539 352履帶拖拉機(jī)-單級(jí)最終傳動(dòng)裝置設(shè)計(jì)(有cad原圖+中英文翻譯)
539 352履帶拖拉機(jī)-單級(jí)最終傳動(dòng)裝置設(shè)計(jì)(有cad原圖+中英文翻譯),539,352履帶拖拉機(jī)-單級(jí)最終傳動(dòng)裝置設(shè)計(jì)(有cad原圖+中英文翻譯),履帶,拖拉機(jī),最終傳動(dòng),裝置,設(shè)計(jì),cad,原圖,中英文,翻譯
轉(zhuǎn)向系統(tǒng)
轉(zhuǎn)向系統(tǒng)是駕駛員按自己的意愿操縱汽車或者卡車,通過轉(zhuǎn)動(dòng)前輪在路面上實(shí)現(xiàn)左右轉(zhuǎn)動(dòng)。轉(zhuǎn)向系統(tǒng)有兩種形式,機(jī)械式和動(dòng)力式。
1. 動(dòng)力轉(zhuǎn)向系統(tǒng)
動(dòng)力轉(zhuǎn)向系統(tǒng)中增加了一對(duì)重要的機(jī)構(gòu)齒輪齒條機(jī)構(gòu)和循環(huán)球機(jī)構(gòu)。
2.泵
葉片泵為轉(zhuǎn)向系統(tǒng)提供液壓動(dòng)力(見下面的圖表),泵是由汽車的發(fā)動(dòng)機(jī)通過皮帶傳動(dòng)的動(dòng)力而運(yùn)動(dòng)的。泵的內(nèi)腔中有一組可旋轉(zhuǎn)的葉片
當(dāng)葉片快速旋轉(zhuǎn)時(shí),他們從低壓口內(nèi)吸入液壓油同時(shí)從高壓口排出。油泵提供的流量與汽車的發(fā)動(dòng)機(jī)轉(zhuǎn)速有關(guān)。在發(fā)動(dòng)機(jī)不轉(zhuǎn)的時(shí)候葉片泵必須提供足夠的油液。結(jié)果,當(dāng)發(fā)動(dòng)機(jī)以快速運(yùn)轉(zhuǎn)時(shí)泵必須提供更多的液壓油。
泵里有卸壓裝置來(lái)實(shí)現(xiàn)泵里壓力不是太高,尤其在發(fā)動(dòng)機(jī)高速運(yùn)轉(zhuǎn)時(shí)油液的進(jìn)出很多時(shí)。
3. 滑閥
駕駛員通過操縱動(dòng)力轉(zhuǎn)向系統(tǒng)來(lái)實(shí)現(xiàn)車輪的轉(zhuǎn)向(僅僅當(dāng)開始轉(zhuǎn)動(dòng)時(shí))。當(dāng) 駕駛員沒有施加壓力時(shí),轉(zhuǎn)向系統(tǒng)是不工作的。滑閥時(shí)駕駛員在操縱中有路感。
旋轉(zhuǎn)的關(guān)鍵是轉(zhuǎn)向軸。轉(zhuǎn)向軸是一個(gè)金屬桿,當(dāng)對(duì)它施加扭矩時(shí)開始運(yùn)動(dòng)。當(dāng)駕駛員旋轉(zhuǎn)方向盤時(shí),轉(zhuǎn)向軸傳遞扭矩到車輪,使車輪旋轉(zhuǎn)。駕駛員為了使車輪旋轉(zhuǎn)的角度增大就需要有更大的扭矩。
轉(zhuǎn)向閥關(guān)鍵是一根扭力桿。 扭力桿是細(xì)金屬桿,在傳遞扭矩是運(yùn)動(dòng)。 扭力桿的頂端被連接到方向盤,而且它的底部被連接到齒輪或蝸桿上( 轉(zhuǎn)輪子) ,因此,它傳遞的力矩跟駕駛員操縱方向盤所施加的扭矩相等。為了是車輪的轉(zhuǎn)動(dòng)角度增大就需要增加扭矩。
從輸入軸輸入的扭矩部分進(jìn)入伺服閥。并且它連接到扭力桿的最底端。扭力桿的底端連接到伺服閥的外部。 在其他的汽車轉(zhuǎn)向中扭力桿也從轉(zhuǎn)向傳動(dòng)裝置輸出, 連接到其他的轉(zhuǎn)向齒輪或蝸桿上。
當(dāng)扭力桿旋轉(zhuǎn)時(shí)它是從伺服閥的內(nèi)部向外部傳遞動(dòng)力。 由于伺服閥的內(nèi)部也連接在轉(zhuǎn)向軸 ( 或直接到方向盤) ,在伺服閥的內(nèi)部和外部之間的力矩大小以來(lái)于駕駛員作用于方向盤多少轉(zhuǎn)力矩。
在伺服閥中的轉(zhuǎn)動(dòng)方向來(lái)自于方向盤的轉(zhuǎn)動(dòng)。當(dāng)方向盤沒有被旋轉(zhuǎn)的時(shí)候,兩邊的液體是相通的內(nèi)部壓力相當(dāng)。但是當(dāng)它從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置時(shí),內(nèi)部?jī)啥说膲毫?huì)改變。
動(dòng)力轉(zhuǎn)向系統(tǒng)是高效地傳遞動(dòng)力。讓我們看一看我們?cè)谝院笤鯓犹岣咿D(zhuǎn)動(dòng)效率就需要我們來(lái)看看最近中她的一些發(fā)展前景。
4. 未來(lái)的動(dòng)力轉(zhuǎn)向系統(tǒng)
由于大多數(shù)汽車的動(dòng)力轉(zhuǎn)向泵是一直使液體流動(dòng),這就浪費(fèi)了動(dòng)力。 浪費(fèi)動(dòng)力的同時(shí)就是浪費(fèi)燃料。
你所能期待就僅僅是去改善燃料的使用經(jīng)濟(jì)性。一種大家夢(mèng)想的是電控或電磁控制的轉(zhuǎn)向系統(tǒng)。 這些系統(tǒng)會(huì)完全地除去方向盤和傳動(dòng)軸之間的機(jī)械連結(jié),用一個(gè)純電子的控制系統(tǒng)來(lái)更換它。 本質(zhì)上,方向盤會(huì)像你能為你的家買計(jì)算機(jī)玩游戲的那一個(gè)一樣工作。它將包含告訴駕駛員如何去操縱轉(zhuǎn)向輪,而且動(dòng)力裝置可以提供給駕駛員反饋感覺到轉(zhuǎn)向器在如何的運(yùn)動(dòng)。 這些感應(yīng)器的輸出會(huì)用來(lái)控制一個(gè)自動(dòng)化的轉(zhuǎn)向系統(tǒng)。這將在轉(zhuǎn)向橋和動(dòng)力裝置間留下足夠的空間。 它也會(huì)減輕汽車的震動(dòng)。
通用汽車已經(jīng)介紹一輛概念汽車,Hy-wire是轉(zhuǎn)向系統(tǒng)的代號(hào)。 GM Hy 的最令人興奮的事物之一是汽車的電控系統(tǒng)能使汽車在沒有機(jī)械系統(tǒng)的條件下改變方向,它的整套設(shè)施流程都是由計(jì)算機(jī)軟件來(lái)控制的。在將來(lái)的電控汽車中,你將會(huì)很有可能能夠完全地通過按下電控按鈕來(lái)控制汽車轉(zhuǎn)向,就像今天大家能調(diào)節(jié)汽車座位的位置一樣簡(jiǎn)單。 它也可能按照每個(gè)人的愛好來(lái)裝配合適的電控裝置來(lái)協(xié)助駕駛員的操作。
在過去五十年中,汽車轉(zhuǎn)向系統(tǒng)沒有多大的改變。 但是在未來(lái)十年中,我們將看到高效迅捷安全的轉(zhuǎn)向系統(tǒng)安裝在汽車上。
本田汽車選用的是可變齒厚的齒輪電力轉(zhuǎn)向裝置,它明顯要好于液壓動(dòng)力轉(zhuǎn)向系統(tǒng)。
一個(gè)典型的液壓動(dòng)力轉(zhuǎn)向系統(tǒng),即使不需要轉(zhuǎn)向時(shí)發(fā)動(dòng)機(jī)也是在一直運(yùn)轉(zhuǎn)的。因?yàn)楫?dāng)需要轉(zhuǎn)向時(shí)沒有多余的動(dòng)力來(lái)傳遞動(dòng)力,在運(yùn)動(dòng)時(shí)就需要電力來(lái)提供額外的動(dòng)力能源來(lái)達(dá)到轉(zhuǎn)向的目的。
電力轉(zhuǎn)向系統(tǒng)比機(jī)械式轉(zhuǎn)向系統(tǒng)更簡(jiǎn)單,操作更可靠。 電力轉(zhuǎn)向系統(tǒng)也被設(shè)計(jì)提供好道路感覺和反饋。電控動(dòng)力轉(zhuǎn)向系統(tǒng)統(tǒng)部份舍棄本田 S2000 轉(zhuǎn)向系統(tǒng)。
簡(jiǎn)單高效的轉(zhuǎn)向系統(tǒng)更多的參考底盤的設(shè)計(jì)。帶竿全部被裝在隔壁上的高度, 而且經(jīng)由掌舵引導(dǎo)輪子在每個(gè)前面上的聯(lián)編中止高視闊步。 當(dāng)改良安全的時(shí)候,選擇是為了達(dá)到轉(zhuǎn)向系統(tǒng)安全可靠的性能 選擇電力轉(zhuǎn)向系統(tǒng)。
系統(tǒng)為了更簡(jiǎn)單的操作,更容易反映駕駛員的意圖,而且路感強(qiáng)類,整體的轉(zhuǎn)向比是16:1,同時(shí)3.32的轉(zhuǎn)向被固定。
EPS 操作系統(tǒng)
其操作系統(tǒng)除了以下的幾點(diǎn)其他都與液壓動(dòng)力轉(zhuǎn)向系統(tǒng)相同:
電力傳感器的應(yīng)用代替了閥體的功能;
電控系統(tǒng)代替了液壓系統(tǒng);
一每個(gè)EPS系統(tǒng)是添加的.
機(jī)械式的機(jī)構(gòu)
車架經(jīng)常安裝在轉(zhuǎn)向軸的上部,位于發(fā)動(dòng)機(jī)的周圍,而且需要把他安裝在車架的中心位置。在高處裝備的好處是為了減輕零部件之間的干涉。
連接桿是鋁制物,而且他們正好被安裝在連接桿位置下邊的合適位置。
電控機(jī)構(gòu)
EPS控制系統(tǒng)經(jīng)常安裝在車架的里邊,并且在轉(zhuǎn)向器的下邊。 它通過車輛的輸入速度傳感器接受反饋信息,并且資訊科技接受來(lái)自車輛的輸入速度傳感器,而且速度傳感器通過傳動(dòng)軸來(lái)傳遞信息。
轉(zhuǎn)力矩傳感器跟S2000系統(tǒng)是一樣的。轉(zhuǎn)向軸的扭矩經(jīng)由一根扭力桿傳遞到齒輪。扭矩傳遞跟傳動(dòng)比是成一定比例的,它對(duì)應(yīng)與轉(zhuǎn)向盤的輸入扭矩。 在扭力桿上的一個(gè)大頭針答應(yīng)感應(yīng)器核心的一個(gè)對(duì)角線的水溝, 移動(dòng)上邊的按紐, 和旋轉(zhuǎn)的方向之外 ,它依賴與扭矩的大小。 芯片的核心控制兩者的數(shù)量 , 和運(yùn)動(dòng)的方向。
使用這數(shù)據(jù), EPS控制系統(tǒng)決定轉(zhuǎn)向系統(tǒng)的扭矩和方向。然后提供信息來(lái)驅(qū)動(dòng)發(fā)動(dòng)機(jī)的運(yùn)動(dòng)。助力系統(tǒng)不僅有利于車輛的轉(zhuǎn)向行駛,而且有很好的路感。
轉(zhuǎn)力矩傳感器
轉(zhuǎn)力矩感應(yīng)器是控制轉(zhuǎn)向盤方向而且是得到路面反饋的一個(gè)裝置。轉(zhuǎn)力矩感應(yīng)器的測(cè)知區(qū)段有兩個(gè)磁鐵和一個(gè)核心 (滑動(dòng)器) 。 轉(zhuǎn)向輸入橋和轉(zhuǎn)向齒輪經(jīng)由一根扭力桿連接。 滑動(dòng)器在一定程度上與轉(zhuǎn)向一起預(yù)訂齒輪它連同齒輪一起轉(zhuǎn)齒輪但是能垂直地移動(dòng)。 轉(zhuǎn)向主銷被安裝在轉(zhuǎn)向橋和轉(zhuǎn)向節(jié)之間的部分,通過轉(zhuǎn)動(dòng)實(shí)現(xiàn)車輪的轉(zhuǎn)動(dòng)。
當(dāng)?shù)缆贩答伜艿偷臅r(shí)候,轉(zhuǎn)向輸入橋,齒輪和滑動(dòng)器不需要滑動(dòng)器的垂直運(yùn)動(dòng)就一起運(yùn)動(dòng)。
當(dāng)?shù)缆贩答伜芨叩臅r(shí)候,扭力桿旋轉(zhuǎn)而引起在輸入橋和齒輪之間的一種轉(zhuǎn)向的不同角度齒輪。 換句話說(shuō),駕駛員的旋轉(zhuǎn)角度用主銷控制,而且滑動(dòng)器不一致, 和轉(zhuǎn)向主銷的上下移動(dòng)有關(guān)。
轉(zhuǎn)向系
轉(zhuǎn)向系必須提供精確的轉(zhuǎn)向控制,同時(shí)也必須是司機(jī)輕松操縱方向盤。卡車的轉(zhuǎn)向系統(tǒng)既有手動(dòng)操作又有動(dòng)力協(xié)助。使用液壓和氣壓協(xié)助機(jī)構(gòu)的動(dòng)力協(xié)助裝置使轉(zhuǎn)向更容易。
轉(zhuǎn)向系除了對(duì)車輛控制有著重要的作用以外,還與前懸架。車橋和輪胎等裝置有著密切的關(guān)系。不適合的轉(zhuǎn)向調(diào)節(jié)會(huì)帶來(lái)定位和輪胎安裝的問題。前懸架,車橋和輪胎的問題可能會(huì)影響到汽車的轉(zhuǎn)向和操作。
轉(zhuǎn)向系的主要組成部分有轉(zhuǎn)向盤,轉(zhuǎn)向柱管,轉(zhuǎn)向器,轉(zhuǎn)向搖臂,轉(zhuǎn)向直拉桿,轉(zhuǎn)向節(jié)臂,轉(zhuǎn)向橫拉桿裝置。
球頭接頭
這種球接由一個(gè)鑄鐵的鐵球和與其相聯(lián)的螺柱組成。凹?xì)ぐ×饲?。球狀螺柱的旋轉(zhuǎn)為各種轉(zhuǎn)向的連接提供了自由運(yùn)動(dòng)。當(dāng)前軸彎曲時(shí),多種轉(zhuǎn)向的連接滿足了軸向和徑向的相對(duì)移動(dòng)。球狀螺柱安裝在每個(gè)轉(zhuǎn)向節(jié)臂的末端并且聯(lián)接了牽引接口和轉(zhuǎn)向節(jié)臂。
轉(zhuǎn)向橫拉桿裝置
轉(zhuǎn)向節(jié)臂或操縱桿控制著駕駛員的轉(zhuǎn)向節(jié)的運(yùn)動(dòng),同時(shí)也有辦法反向改變傳動(dòng),就是乘客側(cè)的轉(zhuǎn)向節(jié)。通過使用轉(zhuǎn)向橫拉桿裝置連接兩個(gè)轉(zhuǎn)向節(jié),并使他們工作和諧。
THE STEERING SYSTEM
The steering system enables the driver to guide the automobile or wheeled tractor down the road and turn right or left, as desired, by turning wheels, There are two types of steering systems. These are manual and power.
1. Power Steering
There are a couple of key components in power steering in addition to the rack-and-pinion or recalculating-ball mechanism.
2. Pump
The hydraulic power for the steering is provided by a rotary-vane pump (see diagram below). This pump is driven by the car's engine via a belt and pulley. It contains a set of retractable vanes that spin inside an oval chamber.
As the vanes spin, they pull hydraulic fluid from the return line at low pressure and force it into the outlet at high pressure. The amount of flow provided by the pump depends on the car's engine speed. The pump must be designed to provide adequate flow when the engine is idling. As a result, the pump moves much more fluid than necessary when the engine is running at faster speeds.
The pump contains a pressure-relief valve to make sure that the pressure does not get too high, especially at high engine speeds when so much fluid is being pumped.
3. Rotary Valve
A power-steering system should assist the driver only when he is exerting force on the steering wheel (such as when starting a turn). When the driver is not exerting force (such as when driving in a straight line), the system shouldn't provide any assist. The device that senses the force on the steering wheel is called the rotary valve.
The key to the rotary valve is a torsion bar. The torsion bar is a thin rod of metal that twists when torque is applied to it. The top of the bar is connected to the steering wheel, and the bottom of the bar is connected to the pinion or worm gear (which turns the wheels), so the amount of torque in the torsion bar is equal to the amount of torque the driver is using to turn the wheels. The more torque the driver uses to turn the wheels, the more the bar twists.
The input from the steering shaft forms the inner part of a spool-valve assembly. It also connects to the top end of the torsion bar. The bottom of the torsion bar connects to the outer part of the spool valve. The torsion bar also turns the output of the steering gear, connecting to either the pinion gear or the worm gear depending on which type of steering the car has.
As the bar twists, it rotates the inside of the spool valve relative to the outside. Since the inner part of the spool valve is also connected to the steering shaft (and therefore to the steering wheel), the amount of rotation between the inner and outer parts of the spool valve depends on how much torque the driver applies to the steering wheel.
Animation showing what happens inside the rotary valve when you first start to turn the steering wheel
When the steering wheel is not being turned, both hydraulic lines provide the same amount of pressure to the steering gear. But if the spool valve is turned one way or the other, ports open up to provide high-pressure fluid to the appropriate line.
It turns out that this type of power-steering system is pretty inefficient. Let's take a look at some advances we'll see in coming years that will help improve efficiency.
4. The Future of Power Steering
Since the power-steering pump on most cars today runs constantly, pumping fluid all the time, it wastes horsepower. This wasted power translates into wasted fuel.
You can expect to see several innovations that will improve fuel economy. One of the coolest ideas on the drawing board is the "steer-by-wire" or "drive-by-wire" system. These systems would completely eliminate the mechanical connection between the steering wheel and the steering, replacing it with a purely electronic control system. Essentially, the steering wheel would work like the one you can buy for your home computer to play games. It would contain sensors that tell the car what the driver is doing with the wheel, and have some motors in it to provide the driver with feedback on what the car is doing. The output of these sensors would be used to control a motorized steering system. This would free up space in the engine compartment by eliminating the steering shaft. It would also reduce vibration inside the car.
General Motors has introduced a concept car, the Hy-wire, that features this type of driving system. One of the most exciting things about the drive-by-wire system in the GM Hy-wire is that you can fine-tune vehicle handling without changing anything in the car's mechanical components -- all it takes to adjust the steering is some new computer software. In future drive-by-wire vehicles, you will most likely be able to configure the controls exactly to your liking by pressing a few buttons, just like you might adjust the seat position in a car today. It would also be possible in this sort of system to store distinct control preferences for each driver in the family.
In the past fifty years, car steering systems haven't changed much. But in the next decade, we'll see advances in car steering that will result in more efficient cars and a more comfortable ride.
5.
The Honda Insight uses a variable-assist rack and pinion electric power steering (EPS) system rather than a typical hydraulic power steering system.
A typical hydraulic power steering system is continually placing a small load on the engine, even when no steering assist is required. Because the EPS system only needs to draw electric power when steering assist is required, no extra energy is needed when cruising, improving fuel efficiency.
Electric power steering (EPS) is mechanically simpler than a hydraulic system, meaning that it should be more reliable. The EPS system is also designed to provide good road feel and responsiveness. The Insight's EPS system shares parts with the Honda S2000 steering system.
The system's compactness and simplicity offer more design freedom in terms of placement within the chassis. The steering rack, electric drive and forged-aluminum tie rods are all mounted high on the bulkhead, and steer the wheels via steering links on each front suspension strut. This location was chosen in order to achieve a more compact engine compartment, while improving safety.
The system is also smoother operating, more responsive to driver input, and has minimal steering kickback. The overall steering ratio is 16.4 to 1, and 3.32 turns lock-to-lock.
EPS Operation
The operating principle of the EPS is basically the same as hydraulic power steering except for the following:
· A torque sensor is used in place of the valve body unit
· An electric assist motor is used in place of the hydraulic power cylinder
· An EPS control unit is added
Mechanical Construction
The rack is unusual in that it is mounted high on the rear engine bulkhead, and that the tie rods engage the rack in the center. The high mount location is used for crash safety, as it keeps these components out of the Insight's crumple zone.
The tie rods are aluminum, and they connect to an ackerman arm that is mounted to the struts just below the spring seat.
The EPS control unit is mounted inside the car on the right side bulkhead, underneath the dash. It receives input from the vehicle speed sensor and torque sensor mounted on the steering pinion shaft.
The torque sensor is identical in construction to the unit on the S2000. The pinion shaft engages the pinion gear via a torsion bar, which twists slightly when there is a high amount of steering resistance. The amount of twist is in proportion to both the amount of resistance to wheel turning, and to the steering force applied. A pin on the torsion bar engages a diagonal slot in the sensor core, which moves up or down depending on the amount of torsion bar twist, and the direction of rotation. Two coils surrounding the core detect both the amount, and the direction of movement.
Using this information, the EPS control unit determines both the amount of steering assist required, and the direction. It then supplies current to the motor for steering assist. The amount of assist is also modified in proportion to vehicle speed to maintain good steering feel.
Torque Sensor
The torque sensor is a device to detect steering turning direction and read resistance. The sensing section of the torque sensor consists of two coils and a core (slider). The steering input shaft and pinion gear are connected via a torsion bar. The slider is engaged with the pinion gear in a way that it turns together with the pinion gear but can move vertically. A guide pin is provided on the input shaft and the pin is in a slant groove on the slider.
When road resistance is low, the steering input shaft, pinion gear and slider turn together without the slider's vertical movement.
When road resistance is high, the torsion bar twists and causes a difference of steering angle between the input shaft and pinion gear. In other words, the turning angle of the guide pin and slider differ, and the guide pin forces the slider to move upward or downward.
Steering System
The steering system must deliver precise directional control. And it must do so requiring little driver effort at the steering wheel. Truck steering systems are either manual or power assisted, with power assist units using either hydraulic or air assist setups to make steering effort easier.
In addition to its vital role in vehicle control, the steering system is closely related to front suspension , axle, and wheel/tire components. Improper steering adjustment can lead to alignment and tire wear problems. Suspension, axle, and wheel problem can affect steering and handing.
The key components that make up the steering system are the steering wheel, steering column, steering shaft, steering gear, pitman arm, drag link, steering arm, ball joints, and tie-rod assembly.
Ball Joints
This ball-and-socket assembly consists of a forged steel ball with a threaded stud attached to it. A socket shell grips the ball. The ball stud moves around to provide the freedom of movement needed for various steering links to accommodate relative motion between the axle and the frame rail when the front axle springs flex. A ball stud is mounted in the end of each steering arm and provides the link between the drag link and the steering arm.
Tie-Rod aseembly
The steering arm or lever controls the movement of the driver’s side steering knuckle. There must be some method of transferring this steering motion to the opposite, passenger side steering knuckle. This is done through the use of a tie-rod assembly that links the two steering knuckles together and forces them to act in unison. The tie-rod assembly is also ealled a cross tube.
9
收藏