的選擇4.1 旋耕機類型的選擇 本設計主要適用于溫室及工作內部環(huán)境較低的地方,故選用小型號,簡單實用的步進式旋耕機。4.2 旋耕機耕幅的確定根據主機動力輸出功率和旋耕作業(yè)時單位幅寬功耗可對幅寬進行初步選定幅寬過大刀片增多將導致發(fā)動機工作過載合適的幅寬則可保證主機功率的充分利用。實際中幅寬的初選可采用經驗公式 B0.260.29N 但最終的確定必須經過試驗驗證。事實上對于同一種旋耕機主機功率大的配套并不一定有好的作業(yè)質量相反卻有可能造成功率的浪費通過試驗能合理確定對應幅寬的最佳配套功率可以避免“大馬拉小車”的情況。耕幅與柴油機的功率有關,并影響旋耕機與柴油機的配置方式。耕幅 B 與柴油機動力輸出軸的額定輸出功率大體成以下關系: B=0.26~0.29N N =3.5 KW式中 N——柴油機機的額定功率(KW) 小型旋耕機傳動系統(tǒng)設計12B=0.9207m~1.1506m 本設計選取 B=1m4.3 旋耕機的傳動型式的選擇三點懸掛式旋耕機有中間傳動和側邊傳動兩種形式。中間傳動適合于耕幅為1.752m,本設計中旋耕機的耕幅為 1m,采用中間全齒輪傳動。利用皮帶將電動機動力傳遞給主軸,輸出的動力經皮帶傳至齒輪箱,然后通過中間齒輪箱的三級變速傳動,把運動和動力傳到輥刀軸,即執(zhí)行機構。刀軸分為左、右兩側。這種齒輪箱特點是機架牢固、剛性好、布局合理,適用本旋耕機。缺點是箱體處不能安裝彎刀,如不設置特殊工作部件,將出現(xiàn)漏耕。為此本設計在齒輪箱的下方增設了犁體總成以消除漏耕現(xiàn)象。4.4 旋耕機的刀軸轉速選定 在機組前進速度不變的情況下,旋耕機所需功率隨刀軸轉速的增加而增加,較理想的配合是低刀軸轉速和較高的前進速度,雖然功耗要增加些,但因生產率提高了,仍可降低單位面積的能耗。近年來,刀軸轉速降低的趨勢尤為明顯。另外旋耕機的刀軸轉速一般在 200-285r/min,隨著土壤比阻不同,旋耕機的刀軸轉速也不同,粘性重的土壤比阻大,轉速應偏低,砂性土壤比阻小,轉速可偏高。 為了提高生產率及地區(qū)適應性,減少能耗,本設計旋耕機刀軸轉速選擇 200r/min。5 耕深裝置的設計旋耕機是一種作業(yè)范圍廣的農用機械,根據不同的土壤條件和工作要求,需要有不同的旋耕深度。對于由功率 p 小于等于 44kw 的拖拉機帶動的旋耕機時,如果和具有調節(jié)液壓懸掛機構的拖拉機配套時,利用位調節(jié)手柄在不同位置的定位調整耕深,與具有分置式液壓懸掛機構的拖拉機配套時,利用活塞桿上定位卡箍的不同位置調整耕深。本設計中的旋耕機所選動力源的功率為 3.5KW,根據設計任務的要求,要求旋耕機的耕深范圍為 10—15cm。所以該機的設計旋耕深度最大為 15cm,嚴禁旋耕機超限作業(yè),否則將導致某些零部件的損壞和早期磨損,還將嚴重影響整體作業(yè)效率,故需設計耕深調節(jié)裝置。此設計運用的 小型旋耕機傳動系統(tǒng)設計13是限深桿機構,簡單實用,通過調節(jié)螺栓決定限深桿的長度而改變耕作深度。6 最優(yōu)傳動方案的確定6.1 齒輪箱傳動方式的確定三點懸掛式旋耕機有中間傳動和側邊傳動兩種形式。中間傳動適合于耕幅為 1.75~2m,本設計中旋耕機的耕幅為 2m,采用中間全齒輪傳動。利用帶傳動將柴油機動力輸出軸的動力傳遞給齒輪軸,經齒輪傳動,再經鏈傳動,最后傳遞到刀輥軸。刀軸分為左、右兩側。這種齒輪箱特點是機架牢固、剛性好、布局合理。缺點是箱體處不能安裝彎刀,如不設置特殊工作部件,將出現(xiàn)漏耕。為此本設計在齒輪箱的下方增設了犁體總成以消除漏耕現(xiàn)象。根據傳動要求和設計目的,選擇的傳動形式為全齒輪傳動。因為設計的是小型旋耕機,突出的是結構簡單,再者基于動力源是,故傳動原理和所設計的傳動結構布局如下圖說明: 小型旋耕機傳動系統(tǒng)設計14柴油機輸出軸,即動力源,輸出的動力經皮帶傳至齒輪箱,然后通過中間齒輪箱的三級變速傳動,把運動和動力傳到輥刀軸,即執(zhí)行機構6.2 傳動系數(shù)參數(shù)的確定傳動方案的分配,首級采用一級帶傳動。傳動比為 1.2,末級采用一級鏈傳動,傳動比為 1.67,使箱體下部分寬度較小,可以起到防止漏耕的效果。6.3 各檔傳動路線的確定快檔:帶傳動→ Z1/Z5xZ4/Z8 → 鏈傳動中檔:帶傳動 → Z2/Z6xZ4/Z8 →鏈傳動慢檔:帶傳動 → Z3/Z7xZ4/Z8 → 鏈傳動6.4 各對齒數(shù)的確定齒輪 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8模數(shù) 2 2 2 4 2 2 2 4 小型旋耕機傳動系統(tǒng)設計15齒數(shù) 28 38 48 18 48 38 28 48配對齒輪 Z5 Z6 Z7 Z8 Z1 Z2 Z3 Z47 軸的計算7.1 變速箱輸出軸的設計1、軸上的功率 P、轉速 n、轉矩 T由以上計算知變速箱輸入轉速 n2=655r/min,輸出轉速 n3=220r/min;功率 P2=3.21KW,輸出 P3=3.18;輸入轉矩 T1=47.38N m,輸出轉矩?T2=46.36N m;?2、求作用在齒輪上的力因已知低速級大齒輪的分度圓直徑為d2=mz2=4 48=192mm?3、初步確定軸的最小直徑查《機械設計》課本,由式(15-2)初步估算軸的最小直徑。選取軸的材料為 45 鋼,調質處理 [8]。根據表 15-3,取 A0=112,于是得dmin= =27.28mm 輸出軸的最小直徑是帶輪處33020.18nPA??的直徑。最小直徑選為 30mm。4、軸的結構設計1) 擬定軸上的零件裝配方案裝配圖如圖 4—3. 小型旋耕機傳動系統(tǒng)設計162) 根據軸向定位要求確定軸的各段直徑和長度(1) 為使鏈輪的右側有軸向定位,在 I-II 處需制出一軸肩,故取 II-III段的直徑 dII-III=40mm,帶輪和軸配合長度 L1=40mm。(2) 初步選擇滾動軸承。軸只承受徑向力,故選擇單列圓柱軸承。根據工作要求 dII-III=44mm,選擇軸承 6210 其尺寸為 d D B=50 90 20,故 dIII-IV=50mm,而?LIII-IV=20mm。 右端滾動軸承采用軸肩進行定位,由手冊上查得 6210 型軸承,取 dVII-VIII=50mm。(3) 取安裝齒輪處的軸段 IV-V 的直徑 dIV-V=55mm。齒輪的左端與左端軸承之間采用套筒定位。已知齒輪輪轂的寬度為 56.21,為使套筒端面可靠地壓緊齒輪,故 LIV-V=56mm。齒輪的右端采用軸肩定位,軸肩高度h>0.07,取 h=5mm,則軸環(huán)處直徑 dV-VI=65mm。軸環(huán)寬度 b>1.4h,取 LV-VI=12mm。(4)軸上零件的周向定位帶輪、齒輪的周向定位均采用平鍵聯(lián)接。查機械設計手冊的平鍵截面b h=20mm 12mm(GB/T1095-1979),鍵槽用銑刀加工。?7.2 變速箱輸入軸的設計1、由以上計算知變速箱輸入轉速 n2=655r/min;功率 P2=3.21KW;輸入轉矩T1=47.38N m;?2、求作用在齒輪上的力因已知小齒輪的分度圓直徑為d2=mz2=4 18=72mm?Ft=2T3/d2=2 47.38 103/72=1316NFr=Ft tan n/cos =1316 tan20°/cos8°0′63′′=478.87N???3、初步確定軸的最小直徑查《機械設計》課本,由式(15-2)初步估算軸的最小直徑。選取軸的材 小型旋耕機傳動系統(tǒng)設計17料為 45 鋼,調質處理。根據表 15-3,取 A0=112,于是得dmin= =18.96mm33065.182nPA??輸入軸的最小直徑是帶輪處的直徑。最小直徑選為 24mm。4、軸的結構設計1) 擬定軸上的零件裝配方案裝配圖軸上零件的裝配順序為;首先從右邊安裝小直齒輪,接著在直齒輪的右邊放上隔離套,用來和要安裝的齒輪實行軸向定位。然后右邊設有襯套,用來安裝軸承,最后右邊裝上軸承蓋。其次,左邊只裝上軸承和軸承蓋就可以了。此種裝配方案的設計和選定,既滿足軸的結構簡單,有符合軸上零件裝配方便的要求。根據軸上零件的定位要求,確定軸各階梯段的長度和直徑。(1)初選滾動軸承取安裝直齒輪 3z的軸徑為 65mm,直齒輪左段采用軸肩實行軸向定位,軸肩的高度 h>0.07d,取 h=5mm.右段采用套筒實行軸向定位。設直齒輪的輪轂寬為80,所以選取 安裝直齒輪的軸段長設計為 76mm,短于輪轂 3~4mm 增強對直齒輪軸上定位的可靠性。齒輪處的軸徑為 d=60mm,因為 l=(1~1.2)d,得出錐齒輪的輪轂寬度為62mm。直齒輪中心線到右箱體壁的距離為 l=40+20+62+12=134mm,故軸肩的長度 為:134-40-12=82mm。軸的結構示意圖如下:圖 4 軸的示意圖 小型旋耕機傳動系統(tǒng)設計18軸上零件的周向定位直齒輪 3z在軸上的周向定位上采用平鍵聯(lián)結。由手冊查得平鍵的截面尺寸為:b×h=20mm×12mm.(GB/T1995-1979),鍵槽用鍵槽銑刀加工,長為 63mm,同時為了保證齒輪與軸的配合有良好的對中性,故選擇齒輪輪轂與軸的配合為 ,滾動軸承與軸的周向定位是借過度配合來保證的。67hH此處選軸的直徑尺寸公差為 m6。錐齒輪的周向定位是靠花鍵軸連接來保證的。確定軸上圓角和到角的尺寸:參考手冊,取軸段角為 2×45?。圖 4-5 變速箱軸的受力簡圖(4)軸上零件的周向定位帶輪、齒輪的周向定位均采用平鍵聯(lián)接。查機械設計手冊的平鍵截面b h=20mm 12mm(GB/T1095-1979),鍵槽用銑刀加工。?5、求軸上載荷 小型旋耕機傳動系統(tǒng)設計19根據軸的結構圖(圖 4-3)做出軸的計算簡圖(如圖 4-5) ,可以看出軸的受力最大處是危險截面?,F(xiàn)將該處的 MH、M V及 M 的值列于下表載荷 水平面 H 垂直面 V支反力 F FNH1=867.8N,F(xiàn) NH2=1396.4NFNv1=408.7,F(xiàn) Nv2=204.3彎矩 M MH=8378.4N﹒mm Mv1=12261 N﹒mm總彎矩 M1= =87676.34 N﹒mm22168374)()( ?扭矩 T T=1684.6 28.105=47168.8?6、按彎扭合成應力校核軸的強度查《機械設計》課本,由式(15-5)及上表中的數(shù)值,并取 ,軸的計6.0??算應力= 10.11MPaW(αTMσca21????3451027862876.(材料為 45 鋼,調質處理,由表 15-1 查得[ ]=60MPa。因此, <[ ],??ca?1?故安全。8 齒輪的設計8.1 選定齒輪類型、精度等級、材料及齒數(shù)1.根據實際需要,選用直齒圓柱齒輪傳動。2.旋耕機為一般工作機器,速度不高,故選用 7 級精(GB10095-88) 。3.材料選擇。由表 10-1 選擇小齒輪材料為 40Cr, (調質) ,硬度為 280HBS,大齒輪材料為 45 鋼, (調質) ,硬度為 240HBS,兩者材料硬度相差為 40HBS[13]。4.選小齒輪齒數(shù) z1=18,大齒輪齒數(shù) z2=i z1=72。?8.2 按齒根彎曲疲勞強度計算 小型旋耕機傳動系統(tǒng)設計20由設計計算公式(10-24)進行試算,即3 21)][(2.1dHEdtZuTKt ?????(4-11)確定公式內的各計算數(shù)值(1) 計算載荷系數(shù) K Kt=1.3(2) 計算扭矩T1=9550 P/n=9550 3.21/655=47.39N m??(3) 齒輪傳動齒寬系數(shù) d?查《機械設計》課本,根據表 10-7 選取齒寬系數(shù) =1d?(4)查表 10-6 查得材料彈性影響系數(shù) ZE=189.8MPa1/2 。(5) 由圖 10-21 按齒面硬度查得小齒輪的接觸疲勞強度極限 =600MPa;1limH?大齒輪的接觸疲勞強度極限 =550MPa。2limH?(6)由式(10-13)計算應力循環(huán)系數(shù)N1=60n1jLh=60 655 1 2 20 10 20=3.1 109??N2=3.1 108/2.67=1.16 109(7)由圖 10-18 查得彎曲疲勞壽命系數(shù) ; 。10.5FNK?20.8FN?(8)計算接觸疲勞許用應力去失效概率為 1%,安全系數(shù) ,由式(10-12)得.4S=0.95 600=570MPaKHN1lim]1[???=098 550=539MPaSNH2li]2[?8.3 計算 (1)計算小齒輪分度圓直徑 d1t,代入[ ]中較小的值H?= =72mm 3 211 )][(2.dHEdtt ZuTK?????3 24)5398.1(7.1079.. ??(4-12) 小型旋耕機傳動系統(tǒng)設計21(2)計算圓周速度 v=2.47m/s106572106????ndt(5)計算載荷系數(shù)根據 v=1.73m/s,7 級精度,查《機械設計》課本,由圖 10-8 得動載系數(shù)KV=1.12;直齒輪,由表 10-3 查得 KH =KF =1.2;由表 10-2 得使用系數(shù)?KA=1;由表 10-4 查得 7 級精度、小齒輪相對支承非對稱布置時, b1023.6.018.2dH2???????)(將數(shù)據代入后得1.12+0.18(1+0.6 1) 1+ 64.43=1.42;?HK3.?由 b/h=11.11mm, 1.35 查圖 10-13 得 KF =1.35;故載荷系數(shù)??HK?K=KAKV =1 1.12 1.2 1.35=1.8144??6)按實際的載荷系數(shù)校正算得的分度圓直徑,查《機械設計》課本,由式(10-10a)得 d1=d1t = =72mm (4-13)3t/3.1/84..6(7)計算模數(shù) mm= d1/z1=72/18=4mm8.4 按齒根彎曲強度設計查《機械設計》課本,由式(10-5)得彎曲強度的設計公式為(4-14)31)][(2FSaYzKTm???1、確定公式內的各計算數(shù)值(1)查《機械設計》課本,由圖 10-20c 查得小齒輪的彎曲疲勞強度極限 =500MPa;大齒輪的彎曲疲勞強度極限 =380MPa;FE? 2FE?(2)由圖 10-18 查得彎曲疲勞壽命系數(shù) KFN1=0.85,KFN2=0.88;(3)計算彎曲疲勞許用應力取彎曲疲勞安全系數(shù) S=1.4,由式(10-12)得= =303.57MPa1][F?4.1508KN??SFE 小型旋耕機傳動系統(tǒng)設計22=238.86MPa4.1380K][2FN2??SE?(4)計算載荷系數(shù)K=KAKVKF KF =1 1.12 1.2 1.35=1.814??(5)查取齒形系數(shù)查《機械設計》課本,由表 10-5 查得 YFa1=2.65;Y Fa2=2.226.(6)查取應力校正系數(shù)查《機械設計》課本,Y Sa1=1.58;Y Sa2=1.764。(7)計算大小齒輪的 并加以比較][1FYSa?= =0.013791][Sa57.30862?= =0.016442][FYSa?86.4大齒輪的數(shù)值大。2、設計計算m =3.75mm ?32416.051.8.??(4-15)對比計算結果,由齒面接觸疲勞強度計算的模數(shù) m 大于由齒根彎曲疲勞強度計算的模數(shù),由于齒輪模數(shù) m 的大小主要取決與彎曲強度所決定的承載能力,二齒面接觸疲勞強度所決定的承載能力,僅與齒輪直徑(即模數(shù)與齒數(shù)的乘積)有關,可取由彎曲強度算得的模數(shù) 3.75 并就近圓整為標準值 4,按接觸強度算得的分度圓直徑 d1=72mm,算出小齒輪齒數(shù)z1=d1/m=72/4=18大齒輪齒數(shù) z 2=uz1= 2.67 18= , 取 z2為 48。?這樣設計出的齒輪傳動,既滿足了齒面接觸疲勞強度又滿足了齒根彎曲疲勞強度,并做到結構緊湊,避免浪費。8.5 幾何尺寸計算 小型旋耕機傳動系統(tǒng)設計23基本參數(shù):傳動比 i=48/18=2.67;齒數(shù) z1=18,z2=48;模數(shù) m=4; (1)計算分度圓直徑d1=z1m=4 18=72?d2=z2m=4 48=192(2)計算中心距a=(d1+d2)/2=(72+192)/2=132mm8.6 驗算Ft=2T1/d1=2 5.526 104/72=1535N?=1 1535/72=21.32N/mm<100N/mm,合適bFKtA9 結構設計及繪制齒輪的零件圖10 刀輥軸的強度計算10.1 旋耕機負荷最大的部件就是刀輥軸刀輥軸可以用實心或空心材料制造??招妮S可以在小的重量下傳遞較的扭矩,較好的抵抗扭矩。管的尺寸應根據最大傳遞扭矩計算,并以附加扭曲應力驗算。求截面系數(shù)最小斷面的應力。通常最小截面系數(shù)在軸端處鏜過管孔的地方最小。 (下圖所示的 c-c 截面) 小型旋耕機傳動系統(tǒng)設計24圖 6 軸端 c-c 截面Fig 6 The section c-c of Axis旋耕刀輥半軸扭轉應力按下式計算: WMtq?? 式中 W= 2??D = ?257.1 —— 當扭曲時,最小的截面系數(shù):為管子的外徑d?? —— 管的壁厚( d——管的內徑) 軸端的花鍵選擇即應根據最大比壓也根據平均比壓。當材料硬度 HRC>35時,矩形端面花鍵上最大比壓不應超過 20MPa。最大比壓按下式計算:])4()4(00max nldDdMPnntq ?????式中 nD:為花鍵軸的外徑0d:為花鍵孔的內徑l:為花鍵的(平均)工作長度n:花鍵的數(shù)量10.2 刀輥軸的設計計算說明選擇 40Cr 材料,調質處理,假設設計刀輥軸的外徑 =78mm。內徑 =72mmnD0d圓錐滾子軸承的效率為 =0.95,心軸上齒輪傳動的效率為 =0.98?齒?由 =3.5KW ; =125r/min 得:2P刀= × ×刀 2P62齒= 3.5×0.95 ×0.98 =2.257kw刀= 按最大比壓少于 20MPa,即 <20MPa 來設計刀輥刀T刀刀 n/105.96? maxP軸的直徑。 小型旋耕機傳動系統(tǒng)設計25max00max ])4/()4//[( PnldDdMPn?????刀= =19.86<20MPa 723156扭曲應力驗算 :?5.1W? 其中: )(d??=(78-72)/2=327.D =1.57×782×3=20655.64Mtq?= 64.0513=74.34MPa< 1??=185MP故所設計的刀輥軸的直徑滿足要求。刀輥軸的外徑為: n=50mm刀輥軸的內徑為: 0d=40mm外花鍵的個數(shù)為:N=8外花鍵的平均工作長度為: l=40mm11 帶傳動的設計計算11.1 皮帶設計確定計算功率 PCA, 查《機械設計》課本,得功率計算公式 PCA=KAP (4-1)式中:P CA——計算功率,單位為 kW;P——傳遞的額定功率,單位為 kW;KA——工作情況系數(shù)根據表機械設計表 8-6,取 KA =1.2,PCA=KAP=1.2×3=3.6kW。表 4—1 各軸受力表軸號 功率 P(KW) 轉矩 T(N m)?轉速n(r/min傳動比 i 效率 ? 小型旋耕機傳動系統(tǒng)設計26輸入 輸出 輸入 輸出 )I 軸 3.42 22.68 14400.95變速箱軸 3.21 3.18 47.38 46.36 655III 軸 3.06 3 132.83 130.23 2202.67 0.9611.2 選擇帶型根據計算功率 PCA和小帶輪轉速 n1查《機械設計》課本,由圖 8-9 選定帶型,選擇 SPZ 型 V 帶。11.3 確定帶輪的基準直徑 dd1和 dd2(1)初選小帶輪的基準直徑 dd1 根據 v 帶截型參考《機械設計》課本表 8-3 及表 8-7,選 dd1=100mm。(2) 驗算帶的速度 v 查《機械設計》課本,根據機械設計式 8-13,m/s 536.71064.3106011 ?????ndvp?(4-2)(3) 計算從動輪的基準直徑 dd2 由 dd1=i dd2,并安 V 帶輪的基準直徑系列表8-7 加以圓整取 dd2=1.9 100=190mm。?(4) 確定中心距 a 和帶的基準長度 Ld查《機械設計》課本,根據傳動的結構的需要初定中心距 a0,由 0.7(dd1+dd2)<a 0<2(d d1+dd2),0.7(100+190)< a 0<2(100+190) ,取 a0=300mm;a0取定后,根據傳動的幾何關系,計算所需帶傳動的基準長度 L/d: 小型旋耕機傳動系統(tǒng)設計27L/d (4—0d12d210a4)(a2)????3)mm17520)109(24.30)-(??????查《機械設計》課本,由表 8-2 中選取和 L/d相近的 V 帶的基準長度 Ld,取Ld=1250mm;再根據 Ld來計算實際中心距,2ad0????m5.2371250????(4—4)(5) 驗算主動輪上的包角 1?查《機械設計》課本,根據式(8-6)及對包角要求應保證= 1????oo5.7ad-8012 ooo .158.723.510-98???o20?(4-5)(6)確定帶的根數(shù) z查《機械設計》課本,根據式(8-22)LcaKPz?)(0???(4-6)——包角系數(shù),查《機械設計》 (表 8-8) , =0.92;?K?——長度系數(shù),查《機械設計》 (表 8-2) , =0.94;L LK——單根 V 帶的基本額定功率,查《機械設計 》表 8-5c, =2.61;0P 0P——計入傳動比的影響時,單根 V 帶額定功率的增量,其值見《機械?設計》表 8-5b, =0.56;0P? 小型旋耕機傳動系統(tǒng)設計28z= ,取 z=2。31.94.02)56.012(3????(7)確定帶的預緊力 F0 查《機械設計》課本,考慮離心力的不利影響,并考慮包角對所需預緊力的影 響 , 根 據 式 ( 8-23) 單 根 V帶 所需的預緊力為(4-vqKzvPFcaO2)15.(0????7)查機械設計表 8-4,得出 q=0.07kg/m,則N209536.70192.536.7250 ??????)(OF(8)計算帶傳動作用在軸上的力(壓軸力)F p 如果不考慮帶的兩邊的拉力差,則壓軸力可以近似的按帶的兩邊的預緊力 F0的合力來計算,即2sinz2cosz2cs 10100 ???FFzp ???)((4-8) N6.849.sin?z-帶的根數(shù);F0-單根帶的預緊力;-主動輪上的包角;1? 小型旋耕機傳動系統(tǒng)設計29圖 4-1 帶傳動作用在軸上的力(9)張緊裝置的選定 各種材質的 V 帶都不是完全的彈性體,在預緊力的作用下,經過一定時間的運轉后,就會由于塑性變形而松弛,使預緊力 降低。為了保證帶傳動的能0F力,應定期檢查預緊力的數(shù)值。如發(fā)現(xiàn)不足時,必須重新張緊,才能正常工作,常見的張緊裝置有定期張緊裝置、自動張緊裝置、采用張緊輪的裝置,而本次設計的皮帶輪采用張緊輪的裝置 [12]。 11.4 帶輪設計V 帶輪的設計要求質量小,結構工藝性好,無過大的鑄造內應力,質量分布均勻,輪槽加工表面要精細加工,以減小帶的磨損。帶輪的材料主要采用鑄鐵,牌號為 HT200.小帶輪因為直徑比較小所以采用實心式,大帶輪的直徑比較大,所以采用孔板式。設計見零件圖。12 鏈傳動的設計計算1、根據實際,鏈條速度在 1-2m/s 之間,鏈輪的轉速為 220r/min。設計步驟如下:選用單排套筒滾子鏈,根據《機械設計師手冊》第二版,其設計步驟如下:(1)大鏈輪 Z1=25 小鏈輪 Z2=15。(2)計算功率 Pd 查《機械設計》課本, 由表 9-9 查得: 工作系數(shù) ; 1=Ak由表 9-10 查得: 鏈輪齒數(shù)系數(shù) K z=1.345;Pd=3.06KW所以Pd= = =2.275KW MZAK345.106? 小型旋耕機傳動系統(tǒng)設計30(4-9)(3) 定鏈條的節(jié)距 p根據鏈輪轉速 n=220r/min 及功率 P0=3.06kw,由圖 9-13 選取的鏈條號為12A,鏈節(jié)距 p=19.05mm;(4)確定鏈長 L根據鏈輪的速度計算鏈輪的直徑 d=60v/n =60×1.5×1000/220× =130mm.鏈??長為 L=2×176+ ×130=761mm?(5)確定鏈條鏈節(jié)數(shù) p由 計算鏈節(jié)數(shù)可得 Lp= 47.87 節(jié),取為 48 節(jié)。 mPLp76.01?(6) 中心距的計算])2(8)()2[(4a 1211 ?zzLzLpp ??????(4-10)= =275.3mm]21482148[(05.19)() ???a 實際中心距取為 275mm。 (7)計算鏈速:1.22 mspznv 8175.0/425.01607.25.8106 ??????sm/1.22m/s 滿足鏈速在 1-2m/s 之間,合適。 (8)查《機械設計》課本,由表 9-4 得鏈輪輪轂孔 =73dk3max(9)計算作用在軸上的壓軸力 eFPpK=有效圓周力為2103N 7.524.0310=×ve由于鏈傳
收藏
編號:164445
類型:共享資源
大?。?span id="mzebxcnn0" class="font-tahoma">8.19MB
格式:RAR
上傳時間:2017-10-27
50
積分
- 關 鍵 詞:
-
旋耕機
傳動系統(tǒng)
設計
- 資源描述:
-
3718 旋耕機傳動系統(tǒng)設計,旋耕機,傳動系統(tǒng),設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。