2019-2020年高中數(shù)學(xué) 第2章 3條件概率與獨立事件課時作業(yè) 北師大版選修2-3.doc
《2019-2020年高中數(shù)學(xué) 第2章 3條件概率與獨立事件課時作業(yè) 北師大版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第2章 3條件概率與獨立事件課時作業(yè) 北師大版選修2-3.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第2章 3條件概率與獨立事件課時作業(yè) 北師大版選修2-3 一、選擇題 1.一個電路上裝有甲、乙兩根保險絲,甲熔斷的概率為0.85,乙熔斷的概率為0.74,甲、乙兩根保險絲熔斷與否相互獨立,則兩根保險絲都熔斷的概率為( ) A.1 B.0.629 C.0 D.0.74或0.85 [答案] B [解析] 事件“兩根保險絲都熔斷”即事件“甲保險絲熔斷”“乙保險絲熔斷”同時發(fā)生,依題意得事件“兩根保險絲都熔斷”的概率為0.850.74=0.629. 2.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點數(shù)是3”為事件B,則事件A,B中至少有一件發(fā)生的概率是( ) A. B. C. D. [答案] C [解析] 依題意得P(A)=,P(B)=,事件A,B中至少有一件發(fā)生的概率等于1-P()=1-P()P()=1-(1-)(1-)=1-=. 3.(xx哈師大附中高二期中)一盒中裝有5個產(chǎn)品,其中有3個一等品,2個二等品,從中不放回地取出產(chǎn)品,每次1個,取兩次,已知第二次取得一等品的條件下,第一次取得的是二等品的概率是( ) A. B. C. D. [答案] A [解析] 解法1:設(shè)A=“第一次取到二等品”,B=“第二次取得一等品”,則AB=“第一次取到二等品且第二次取到一等品”,∴P(A|B)===. 解法2:設(shè)一等品為a、b、c,二等品為A、B, “第二次取到一等品”所含基本事件有(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c)共12個,其中第一次取到一等品的基本事件共有6個,∴所求概率為P==. 4.假日期間,甲去黃山的概率是,乙去黃山的概率是,假定兩人的行動相互之間沒有影響,那么在假日期間甲、乙兩人至少有一人去黃山的概率是( ) A. B. C. D. [答案] C [解析] 設(shè)甲、乙去黃山分別為事件A、B,則P(A)=,P(B)=,∴P=1-P( )=1-=. 5.國慶期間,甲、乙、丙去某地的概率分別為、、,假定他們?nèi)说男袆酉嗷ゲ皇苡绊懀@段時間至少有1人去此地旅游的概率為( ) A. B. C. D. [答案] B [解析] 分別記甲、乙、丙去某地為事件A、B、C, 則P(A)=,P(B)=,P(C)=,由題設(shè)可知A、B、C相互獨立, 至少有1人去此地旅游的對立事件為 , 故所求的概率: P=1-P( ) 以=1-P()P()P() =1-(1-)(1-)(1-)=. 二、填空題 6.某次知識競賽規(guī)則如下:在主辦方預(yù)設(shè)的5個問題中,選手若能連續(xù)正確回答出兩個問題,即停止答題,晉級下一輪.假設(shè)某選手正確回答每個問題的概率都是0.8,且每個問題的回答結(jié)果相互獨立,則該選手恰好回答了4個問題就晉級下一輪的概率等于________. [答案] 0.128 [解析] 由題設(shè),分兩類情況:(1)第1個正確,第2個錯誤,第3、4個正確,由概率乘法公式得P1=0.80.20.80.8=0.102 4; (2)第1、2個錯誤,第3、4個正確, 此時概率P2=0.20.20.80.8=0.025 6. 由互斥事件概率公式得P=P1+P2=0.102 4+0.025 6=0.128. 7.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,則P(A|B)=________,P(B|A)=________. [答案] [解析] P(A|B)===, P(B|A)===. 8.某市派出甲、乙兩支球隊參加全省青年組、少年組足球賽,它們奪冠的概率分別為和,則該市足球隊取得冠軍的概率為________. [答案] [解析] 記事件A、B分別為甲、乙球隊取得冠軍,該市足球隊取得冠軍等價于兩支球隊至少有一支奪冠,因此所求概率為 P(AB+B+A)=P(AB)+P(B)+P(A) =+(1-)+(1-) = 本題也可用對立事件的概率求解. 三、解答題 9.現(xiàn)有6個節(jié)目準(zhǔn)備參加比賽,其中4個舞蹈節(jié)目,2個語言類節(jié)目,如果不放回地依次抽取2個節(jié)目,求: (1)第一次抽到舞蹈節(jié)目的概率; (2)第一次和第二次都抽到舞蹈節(jié)目的概率; (3)在第一次抽到舞蹈節(jié)目的條件下,第二次抽到舞蹈節(jié)目的概率. [解析] 設(shè)第一次抽到舞蹈節(jié)目為事件A,第二次抽到舞蹈節(jié)目為事件B,則第一次和第二次都抽到舞蹈節(jié)目的事件AB. (1)P(A)==. (2)P(AB)==. (3)方法一:由(1)(2)可得,在第一次抽到舞蹈節(jié)目的條件下,第二次抽到舞蹈節(jié)目的概率為P(B|A)===. 方法二:因為n(AB)=12,n(A)=20,所以P(B|A)===. [反思總結(jié)] 在實際應(yīng)用中,方法二是一種重要的求條件概率的方法. 10.(xx陜西理,19)在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表: 作物產(chǎn)量(kg) 300 500 概率 0.5 0.5 作物市場價格(元/kg) 6 10 概率 0.4 0.6 (1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列; (2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率. [解析] (1)設(shè)A表示事件“作物產(chǎn)量為300kg”,B表示事件“作物市場價格為6元/kg”, 由題設(shè)知P(A)=0.5,P(B)=0.4, ∵利潤=產(chǎn)量市場價格-成本, ∴X所有可能的取值為 50010-1000=4000,5006-1000=2000, 30010-1000=2000,3006-1000=800, P(X=4000)=P()P()=(1-0.5)(1-0.4)=0.3, P(X=2000)=P()P(B)+P(A)P()=(1-0.5)0.4+0.5(1-0.4)=0.5, P(X=800)=P(A)P(B)=0.50.4=0.2, 所以X的分布列為 X 4000 2000 800 P 0.3 0.5 0.2 (2)設(shè)Ci表示事件“第i季利潤不少于2000元”(i=1,2,3), 由題意知C1、C2、C3相互獨立,由(1)知, P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3), 3季的利潤均不少于2000元的概率為 P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512; 3季中有2季利潤不少于2000元的概率為 P(1C2C3)+P(C12C3)+P(C1C23)=30.820.2=0.384, 所以,這3季中至少有2季的利潤不少于2000元的概率為 0.512+0.384=0.896. 一、選擇題 1.已知P(B|A)=,P(A)=,則P(AB)等于( ) A. B. C. D. [答案] C [解析] 本題主要考查由條件概率分式變形得到的乘法公式,P(AB)=P(B|A)P(A)==,故選C. 2.甲、乙兩班共有70名同學(xué),其中女同學(xué)40名.設(shè)甲班有30名同學(xué),而女同學(xué)15名,則在碰到甲班同學(xué)時,正好碰到一名女同學(xué)的概率為( ) A. B. C. D. [答案] A [解析] 設(shè)“碰到甲班同學(xué)”為事件A,“碰到甲班女同學(xué)”為事件B,則P(A)=,P(AB)=,所以P(B|A)==,故選A. 3.從1、2、3、4、5中任取2個不同的數(shù),事件A=“取到的2個數(shù)之和為偶數(shù)”,事件B=“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=( ) A. B. C. D. [答案] B [解析] ∵P(A)==,P(AB)==,∴P(B|A)==. 4.已知每門大炮射擊一次擊中目標(biāo)的概率是0.3,現(xiàn)用n門這樣的大炮同時對某一目標(biāo)射擊一次,若要使目標(biāo)被擊中的概率超過95%,則n的最小整數(shù)值為( ) A.8 B.9 C.10 D.11 [答案] B [解析] 把每門大炮射擊一次看成做了一次試驗,擊中目標(biāo)看成試驗成功,則試驗成功的概率為0.3,用X表示這n門大炮擊中目標(biāo)的次數(shù).事件“目標(biāo)被擊中”即{X>0},則“目標(biāo)被擊中”的概率為P(X>0)=1-P(X=0)=1-(1-0.3)n.為使目標(biāo)被擊中的概率超過95%,則有1-(1-0.3)n>95%,解得n>8.4.根據(jù)實際意義,至少要用9門這樣的大炮才能使目標(biāo)被擊中的概率超過95%,即n的最小整數(shù)值為9. 二、填空題 5.3人獨立地破譯一個密碼,每人破譯出密碼的概率分別為、、,則此密碼被破譯出的概率為________. [答案] [解析] 可從對立事件考慮,此密碼不被譯出的概率是==,所以此密碼被破譯出的概率是1-=. 6.甲罐中有5個紅球、2個白球和3個黑球,乙罐中有4個紅球、3個白球和3個黑球,先從甲罐中隨機取出一球放入乙罐,分別以A1、A2和A3表示由甲罐取出的球是紅球、白球和黑球的事件;再從乙罐中隨機取出一球,以B表示由乙罐取出的球是紅球的事件.則下列結(jié)論中正確的是________(寫出所有正確結(jié)論的編號). ①P(B)=; ②P(B|A1)=; ③事件B與事件A1相互獨立; ④A1、A2、A3是兩兩互斥的事件; ⑤P(B)的值不能確定,因為它與A1、A2、A3中究竟哪一個發(fā)生有關(guān). [答案]?、冖? [解析] P(B)=P(BA1)+P(BA2)+P(BA3)=++=,故①⑤錯誤; ②P(B|A1)==,正確; ③事件B與A1的發(fā)生有關(guān)系,故錯誤; ④A1、A2、A3不可能同時發(fā)生,是互斥事件. 三、解答題 7.(xx北京理,16)李明在10場籃球比賽中的投籃情況統(tǒng)計如下(假設(shè)各場比賽互相獨立): 場次 投籃次數(shù) 命中次數(shù) 場次 投籃次數(shù) 命中次數(shù) 主場1 22 12 客場1 18 8 主場2 15 12 客場2 13 12 主場3 12 8 客場3 21 7 主場4 23 8 客場4 18 15 主場5 24 20 客場5 25 12 (1)從上述比賽中隨機選擇一場,求李明在該場比賽中投籃命中率超過0.6的概率; (2)從上述比賽中選擇一個主場和一個客場,求李明的投籃命中率一場超過0.6,一場不超過0.6的概率; [解析] (1)根據(jù)投籃統(tǒng)計數(shù)據(jù),在10場比賽中,李明投籃命中率超過0.6的場次有5場,分別是主場2,主場3,主場5,客場2,客場4. 所以在隨機選擇的一場比賽中,李明的投籃命中率超過0.6的概率是0.5. (2)設(shè)事件A為“在隨機選擇的一場主場比賽中李明的投籃命中率超過0.6”,事件B為“在隨機選擇的一場客場比賽中李明的投籃命中率超過0.6”,事件C為“在隨機選擇的一個主場和一個客場中,李明的投籃命中率一場超過0.6,一場不超過0.6”. 則C=A∪B,A,B獨立. 根據(jù)投籃統(tǒng)計數(shù)據(jù),P(A)=,P(B)=, P(C)=P(A)+P(B) =+=. 所以,在隨機選擇的一個主場和一個客場中,李明的投籃命中率一場超過0.6,一場不超過0.6的概率為. 8.乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結(jié)果相互獨立.甲、乙在一局比賽中,甲先發(fā)球. (1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率; (2)求開始第5次發(fā)球時,甲得分領(lǐng)先的概率. [解析] 記A1表示事件:第1次和第2次這兩次發(fā)球,甲共得i分,i=0,1,2; B1表示事件:第3次和第4次這兩次發(fā)球,甲共得i分,i=0,1,2; A表示事件:第3次發(fā)球,甲得1分; B表示事件:開始第4次發(fā)球時,甲、乙的比分為1比2; C表示事件:開始第5次發(fā)球時,甲得分領(lǐng)先. (1)B=A0A+A1, P(A)=0.4,P(A0)=0.42=0.16,P(A1)=20.60.4=0.48, P(B)=P(A0A+A1) =P(A0A)+P(A1) =P(A0)P(A)+P(A1)P() =0.160.4+0.48(1-0.4) =0.352. (2)P(B0)=0.62=0.36, P(B1)=20.40.6=0.48, P(B2)=0.42=0.16, P(A2)=0.62=0.36. C=A1B2+A2B1+A2B2 P(C)=P(A1B2+A2B1+A2B2) =P(A1B2)+P(A2B1)+P(A2B2) =P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2) =0.480.16+0.360.48+0.360.16 =0.307 2.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第2章 3條件概率與獨立事件課時作業(yè) 北師大版選修2-3 2019 2020 年高 數(shù)學(xué) 條件 概率 獨立 事件 課時 作業(yè) 北師大 選修
鏈接地址:http://m.hcyjhs8.com/p-2585300.html