2019-2020年高考數(shù)學專題復習導練測 第十章 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 理 新人教A版.doc
《2019-2020年高考數(shù)學專題復習導練測 第十章 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學專題復習導練測 第十章 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 理 新人教A版.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學專題復習導練測 第十章 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 理 新人教A版 一、選擇題 1.如圖,用4種不同的顏色涂入圖中的矩形A,B,C,D中,要求相鄰的矩形涂色不同,則不同的涂法有( ) A B C D A.72種 B.48種 C.24種 D.12種 解析 先分兩類:一是四種顏色都用,這時A有4種涂法,B有3種涂法,C有2種涂法, D有1種涂法,共有4321=24種涂法;二是用三種顏色,這時A,B,C的涂法有432=24種,D只要不與C同色即可,故D有2種涂法.故不同的涂法共有24+242=72種. 答案 A 2.如圖,用6種不同的顏色把 圖中A、B、C、D四塊區(qū)域分開,若相鄰區(qū)域 不能涂同一種顏色,則不同的涂法共有( ). A.400種 B.460種 C.480種 D.496種 解析 從A開始,有6種方法,B有5種,C有4種,D、A同色1種,D、A不同色3種,∴不同涂法有654(1+3)=480(種),故選C. 答案 C 3.某省高中學校自實施素質教育以來,學生社團得到迅猛發(fā)展,某校高一新生中的五名同學打算參加“春暉文學社”、“舞者輪滑俱樂部”、“籃球之家”、“圍棋苑”四個社團.若每個社團至少有一名同學參加,每名同學至少參加一個社團且只能參加一個社團.且同學甲不參加“圍棋苑”,則不同的參加方法的種數(shù)為 ( ). A.72 B.108 C.180 D.216 解析 設五名同學分別為甲、乙、丙、丁、戊,由題意,如果甲不參加“圍棋苑”,有下列兩種情況: (1)從乙、丙、丁、戊中選一人(如乙)參加“圍棋苑”,有C種方法,然后從甲與丙、丁、戊共4人中選2人(如丙、丁)并成一組與甲、戊分配到其他三個社團中,有CA種方法, 故共有CCA種參加方法; (2)從乙、丙、丁、戊中選2人(如乙、丙)參加“圍棋苑”,有C種方法,甲與丁、戊分配到其他三個社團中有A種方法,這時共有CA種參加方法; 綜合(1)(2),共有CCA+CA=180種參加方法. 答案 C 4.有4位教師在同一年級的4個班中各教一個班的數(shù)學,在數(shù)學檢測時要求每位教師不能在本班監(jiān)考,則監(jiān)考的方法有( ) A.8種 B.9種 C.10種 D.11種 解析 分四步完成,共有3311=9種. 答案 B 5.從6人中選4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 ( ). A.300種 B.240種 C.144種 D.96種 解析 甲、乙兩人不去巴黎游覽情況較多,采用排除法,符合條件的選擇方案有CA-CA=240. 答案 B 6.4位同學從甲、乙、丙3門課程中選修1門,則恰有2人選修課程甲的不同選法有( ). A.12種 B.24種 C.30種 D.36種 解析 分三步,第一步先從4位同學中選2人選修課程甲.共有C種不同選法,第二步給第3位同學選課程,有2種選法.第三步給第4位同學選課程,也有2種不同選法.故共有C22=24(種). 答案 B 二、填空題 7.將數(shù)字1,2,3,4,5,6按第一行1個數(shù),第二行2個數(shù),第三行3個數(shù)的形式隨機排列,設Ni(i=1,2,3)表示第i行中最大的數(shù),則滿足N1<N2<N3的所有排列的個數(shù)是________.(用數(shù)字作答) 解析 由已知數(shù)字6一定在第三行,第三行的排法種數(shù)為AA=60;剩余的三個數(shù)字中最大的一定排在第二行,第二 行的排法種數(shù)為AA=4,由分步計數(shù)原理滿足條件的排列個數(shù)是240. 答案 240 8.數(shù)字1,2,3,…,9這九個數(shù)字填寫在如圖的9個空格中,要求每一行從左到右依次增大,每列從上到下也依次增大,當數(shù)字4固定在中心位置時,則所有填寫空格的方法共有________種. 解析 必有1、4、9在主對角線上,2、3只有兩種不同的填法,對于它們的每一種填法,5只有兩種填法.對于5的每一種填法,6、7、8只有3種不同的填法,由分步計數(shù)原理知共有223=12種填法. 答案 12 9.如果把個位數(shù)是1,且恰有3個數(shù)字相同的四位數(shù)叫做“好數(shù)”,那么在由1,2,3,4四個數(shù)字組成的有重復數(shù)字的四位數(shù)中,“好數(shù)”共有________個. 解析 當相同的數(shù)字不是1時,有C個;當相同的數(shù)字是1時,共有CC個,由分類加法計數(shù)原理得共有“好數(shù)”C+CC=12個. 答案 12 10.給n個自上而下相連的正方形著黑色或白色.當n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如下圖所示: 由此推斷,當n=6時,黑色正方形互不相鄰的著色方案共有__________種,至少有兩個黑色正方形相鄰的著色方案共有________種.(結果用數(shù)值表示) 答案 21;43 三、解答題 11.如圖所示三組平行線分別有m、n、k條,在此圖形中 (1)共有多少個三角形? 解 (1)每個三角形與從三組平行線中各取一條的取法是一一對應的,由分步計數(shù)原理知共可構成mnk個三角形. (2)每個平行四邊形與從兩組平行線中各取兩條的取法是一一對應的,由分類和分步計數(shù)原理知共可構成CC+CC+CC個平行四邊形. 12.設集合M={-3,-2,-1,0,1,2},P(a,b)是坐標平面上的點,a,b∈M. (1)P可以表示多少個平面上的不同的點? (2)P可以表示多少個第二象限內的點? (3)P可以表示多少個不在直線y=x上的點? 解 (1)分兩步,第一步確定橫坐標有6種,第二步確定縱坐標有6種,經(jīng)檢驗36個點均不相同,由分步乘法計數(shù)原理得N=66=36(個). (2)分兩步,第一步確定橫坐標有3種,第二步確定縱坐標有2種,根據(jù)分步乘法計數(shù)原理得N=32=6個. (3)分兩步,第一步確定橫坐標有6種,第二步確定縱坐標有5種,根據(jù)分步乘法計數(shù)原理得N=65=30個. 13.現(xiàn)安排一份5天的工作值班表,每天有一個人值班,共有5個人,每個人都可以值多天班或不值班,但相鄰兩天不準由同一個人值班,問此值班表共有多少種不同的排法? 解 可將星期一、二、三、四、五分給5個人,相鄰的數(shù)字不分給同一個人. 星期一:可分給5人中的任何一人,有5種分法; 星期二:可分給剩余4人中的任何一人,有4種分法;星期三:可分給除去分到星期二的剩余4人中的任何一人,有4種分法; 同理星期四和星期五都有4種不同的分法,由分步計數(shù)原理共有54444=1 280種不同的排法. 14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從A到B的映射. (1)若B中每一元素都有原象,這樣不同的f有多少個? (2)若B中的元素0必無原象,這樣的f有多少個? (3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個? 解 (1)顯然對應是一一對應的,即為a1找象有4種方法,a2找象有3種方法,a3找象有2種方法,a4找象有1種方法,所以不同的f共有4321=24(個). (2)0必無原象,1,2,3有無原象不限,所以為A中每一元素找象時都有3種方法.所以不同的f共有34=81(個). (3)分為如下四類: 第一類,A中每一元素都與1對應,有1種方法; 第二類,A中有兩個元素對應1,一個元素對應2,另一個元素與0對應,有CC=12種方法; 第三類,A中有兩個元素對應2,另兩個元素對應0,有CC=6種方法; 第四類,A中有一個元素對應1,一個元素對應3,另兩個元素與0對應,有CC=12種方法. 所以不同的f共有1+12+6+12=31(個).- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學專題復習導練測 第十章 第1講 分類加法計數(shù)原理與分步乘法計數(shù)原理 新人教A版 2019 2020 年高 數(shù)學 專題 復習 導練測 第十 分類 加法 計數(shù) 原理 分步 乘法
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.hcyjhs8.com/p-2733355.html