中考數學總復習 第一部分 教材梳理 第六章 圖形與變換、坐標 第3節(jié) 銳角三角函數及其應用課件.ppt
《中考數學總復習 第一部分 教材梳理 第六章 圖形與變換、坐標 第3節(jié) 銳角三角函數及其應用課件.ppt》由會員分享,可在線閱讀,更多相關《中考數學總復習 第一部分 教材梳理 第六章 圖形與變換、坐標 第3節(jié) 銳角三角函數及其應用課件.ppt(37頁珍藏版)》請在裝配圖網上搜索。
第一部分教材梳理,第3節(jié)銳角三角函數及其應用,第六章圖形與變換、坐標,,知識梳理,,概念定理,1.銳角三角函數的定義假設在Rt△ABC中,∠C=90,則有:(1)正弦:銳角A的對邊a與斜邊c的比叫做∠A的正弦,記作sinA.(2)余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.,(3)正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.(4)銳角三角函數:銳角A的正弦、余弦、正切都叫做∠A的銳角三角函數.,2.解直角三角形的應用的有關概念(1)坡度:坡面的垂直高度h和水平寬度l的比叫做坡度,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1∶m的形式.(2)坡角:把坡面與水平面的夾角α叫做坡角,坡度i與坡角α之間的關系為(3)仰角和俯角:仰角是向上看的視線與水平線的夾角;俯角是向下看的視線與水平線的夾角.,主要公式,1.同角三角函數關系公式(1)平方關系:sin2A+cos2A=1.(2)正余弦與正切之間的關系(積的關系):一個角的正切值等于這個角的正弦與余弦的比,即或sinA=tanAcosA.,2.兩角互余的三角函數關系公式在Rt△ABC中,∠A+∠B=90時,正余弦之間的關系為:(1)一個角的正弦值等于這個角的余角的余弦值,即sinA=cos(90-∠A).(2)一個角的余弦值等于這個角的余角的正弦值,即cosA=sin(90-∠A).也可以理解成若∠A+∠B=90,那么sinA=cosB或sinB=cosA.,3.特殊角的三角函數值,方法規(guī)律,1.解直角三角形要用到的關系(1)銳角之間的關系:∠A+∠B=90.(2)三邊之間的關系:a2+b2=c2.(3)邊角之間的關系:2.解直角三角形的應用問題的有關要點(1)應用范圍:,通過解直角三角形能解決實際問題中的很多有關測量問題,如:測不易直接測量的物體的高度、測河寬等,解此類問題關鍵在于構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.(2)一般步驟①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形,轉化為解直角三角形的問題).②根據題目的已知條件選用適當的銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.,,中考考點精講精練,考點1銳角三角函數、解直角三角形,考點精講【例1】(2016廣東)如圖1-6-3-1,在平面直角坐標系中,點A的坐標為(4,3),那么cosα的值是(),考題再現1.(2016沈陽)如圖1-6-3-2,在Rt△ABC中,∠C=90,∠B=30,AB=8,則BC的長是(),D,2.(2014汕尾)在Rt△ABC中,∠C=90,若sinA=,則cosB的值是()3.(2014廣州)如圖1-6-3-3,在邊長為1的小正方形組成的網格中,△ABC的三個頂點均在格點上,則tanA等于(),B,D,4.(2015廣州)如圖1-6-3-4,△ABC中,DE是BC的垂直平分線,DE交AC于點E,連接BE.若BE=9,BC=12,則cosC=_______.,考點演練5.在Rt△ABC中,∠C=90,AB=13,AC=12,則cosA=()6.如圖1-6-3-5,在網格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是(),C,D,7.△ABC中,∠C=90,BC=3,AB=5,求sinA,cosA,tanA的值.,考點點撥:本考點的題型一般為選擇題或填空題,難度較低.解答本考點的有關題目,關鍵在于畫出直角三角形的圖形,利用銳角三角函數的定義進行計算,要熟練掌握銳角三角函數包括正弦、余弦、正切等概念的定義和計算公式(相關要點詳見“知識梳理”部分).,考點2解直角三角形的應用,考點精講【例2】(2014廣東)如圖1-6-3-6,某數學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60(A,B,D三點在同一直線上).請你根據他們的測量數據計算這棵樹CD的高度(結果精確到0.1m).(參考數據:≈1.414,≈1.732),思路點撥:首先利用三角形的外角的性質求得∠ACB的度數,得到BC的長度,然后在Rt△BDC中,利用三角函數即可求解.解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD-∠A=60-30=30.∴∠A=∠ACB.∴BC=AB=10(m).在Rt△BCD中,答:這棵樹CD的高度為8.7米.,考題再現1.(2016六盤水)據調查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s,在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖1-6-3-7,AD=24m,∠D=90,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31,2秒后到達C點,測得∠ACD=50.(tan31≈0.6,tan50≈1.2,結果精確到1m)(1)求B,C間的距離.(2)通過計算,判斷此轎車是否超速.,解:(1)在Rt△ABD中,AD=24m,∠B=31,∴tan31=,即BD==40(m).在Rt△ACD中,AD=24m,∠ACD=50,∴tan50=,即CD==20(m).∴BC=BD-CD=40-20=20(m).則B,C間的距離為20m.(2)根據題意,得202=10m/s<15m/s,則此轎車沒有超速.答:此轎車沒有超速.,2.(2014珠海)如圖1-6-3-8,一艘漁船位于小島M的北偏東45方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60方向的B處.(1)求漁船從A到B的航行過程中與小島M之間的最小距離(結果用根號表示);(2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結果精確到0.1小時).(參考數據:),解:(1)如答圖1-6-3-1,過點M作MD⊥AB于點D.∵∠AME=45,∴∠AMD=∠MAD=45.∵AM=180海里,∴MD=AMcos45=(海里).答:漁船從A到B的航行過程中與小島M間的最小距離是海里.(2)在Rt△DMB中,∵∠BMF=60,∴∠DMB=30.∵MD=海里,答:漁船從B到達小島M的航行時間約為7.4小時.,考點演練3.如圖1-6-3-9,小山崗的斜坡AC的坡度是tanα=,在與山腳C距離200m的D處,測得山頂A的仰角為26.6,求小山崗的高AB.(結果取整數,參考數據:sin26.6=0.45,cos26.6=0.89,tan26.6=0.50),解:∵在直角三角形ABC中,在直角三角形ADB中,∵BD-BC=CD=200,解得AB=300(m).答:小山崗的高AB為300米.,4.如圖1-6-3-10,甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會和,于是甲船改變了行進的方向,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求港口A與小島C之間的距離.,解:如答圖1-6-3-2.由題意,得∠1=60,∠2=30,∠4=45,AB=30海里.過點B作BD⊥AC于點D,則∠1=∠3=60.在Rt△BCD中,∵∠4=45,∴CD=BD.在Rt△ABD中,∵∠2=30,AB=30海里,,考點點撥:本考點的題型一般為解答題,難度中等.解答本考點的有關題目,關鍵在于借助實際問題中的俯角、仰角或方向角等構造直角三角形并解直角三角形.熟記以下解直角三角形的應用問題的一般過程:(1)將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形,轉化為解直角三角形的問題);(2)根據題目的已知條件選用適當的銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.,,課堂鞏固訓練,1.如圖1-6-3-11,△ABC的頂點都是正方形網格中的格點,則cos∠ABC等于(),B,2.如圖1-6-3-12,在平面直角坐標系中,直線OA過點(2,1),則sinα的值是(),B,3.如圖1-6-3-13,在△ABC中,∠C=90,AC=8cm,AB的垂直平分線MN交AC于點D,連接BD,若cos∠BDC=,則BC的長是()A.4cmB.6cmC.8cmD.10cm4.如圖1-6-3-14,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為點D,tan∠ACD=,AB=5,那么CD的長是________.,A,5.在Rt△ABC中,∠C=90,如果AC=4,sinB=,那么AB=________.6.如圖1-6-3-15,△ABC中,∠ACB=90,sinA=,BC=8,D是AB的中點,過點B作直線CD的垂線,垂足為點E.(1)求線段CD的長;(2)求cos∠DBE的值.,6,7.某國發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災區(qū)參與搶險工作,如圖1-6-3-16,某探測對在地面A,B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25和60,且AB=4m,求該生命跡象所在位置C的深度.(結果精確到1m,參考數據:sin25≈0.4,cos25≈0.9,tan25≈0.5,≈1.7),解:如答圖1-6-3-3,作CD⊥AB交AB的延長線于點D.設CD為xm.在Rt△ADC中,∠DAC=25,在Rt△BDC中,∠DBC=60,而AB=4m,解得x≈3(m).答:生命跡象所在位置C的深度約為3m.,8.如圖1-6-3-17,水庫大壩的橫斷面為四邊形ABCD,其中AD∥BC,壩頂BC=10m,壩高20m,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角為30.(1)求壩底AD的長度(結果精確到1m);(2)若壩長100m,求建造這個大壩需要的土石料.(參考數據:),解:(1)如答圖1-6-3-4,作BE⊥AD于點E,CF⊥AD于點F.∵AD∥BC,∴四邊形BEFC是矩形.∴EF=BC=10(m).∵BE=20m,斜坡AB的坡度i=1∶2.5,∴AE=50(m).∵CF=20m,斜坡CD的坡角為30,∴AD=AE+EF+FD≈95(m).(2)建造這個大壩需要的土石料為:(95+10)20100=105000(m3).答:建造這個大壩需要的土石料為105000m3.,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 中考數學總復習 第一部分 教材梳理 第六章 圖形與變換、坐標 第3節(jié) 銳角三角函數及其應用課件 中考 數學 復習 第一 部分 教材 梳理 第六 圖形 變換 坐標 銳角 三角函數 及其 應用 課件
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.hcyjhs8.com/p-3309417.html