裝配圖搬運機械手及其控制系統(tǒng)設(shè)計
裝配圖搬運機械手及其控制系統(tǒng)設(shè)計,裝配,搬運,機械手,及其,控制系統(tǒng),設(shè)計
目 錄 - IV - 目 錄 摘 要 .......................................................................................................... I ABSTRACT(英文摘要) ............................................................................ Ⅱ 目 錄 .......................................................................................................... IV 第一章 引 言 ............................................................................................. 1 1.1 課題的背景和意義 ........................................................................................ 1 1.2 課題國內(nèi)外發(fā)展現(xiàn)狀 .................................................................................... 2 第二章 總體方案確定 .................................................................................. 4 2.1 總體方案論證 ................................................................................................ 4 2.1.1 機 械 手 手 臂 結(jié) 構(gòu) 方 案 設(shè) 計 ........................................................ 4 2.1.2 機 械 手 驅(qū) 動 方 案 設(shè) 計 ............................................................... 4 2.1.3 機 械 手 控 制 方 案 設(shè) 計 ............................................................... 5 2.1.4 機 械 手 主 要 參 數(shù) ...................................................................... 5 2.1.5 機 械 手 的 技 術(shù) 參 數(shù) 列 表 ........................................................... 6 第三章 機械手總體結(jié)構(gòu)設(shè)計 ....................................................................... 7 3.1 動作工況與分析 ............................................................................................ 7 3.2 機械手各部分結(jié)構(gòu)設(shè)計 ................................................................................ 8 3.2.1 機 械 手 底 座 的 設(shè) 計 ................................................................... 8 3.2.2 立 柱 結(jié) 構(gòu) 的 設(shè) 計 ...................................................................... 8 3.2.3 軸 承 的 選 擇 .............................................................................. 9 3.2.4 上 軸 承 座 的 選 擇 ...................................................................... 10 3.2.5 下 軸 承 座 的 選 擇 ...................................................................... 11 3.2.6 大 臂 的 結(jié) 構(gòu) 設(shè) 計 ...................................................................... 12 3.2.7 小 臂 的 結(jié) 構(gòu) 設(shè) 計 ...................................................................... 12 3.2.8 氣 爪 的 結(jié) 構(gòu) 設(shè) 計 ...................................................................... 12 3.2.9 手 部 夾 緊 氣 缸 設(shè) 計 計 算 ........................................................... 14 3.2.10 升 降 氣 缸 設(shè) 計 計 算 ................................................................. 18 目 錄 - V - 3.2.11 伸 縮 氣 缸 設(shè) 計 計 算 ................................................................. 22 3.2.12 回 轉(zhuǎn) 氣 缸 設(shè) 計 計 算 ................................................................. 25 第四章 氣動部分設(shè)計 .................................................................................. 28 第五章 PLC 控制部分設(shè)計 .......................................................................... 30 5.1 電磁鐵動作順序 ............................................................................................. 30 5.2 I/O 分配 .......................................................................................................... 30 5.3 PLC 控制梯形圖 ............................................................................................ 31 5.4 PLC 控制程序指令 ........................................................................................ 32 結(jié)論 ............................................................................................................. 37 參考文獻 ...................................................................................................... 38 致謝及聲明 .................................................................................................. 39 摘 要 近 20 年來,氣動技術(shù)的應(yīng)用領(lǐng)域迅速拓寬,尤其是在各種自動化生產(chǎn)線上得到廣泛 應(yīng)用。電氣可編程控制技術(shù)與氣動技術(shù)相結(jié)合,使整個系統(tǒng)自動化程度更高,控制方式更 靈活,性能更加可靠;氣動機械手、柔性自動生產(chǎn)線的迅速發(fā)展,對氣動技術(shù)提出了更多 更高的要求。 本 課 題 設(shè) 計 源 于 生 產(chǎn) 線 中 的 搬 運 站 , 傳 動 方 式 采 用 氣 壓 傳 動 , 即 用 各 種 氣 缸 來 控 制 機 械 手 的 動 作 , 控 制 部 分 結(jié) 合 可 編 程 控 制 技 術(shù) 編 寫 程 序 進 行 控 制 來 實 現(xiàn) 兩 站 之 間 的 搬 運 。 機 械 手 主 要 由 手 部 、 運 動 機 構(gòu) 和 控 制 系 統(tǒng) 三 大 部 分 組 成 。 手 部 是 用 來 抓 持 工 件 ( 或 工 具 ) 的 部 件 , 根 據(jù) 被 抓 持 物 件 的 形 狀 、 尺 寸 、 重 量 、 材 料 和 作 業(yè) 要 求 而 有 多 種 結(jié) 構(gòu) 形 式 , 如 夾 持 型 、 托 持 型 和 吸 附 型 等 。 運 動 機 構(gòu) , 使 手 部 完 成 各 種 轉(zhuǎn) 動 ( 擺 動 ) 、 移 動 或 復(fù) 合 運 動 來 實 現(xiàn) 規(guī) 定 的 動 作 , 改 變 被 抓 持 物 件 的 位 置 和 姿 勢 。 運 動 機 構(gòu) 的 升 降 、 伸 縮 、 旋 轉(zhuǎn) 等 獨 立 運 動 方 式 , 稱 為 機 械 手 的 自 由 度 。 本 課 題 中 設(shè) 計 的 搬 運 機 械 手 主 要 有 旋 轉(zhuǎn) 、 伸 縮 、 升 降 、 夾 緊 四 個 自 由 度 組 成 。 目 錄 - VI - 課 題 從 機 械 部 分 、 氣 動 部 分 和 控 制 三 部 分 對 氣 動 機 械 手 進 行 設(shè) 計 , 要 求 機 械 手 實 現(xiàn) 上 下 站 之 間 的 搬 運 功 能 。 機 械 部 分 重 點 是 總 體 結(jié) 構(gòu) 的 設(shè) 計 、 各 個 氣 缸 的 選 擇 和 安 裝 設(shè) 計 、 各 零 部 件 的 結(jié) 構(gòu) 設(shè) 計 等 , 氣 動 部 分 主 要 是 給 出 了 搬 運 機 械 手 的 氣 動 原 理 圖 , 而 控 制 部 分 則 主 要 是 程 序 的 設(shè) 計 和 調(diào) 試 , 論 文 采 用 西 門 子 ( S7-200) 指 令 編 程 , 給 出 了 相 應(yīng) 的 梯 形 圖 、 語 句 表 和 簡 單 的 流 程 圖 。 由 于 氣 動 機 械 手 有 結(jié) 構(gòu) 簡 單 、 易 實 現(xiàn) 無 級 調(diào) 速 、 易 實 現(xiàn) 過 載 保 護 、 易 實 現(xiàn) 復(fù) 雜 的 動 作 等 諸 多 獨 特 的 優(yōu) 點 , 氣 動 機 械 手 正 在 向 重 復(fù) 高 精 度 , 模 塊 化 , 無 給 油 化 , 機 電 氣 一 體 化 方 向 發(fā) 展 。 可 以 預(yù) 見 , 在 不 久 的 將 來 , 氣 動 機 械 手 將 越 來 越 廣 泛 地 進 人 工 業(yè) 、 軍 事 、 航 空 、 醫(yī) 療 、 生 活 等 領(lǐng) 域 。 關(guān)鍵詞:可編程控制器,柔性自動生產(chǎn)線,自由度,梯形圖 Abstract Over the past 20 years, the field of pneumatic technology expand rapidly,which is widely used in a diverse array of automated production line especially.The combine of electrical programmable technology and pneumatic control technology makes the whole system a higher degree of automation, more flexible control and more reliable performance;The rapid develop of pneumatic manipulator and flexible automated production lines requier much more to the development of pneumatic technology . This topic originated from the handling station of the production line;The drive is used pressure transmission, which uses a variety of cylinder to control the robot's movement and the control parts combining the programmable control technology make a programme to achieve the control of the transportation between the two places. Manipulator is competed by three major parts including hand, sports bodies and control system. Task of hand is to hold the workpiece (or tool) of the components.According to the grasping object’s shape, size, weight, materials and operating requirements the hand hands a variety of structural forms, such as clamp type, ADS holders and adsorption type and so on.The movement part can complete the prescriptive move and achieve the change of the site and gesture 目 錄 - VII - of the grasping objects by varies rotating(twisting),moving or complex movements on hand. The independence movements such as the rise and fall of body, stretching and rotating manner are called the free degrees of manipulator. The handling manipulator of the topic composites four free degrees which are rotation, stretching, lifting and claping The pneumatic manipulator design is desided from three parts in chuding the mechanical parts, pneumatic parts and control parts,which requires to achieve mechanical hand up and down between the handling function. Focus on the mechanical parts are the design of overall structure , the choice of each cylinder and installation design, structural design of various components etc; pneumatic part is given the pneumatic manipulator handling schematics, and the control part of the procedure was mainly design and debugging,The papers use Siemens (S7-200) instructions program,giving the corresponding ladder diagram, statement forms and simple flow chart. Because the pneumatic Manipulator has advantages of simple structure, easy to achieve the stepless speed regulation, easy to achieve overload protection, easy to achieve a number of complex movements,the pneumatic manipulator is developing to the repeat-high-precision, modular, non-oil and electrical integration direction. It is foreseeable that in the near future, pneumatic manipulator will become more and more widely used into the industrial, military, aviation, medical, and other areas of life. Keywords:PLC, flexible automated production lines, free degree, Ladder Diagram 引 言 1.1 課題的背景和意義 近 20 年來,氣動技術(shù)的應(yīng)用領(lǐng)域迅速拓寬,尤其是在各種自動化生產(chǎn)線上得到廣泛 應(yīng)用。電氣可編程控制技術(shù)與氣動技術(shù)相結(jié)合,使整個系統(tǒng)自動化程度更高,控制方式更 靈活,性能更加可靠;氣動機械手、柔性自動生產(chǎn)線的迅速發(fā)展,對氣動技術(shù)提出了更多 更高的要求。 自從機械手問世以來,相應(yīng)的各種難題迎刃而解。能 模 仿 人 手 和 臂 的 某 些 動 作 功 能 , 用 以 按 固 定 程 序 抓 取 、 搬 運 物 件 或 操 作 工 具 的 自 動 操 作 裝 置 。 它 可 代 替 人 的 繁 重 勞 動 目 錄 - VIII - 以 實 現(xiàn) 生 產(chǎn) 的 機 械 化 和 自 動 化 , 能 在 有 害 環(huán) 境 下 操 作 以 保 護 人 身 安 全 , 因 而 廣 泛 應(yīng) 用 于 機 械 制 造 、 冶 金 、 電 子 、 輕 工 和 原 子 能 等 部 門 。通用機械手因具有獨立的控制系 統(tǒng)、程序可變、可在空間抓、放、搬運物體,動作靈活多樣,適用于可變換生產(chǎn)品種的中、 小批量自動化生產(chǎn),廣泛應(yīng)用于柔性自動線。近年來隨著氣動技術(shù)的迅速發(fā)展,氣動元件 及氣動自動化技術(shù)已越來越多地應(yīng)用于機械手中,構(gòu)成氣動機械手。 氣動機械手的全部動作由電磁閥控制的氣缸驅(qū)動。其中,上升、下降和左移、右移分 別由雙線圈兩位電磁閥控制,機械手的放松、夾緊也由雙線圈兩位電磁閥(夾緊電磁閥)控 制。機械手一般由執(zhí)行系統(tǒng)、驅(qū)動系統(tǒng)、控制系統(tǒng)和人工智能系統(tǒng)組成,主要完成移動、 轉(zhuǎn)動、抓取等動作。 本課題來源于實驗課題,模擬生產(chǎn)線由六站組成,各站可獨立,可容易的連接在一起 組成一條自動加工生產(chǎn)線, 。該課題要求設(shè)計搬運站,搬運機械手將工件從上料檢測站搬 至加工站。搬運過程中能實現(xiàn)抓取、提升、回轉(zhuǎn)、下降、松開等動作,且動作順序、動作 速度可調(diào)。用氣動驅(qū)動,PLC 控制。包括總體設(shè)計,各執(zhí)行機構(gòu)設(shè)計,氣動系統(tǒng)設(shè)計、計 算,控制系統(tǒng)設(shè)計。技術(shù)要求有以下幾點: a.裝卸、調(diào)整方便; b.結(jié)構(gòu)簡單,工作安全可靠; c.設(shè)計合理,盡量使用標準件,以降低制造成本; d.用 PLC 對機械手進行控制。 總體設(shè)計思路: a.確定總體結(jié)構(gòu)的組成、框架及各部分的功能與工作目標。 b.根據(jù)設(shè)計任務(wù)書的要求,初步計算各工藝參數(shù)和結(jié)構(gòu)參數(shù)。 c.設(shè)計機體分級部分的結(jié)構(gòu)及主要零件結(jié)構(gòu)。 d.主要分級結(jié)構(gòu)部分的主要零件強度和剛度,檢查其加工工藝性和裝配工藝性。 e.保證與其它部分的接口合理。 f.根據(jù)設(shè)計結(jié)果,修正設(shè)計參數(shù)。 1.2 課題國內(nèi)外發(fā)展現(xiàn)狀 國外機器人領(lǐng)域發(fā)展近幾年有如下幾個趨勢: a.工業(yè)機器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機 價格不斷下降,平均單機價格從91年的10.3萬美元降至97年的65萬美元。 b.機械結(jié)構(gòu)向模塊化、可重構(gòu)化發(fā)展。例如關(guān)節(jié)模塊中的伺服電機、減速機、檢測系 統(tǒng)三位一體化:由關(guān)節(jié)模塊、連桿模塊用重組方式構(gòu)造機器人整機;國外已有模塊化裝配機 器人產(chǎn)品問市。 目 錄 - IX - c.工業(yè)機器人控制系統(tǒng)向基于PC機的開放型控制器方向發(fā)展,便于標準化、網(wǎng)絡(luò)化; 器件集成度提高,控制柜日見小巧,且采用模塊化結(jié)構(gòu):大大提高了系統(tǒng)的可靠性、易操 作性和可維修性。 d.機器人中的傳感器作用日益重要,除采用傳統(tǒng)的位置、速度、加速度等傳感器外, 裝配、焊接機器人還應(yīng)用了視覺、力覺等傳感器,而遙控機器人則采用視覺、聲覺、力覺、 觸覺等多傳感器的融合技術(shù)來進行環(huán)境建模及決策控制;多傳感器融合配置技術(shù)在產(chǎn)品化 系統(tǒng)中已有成熟應(yīng)用。 e.虛擬現(xiàn)實技術(shù)在機器人中的作用已從仿真、預(yù)演發(fā)展到用于過程控制,如使遙控機 器人操作者產(chǎn)生置身于遠端作業(yè)環(huán)境中的感覺來操縱機器人。 f.當(dāng)代遙控機器人系統(tǒng)的發(fā)展特點不是追求全自治系統(tǒng),而是致力于操作者與機器人 的人機交互控制,即遙控加局部自主系統(tǒng)構(gòu)成完整的監(jiān)控遙控操作系統(tǒng),使智能機器人走 出實驗室進入實用化階段。美國發(fā)射到火星上的“索杰納”機器人就是這種系統(tǒng)成功應(yīng)用 的最著名實例。 g.機 器 人 化 機 械 開 始 興 起 。 從 94 年 美 國 開 發(fā) 出 “虛 擬 軸 機 床 ”以 來 , 這 種 新 型 裝 置 已 成 為 國 際 研 究 的 熱 點 之 一 , 紛 紛 探 索 開 拓 其 實 際 應(yīng) 用 的 領(lǐng) 域 。 我 國 的 工 業(yè) 機 器 人 從 80 年 代 “七 五 ”科 技 攻 關(guān) 開 始 起 步 , 在 國 家 的 支 持 下 , 通 過 “七 五 ”、 “八 五 ”科 技 攻 關(guān) , 目 前 己 基 本 掌 握 了 機 器 人 操 作 機 的 設(shè) 計 制 造 技 術(shù) 、 控 制 系 統(tǒng) 硬 件 和 軟 件 設(shè) 計 技 術(shù) 、 運 動 學(xué) 和 軌 跡 規(guī) 劃 技 術(shù) , 生 產(chǎn) 了 部 分 機 器 人 關(guān) 鍵 元 器 件 , 開 發(fā) 出 噴 漆 、 弧 焊 、 點 焊 、 裝 配 、 搬 運 等 機 器 人 ; 其 中 有 130 多 臺 套 噴 漆 機 器 人 在 二 十 余 家 企 業(yè) 的 近 30 條 自 動 噴 漆 生 產(chǎn) 線 (站 )上 獲 得 規(guī) 模 應(yīng) 用 , 弧 焊 機 器 人 己 應(yīng) 用 在 汽 車 制 造 廠 的 焊 裝 線 上 。 但 總 的 來 看 , 我 國 的 工 業(yè) 機 器 人 技 術(shù) 及 其 工 程 應(yīng) 用 的 水 平 和 國 外 比 還 有 一 定 的 距 離 , 如 :可 靠 性 低 于 國 外 產(chǎn) 品 :機 器 人 應(yīng) 用 工 程 起 步 較 晚 , 應(yīng) 用 領(lǐng) 域 窄 , 生 產(chǎn) 線 系 統(tǒng) 技 術(shù) 與 國 外 比 有 差 距 ;在 應(yīng) 用 規(guī) 模 上 , 我 國 己 安 裝 的 國 產(chǎn) 工 業(yè) 機 器 人 約 200 臺 , 約 占 全 球 已 安 裝 臺 數(shù) 的 萬 分 之 四 。 以 上 原 因 主 要 是 沒 有 形 成 機 器 人 產(chǎn) 業(yè) , 當(dāng) 前 我 國 的 機 器 人 生 產(chǎn) 都 是 應(yīng) 用 戶 的 要 求 , “一 客 戶 , 一 次 重 新 設(shè) 計 ” , 品 種 規(guī) 格 多 、 批 量 小 、 零 部 件 通 用 化 程 度 低 、 供 貨 周 期 長 、 成 本 也 不 低 , 而 且 質(zhì) 量 、 可 靠 性 不 穩(wěn) 定 。 因 此 迫 切 需 要 解 決 產(chǎn) 業(yè) 化 前 期 的 關(guān) 鍵 技 術(shù) , 對 產(chǎn) 品 進 行 全 面 規(guī) 劃 , 搞 好 系 列 化 、 通 用 化 、 模 塊 化 設(shè) 計 , 積 極 推 進 產(chǎn) 業(yè) 化 進 程 .我 國 的 智 能 機 器 人 和 特 種 機 器 人 在 “863”計 劃 的 支 持 下 , 也 取 得 了 不 少 成 果 。 其 中 最 為 突 出 的 是 水 下 機 器 人 , 6000m 水 下 無 纜 機 器 人 的 成 果 居 世 界 領(lǐng) 先 水 目 錄 - X - 平 , 還 開 發(fā) 出 直 接 遙 控 機 器 人 、 雙 臂 協(xié) 調(diào) 控 制 機 器 人 、 爬 壁 機 器 人 、 管 道 機 器 人 等 機 種 :在 機 器 人 視 覺 、 力 覺 、 觸 覺 、 聲 覺 等 基 礎(chǔ) 技 術(shù) 的 開 發(fā) 應(yīng) 用 上 開 展 了 不 少 工 作 , 有 了 一 定 的 發(fā) 展 基 礎(chǔ) 。 但 是 在 多 傳 感 器 信 息 融 合 控 制 技 術(shù) 、 遙 控 加 局 部 自 主 系 統(tǒng) 遙 控 機 器 人 、 智 能 裝 配 機 器 人 、 機 器 人 化 機 械 等 的 開 發(fā) 應(yīng) 用 方 面 則 剛 剛 起 步 , 與 國 外 先 進 水 平 差 距 較 大 , 需 要 在 原 有 成 績 的 基 礎(chǔ) 上 , 有 重 點 地 系 統(tǒng) 攻 關(guān) , 才 能 形 成 系 統(tǒng) 配 套 可 供 實 用 的 技 術(shù) 和 產(chǎn) 品 , 以 期 在 “十 五 ”后 期 立 于 世 界 先 進 行 列 之 中 。 第二章 總體方案確定 2.1 總體方案論證 機械手主要由執(zhí)行機構(gòu)、驅(qū)動系統(tǒng)、控制系統(tǒng)以及位置檢測裝置等所組成。 對氣動機械手的基本要求是能快速、準確地拾一放和搬運物件,這就要求它們具有高精度、 快速反應(yīng)、一定的承載能力、足夠的工作空間和靈活的自由度及在任意位置都能自動定位 等特性。設(shè)計氣動機械手的原則是:充分分析作業(yè)對象(工件)的作業(yè)技術(shù)要求,擬定最合 理的作業(yè)工序和工藝,并滿足系統(tǒng)功能要求和環(huán)境條件;明確工件的結(jié)構(gòu)形狀和材料特性, 定位精度要求,抓取、搬運時的受力特性、尺寸和質(zhì)量參數(shù)等,從而進一步確定對機械手 結(jié)構(gòu)及運行控制的要求;盡量選用定型的標準件,簡化設(shè)計制造過程,兼顧通用性和專用 性,并能實現(xiàn)柔性轉(zhuǎn)換和編程控制.本次設(shè)計的機械手是通用氣動機械手,是一種適合于 小批生產(chǎn)的、可以變動作程序的自動搬運或操作設(shè)備生產(chǎn)場合。 2.1.1 機械手手臂結(jié)構(gòu)方案設(shè)計 按照抓取工件的要求,本機械手的手臂有四個自由度,即手臂的夾緊、左右回轉(zhuǎn)、左右伸 縮和升降運動。手臂的回轉(zhuǎn)和升降運動是通過立柱來實現(xiàn)的,立柱的橫向移動即為手臂的 手臂的左右伸縮,手臂的各種運動由氣缸來實現(xiàn) 2.1.2 機械手驅(qū)動方案設(shè)計 氣壓傳動的優(yōu)點: 1.對于傳動形式而言,氣缸作為線性驅(qū)動器可在空間的任意位置組建它所需的運動軌 目 錄 - XI - 跡,安裝維護簡單; 2.工作介質(zhì)是取之不盡、用之不竭的空氣,空氣本身不花錢。排氣處理簡單,不污 染環(huán)境,成本低。壓力等級低,使用安全; 3.氣缸動作速度一般為 50~500mm/s,比液壓和電氣方式的動作速度快,其間,通過 單向節(jié)流閥,可使氣缸速度無級調(diào)節(jié); 4.可靠性高,使用壽命長。電器元件的有效動作數(shù)約為數(shù)百萬次,而進口的一般電磁 閥的壽命大于 3000 萬次,小型閥超過一億次; 5.利用空氣的可壓縮性,可儲存能量,實現(xiàn)集中供氣; 6.全氣動控制具有防火、防爆、耐潮的能力。與液壓方式相比,氣動方式可在高溫場 合使用; 7.由于空氣損失小,壓縮空氣可集中供應(yīng),遠距離輸送。 根據(jù)以上優(yōu)點可知道氣壓傳動系統(tǒng)的動作迅速,反應(yīng)靈敏,阻力損失和泄漏較小,成 本低廉因此本機械手采用氣壓傳動方式。 2.1.3 機械手控制方案設(shè)計 綜合分析機械手的動作要求,PLC 在機械手中需要完成的控制功能較多,控制精度較 高,運算速度較快且具有數(shù)據(jù)處理能力,并考慮整個系統(tǒng)的經(jīng)濟和技術(shù)指標,由于 PLC 的 輸出電流較小,需要用功率模塊來控制比例液壓閥,選用西門子公司的 S7-200 系 CPU226 型 PLC,其 I/O 功能和指令系統(tǒng)都能滿足對該機械手的控制要求??刂瓢粹o、各處的行程 開關(guān)及壓力繼電器等開關(guān)量信號直接與 PLC 的輸入端子相連,PLC 的開關(guān)量輸出端子直接 與各個電磁閥相連,用 PLC 上所帶的 24V 電源或外接 24V 電源驅(qū)動,采用編程軟件(STEP 7-Micro/WIN V4.4 版)進行編程和運行監(jiān)控。 2.1.4 機械手主要參數(shù) a.主參數(shù) 機械手的最大抓重是其規(guī)格的主參數(shù),本設(shè)計機械手最大抓重以 1kg 為數(shù)最多。故該 機械手主參數(shù)定為 1kg。 b.基本參數(shù) 運動速度是機械手主要的基本參數(shù)。操作節(jié)拍對機械手速度提出了要求,設(shè)計速度過 低限制了它的使用范圍。而影響機械手動作快慢的主要因素是手臂回轉(zhuǎn)的速度。 該機械手最大升降速度設(shè)計為 100mm/s,最大回轉(zhuǎn)速度設(shè)計為 450°/s。平均升降速 度為 80m/s,平均回轉(zhuǎn)速度為 90°/s。 目 錄 - XII - 2.1.5 機械手的技術(shù)參數(shù)列表 A.設(shè)計技術(shù)參數(shù): a)抓重 1 公斤(夾持式手部) b)自由度數(shù) 4 個自由度 c)最大工作半徑 279mm d)手臂最大中心高 684.5mm B.手臂運動參數(shù) 夾緊行程 50mm 夾緊速度 50mn/s 升降行程 100mm 升降速度 100mm/s 回轉(zhuǎn)范圍 0°~180° 回轉(zhuǎn)速度 90°/s C.手指夾持范圍 塑料:Φ40mm D.定位方式 行程開關(guān) E.定位精度 士 0.5mm F.緩沖方式 液壓緩沖器 G.驅(qū)動方式 氣壓傳動 H.控制方式 點位程序控制(采用 PLC) 目 錄 - XIII - 第三章 機械手總體結(jié)構(gòu)設(shè)計 3.1 動作工況與分析 氣動機械手是以壓縮空氣的壓力來驅(qū)動執(zhí)行機構(gòu)運動的機械手。其主要特點是:介質(zhì) 源極為方便,輸出力小,氣動動作迅速,結(jié)構(gòu)簡單,成本低。但是,由于空氣具有可壓縮 的特性,工作速度的穩(wěn)定性較差,沖擊大,而且氣源壓力較低,抓重一般在 30 公斤以下, 在同樣抓重條件下它比液壓機械手的結(jié)構(gòu)大,所以適用于高速、輕載、高溫和粉塵大的環(huán) 境中進行工作。 機械手的全部動作由電磁閥控制的氣缸驅(qū)動。其中,上升/下降、左移 /右移以及擺動分別由 雙線圈兩位電磁閥控制,機械手的放松 /夾緊由一個單線圈兩位電磁閥(夾緊電磁閥) 控制。 機械手的任務(wù)是將 A 工作臺上的工件搬運到 B 工作臺(或 B 到 A) ,機械手示意圖如圖 3- 1 所示: 圖 3-1 機械手示意圖 在連續(xù)自動工作方式的狀態(tài)下機械手的順序?qū)崿F(xiàn)的動作如圖 1 示意圖所示:手臂下降 →手指夾緊→手臂上升→手臂右擺動→手臂右伸→手臂下降→手指松開→手臂上升→手臂 左伸→手臂左擺動(回到初始位) ,機械手可以反復(fù)不斷的進行上述循環(huán)動作。 目 錄 - XIV - 3.2 機械手各部分結(jié)構(gòu)設(shè)計 3.2.1 機械手底座的設(shè)計 底座是機械手的基礎(chǔ)部分,機械手執(zhí)行機構(gòu)的各部件和驅(qū)動系統(tǒng)均安裝于機座上,故 起支撐和連接的作用。 底座的設(shè)計是根據(jù)各個零件的尺寸及有助于拆裝方便來設(shè)計的如圖 2-2 所示: 圖 3-2 箱座 箱座內(nèi)壁不需要與其他零件有配合的關(guān)系,所以內(nèi)表面不需要加工。左右厚壁上端有 M10 的螺紋孔,要求加工表面粗糙度,連接軸承下座的,底版的光孔是用來固定整個裝置 的,材料為鑄鐵 HT200。 3.2.2 立柱結(jié)構(gòu)設(shè)計 立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回轉(zhuǎn)運動和升降(或俯 仰)運動均與立柱有密切的聯(lián)系。機械手的立往通常為固定不動的,但機械手的立柱因工 作需要,有時也可作橫向移動,即稱為可移式立柱。 a.立 柱 的 材 料 及 熱 處 理 目 錄 - XV - 由于設(shè)計功率不是太大,對其重量和尺寸無特殊要求,故選擇常用材料 45 鋼,調(diào)質(zhì) 處理。 b.初 估 軸 徑 按扭矩初估軸的直徑,根據(jù)[1]查表 10-2,得 C=106~117,考慮倒安裝軸承受扭矩作 用,取 C=106,則 (3-1)3minPCd? 式中: C——由軸承的材料和承載情況縮確定的常數(shù); P——軸的輸出功率,KW; n——軸的轉(zhuǎn)速,r/min. 各參數(shù)值為 C=106、P=15KW、n=280,則 33min15069.28dCm??? 所以選擇軸徑 40mm,軸上面設(shè)計個法蘭,用法蘭來固定軸承因為軸是靠氣缸擺動來旋 轉(zhuǎn)的,所以所受的載荷很小,不需要校核。 3.2.3 軸承的選擇 軸承是用以支承軸和軸上回轉(zhuǎn)或擺動零件的部件,在各種機械中應(yīng)用廣泛。根據(jù)軸承 工作時的摩擦性質(zhì),可分為滾動軸承和滑動軸承兩大類。滾動軸承依靠主要元件間的滾動 接觸來承受載荷,它與滑動軸承相比,具有摩擦阻力小、效率高、啟動容易、潤滑簡便等 優(yōu)點。同時,滾動軸承絕大部分已經(jīng)標準化,并由專業(yè)廠家生產(chǎn),選用和更換很方便。其 缺點就是抗擊能力差,工作時有噪聲,以及工作壽命不及液體摩擦的滑動軸承。 滾動軸承的類型很多,按照滾動體的形狀,滾動軸承可分為球軸承和滾子軸承兩大類。 球軸承的滾動體與內(nèi)、外圈是點接觸,運轉(zhuǎn)時摩擦耗損小,但承載能力和抗擊能力差;滾 子軸承為線接觸,承載能力和抗沖擊能力較球軸承大,但運轉(zhuǎn)是耗損大。按照滾動軸承能 否自動調(diào)心,可分為調(diào)心軸承和非調(diào)心軸承。按照滾動體列數(shù)多少,可分為單列軸承、雙 列軸承和多列軸承。按照軸承能承受的主要載荷方向和公稱接觸角的不同,可分為向心軸 承和推力軸承兩大類。 a.向心軸承 向心軸承主要承受徑向載荷,0° 45°,又可分為:①徑向接觸軸承, = 0°,??? 只能承受徑向載荷;②角接觸向心軸承,0°< 45°,不僅能承受徑向載荷,而且隨著 角的增大,其承受軸向載荷的能力隨之增大。? 目 錄 - XVI - b.推力軸承 推力軸承主要承受軸向載荷,45° 90°,又可分為:①軸向接觸軸承, = ??? 90°,只能承受軸向載荷;②角接觸推力軸承,450°< <90°,它主要承受軸向載荷,同 時也能承受較小的徑向載荷。隨著 角的增大,其承受徑向載荷的能力將減小。 軸承所受載荷的大小、方向和性質(zhì),是選擇滾動軸承的主要依據(jù)。本設(shè)計中軸承既承 受徑向力及轉(zhuǎn)矩,又承受軸向力,因此選用推力球軸承和深溝球軸承,推力軸承主要受軸 向力,球軸承主要受徑向力,又根據(jù)外廓尺寸的條件和軸的內(nèi)徑選用 6006 深溝球軸承和 51213 推力球軸承。 3.2.4 上軸承座的選擇 6006 深溝球軸承: d=30 mm D=55mm B=13mm da=36mm Da=49mm 51213 推力球軸承: d=65mm D=100mm T=27mm da=86mm Da=100mm 根據(jù)以上的尺寸可以確定軸承上座的尺寸,如圖 3-3 所示: 圖 3-3 上軸承座 目 錄 - XVII - 由于配合接觸的面比較多,所以對表面粗糙度的要求也高,軸承配合的地方要求公差等 級,軸承的配合主要是內(nèi)圈與軸頸、外圈與軸承座孔的配合。滾動軸承是標準件,因此, 軸承內(nèi)圈與軸頸采用基孔制配合,軸承外圈與軸承座孔采用基軸制配合普通圓柱公差標準 中基準孔的公差帶都在零線之上,故滾動軸承內(nèi)圈與軸頸的配合要比圓柱公差標準中規(guī)定 的基孔制同名配合要緊的多。例如,一般圓柱體基孔制的 K6 配合為過度配合,而在滾動 軸承內(nèi)圈配合中則為過盈配合。 滾動軸承內(nèi)、外圈的處的配合,既不能過緊也不能過松。過緊的配合會使軸承的內(nèi)、 外圈產(chǎn)生變形,可破壞軸承的正常工作,而增加了裝拆的難度。過松的配合,不僅會影響 軸的旋轉(zhuǎn)精度,甚至?xí)古浜媳砻姘l(fā)生滑動。因此,軸承配合種類的選取,應(yīng)根據(jù)軸承的 類型與尺寸、載荷的大小、方向和性質(zhì)以及工作環(huán)境決定。 所以 Φ30 的 6006 軸徑上安裝軸承,這個軸徑就是根據(jù)軸承的 d 來的,Φ36 是 6006 軸承的安裝尺寸,同樣根據(jù)推力軸承的尺寸來確定軸承座的尺寸。 3.2.5 下軸承座的選擇 下軸承座的尺寸是根據(jù)軸承尺寸來定的。其主要配合的地方也是安裝軸承的地方,需 要公差的配合。 (同上)如圖 3-4: 圖 3-4 下軸承座 在安裝軸承的端面上要注明公差配合,分別以其為基準面,查《機械設(shè)計手冊》 ,標 目 錄 - XVIII - 明幾個端面的圓柱度和相對基準面的圓跳動度,還有表面粗糙度。 3.2.6 大臂的結(jié)構(gòu)設(shè)計 本設(shè)計的手臂實現(xiàn)的是水平直線運動,實現(xiàn)直線往復(fù)運動采用的是氣壓驅(qū)動的活塞氣 缸。由于活塞氣缸的體積小、重量輕,因而在機械手的手臂結(jié)構(gòu)中應(yīng)用比較多。 本設(shè)計手臂很簡單,在手臂內(nèi)側(cè)固定個伸縮氣缸,如圖 3-5 所示: 圖 3-5 大臂設(shè)計 3.2.7 小臂的結(jié)構(gòu)設(shè)計 本設(shè)計的手臂與上述的大臂實現(xiàn)的運動方式一樣,主要是上下直線運動。實現(xiàn)直線往 復(fù)運動采用的也是氣壓驅(qū)動的活塞氣缸。 本設(shè)計手臂很簡單,在上面固定個夾緊氣缸,如圖 3-6 所示: 圖 3-6 小臂設(shè)計 目 錄 - XIX - 3.2.8 氣爪的結(jié)構(gòu)設(shè)計 夾持式手部結(jié)構(gòu)由手指(或手爪)和傳力機構(gòu)所組成。其傳力結(jié)構(gòu)形式比較多,如滑槽 杠桿式、斜楔杠桿式、齒輪齒條式、彈簧杠桿式..等。 夾持式是最常見的一種,其中常用的有兩指式、多指式和雙手雙指式:按手指夾持工 件的部位又可分為內(nèi)卡式( 或內(nèi)漲式 )和外夾式兩種: 按模仿人手手指的動作,手指可分為一 支點回轉(zhuǎn)型,二支點回轉(zhuǎn)型和移動型(或稱直進型) ,其中以二支點回轉(zhuǎn)型為基本型式。當(dāng) 二支點回轉(zhuǎn)型手指的兩個回轉(zhuǎn)支點的距離縮小到無窮小時,就變成了一支點回轉(zhuǎn)型手指;同 理,當(dāng)二支點回轉(zhuǎn)型手指的手指長度變成無窮長時,就成為移動型?;剞D(zhuǎn)型手指開閉角較 小,結(jié)構(gòu)簡單,制造容易,應(yīng)用廣泛。移動型應(yīng)用較少,其結(jié)構(gòu)比較復(fù)雜龐大,當(dāng)移動型 手指夾持直徑變化的零件時不影響其軸心的位置,能適應(yīng)不同直徑的工件。 目 錄 - XX - 圖 3-7 氣爪設(shè)計 本設(shè)計是采用兩指式,內(nèi)卡式,上下氣爪通過銷來連接,過盈配合,如圖 3-7 所示。 設(shè)計時考慮的幾個問題: a.具有足夠的握力(即夾緊力) 在確定手指的握力時,除考慮工件重量外,還應(yīng)考慮在傳送或操作過程中所產(chǎn)生的慣 性力和振動,以保證工件不致產(chǎn)生松動或脫落。 b.手指間應(yīng)具有一定的開閉角 兩手指張開與閉合的兩個極限位置所夾的角度稱為手指的開閉角。手指的開閉角應(yīng)保 證工件能順利進入或脫開,若夾持不同直徑的工件,應(yīng)按最大直徑的工件考慮。對于移動 型手指只有開閉幅度的要求。 c.保證工件準確定位 為使手指和被夾持工件保持準確的相對位置,必須根據(jù)被抓取工件的形狀,選擇相應(yīng) 的手指形狀。例如圓柱形工件采用帶“V”形面的手指,以便自動定心。 d.具有足夠的強度和剛度 手指除受到被夾持工件的反作用力外,還受到機械手在運動過程中所產(chǎn)生的慣性力和 振動的影響,要求有足夠的強度和剛度以防折斷或彎曲變形,當(dāng)應(yīng)盡量使結(jié)構(gòu)簡單緊湊, 自重輕,并使手部的中心在手腕的回轉(zhuǎn)軸線上,以使手腕的扭轉(zhuǎn)力矩最小為佳。 e.考慮被抓取對象的要求 根據(jù)機械手的工作需要,通過比較,我們采用的機械手的手部結(jié)構(gòu)是一支點兩指回轉(zhuǎn) 型,由于工件多為圓柱形,故手指形狀設(shè)計成 V 型。 3.2.9 手部夾緊氣缸設(shè)計計算 A.手部驅(qū)動力計算 本課題氣動機械手的手部結(jié)構(gòu)如圖 3-8 所示,其工件重量 G=10 公斤, a=37.5mm,b=70mm,根據(jù)[1]摩擦系數(shù)為 f=0. 10。 目 錄 - XXI - 圖3-8 手部結(jié)構(gòu)分析圖 a) 根據(jù)手部結(jié)構(gòu)分析示意圖,其驅(qū)動力為: (3-2)aNbP2? b) 根據(jù)手指夾持工件的方位,可得握力計算公式: (3-3))(fG10. 代入公式(3-2)得: )(3.75.32NP?? c)參照[17]實際驅(qū)動力: (3-4)?21K?實 際 因為傳力機構(gòu)為齒輪齒條傳動,根據(jù)[1]故取 ,并取 94.0?5.1? 若被抓取工件的最大加速度取a= g時,參照[17]則: (3-5)212?gaK 代入公式(3-4)得: )(實 際 NP194.0537??? 目 錄 - XXII - 所以夾持工件時所需夾緊氣缸的驅(qū)動力為1191N. B.氣缸的直徑 本氣缸屬于單向作用氣缸。以下公式都參照[17],根據(jù)力平衡原理,單向作用氣缸活 塞桿上的輸出推力必須克服彈簧的反作用力和活塞桿工作時的總阻力,其公式為: (3-6)FzPDFl??421? 式中: —活塞桿上的推力,N1F —彈簧反作用力,Nl —氣缸工作時的總阻力,Nz —氣缸工作壓力,PaP 彈簧反作用按下式計算: (3-()lfFCS?? 7) (3- 4138fGdDn 8) (3-121d?? 9) 式中: — 彈簧剛度,N/mfC — 彈簧預(yù)壓縮量,ml 一 活塞行程,mS — 彈簧鋼絲直徑,m1d —彈簧平均直徑,mD — 彈簧外徑,m2 — 彈簧有效圈數(shù)n 目 錄 - XXIII - 一彈簧材料剪切模量,一般取G97.410aGP?? 在設(shè)計中,必須考慮負載率 的影響,則:?214lDF??? 由以上分析得單向作用氣缸的直徑: 1()lP???? 代入有關(guān)數(shù)據(jù),可得 4138fGdCDn???93437.0(.5)8015??????????mN643lfFCs? ?37.01????N62 所以: 14()lFDP????????16237.20.6.80.94?? ???? ?m659 查有關(guān)手冊圓整,得 30? 由 ,可得活塞桿直徑: .~20?Dd??mDd5.19~3.02?? 圓整后,取活塞桿直徑 d18 校核,按公式 (3-10)????214F??? 目 錄 - XXIV - 有: ????1214dF??? 其中, ,aMP0?N3.71 則: ?m189.023.7216???? 所以滿足設(shè)計要求。 C.缸筒壁厚的設(shè)計 缸筒直接承受壓縮空氣壓力,必須有一定厚度。一般氣缸缸筒壁厚與內(nèi)徑之比小于或 等于 1/10,參照[17],其壁厚可按薄壁筒公式計算: (3-??2pdP??? 11) 式中: — 缸筒壁厚,mm? D—氣缸內(nèi)徑,mm —實驗壓力,取 , PapPPp5.1? 材料為:ZL3, ??aM2? 代入己知數(shù)據(jù),則壁厚為: ??2pdP?????365102.10. ???m83 取 ,則缸筒外徑為:m1??D20?? 根據(jù)以上計算選擇的氣缸型號為:QGSD q 32×50 B LB 其中:QGSD- 普通型單作用氣缸; q – 派生氣缸代號:q=彈簧前置型; 32 – 汽缸內(nèi)徑; 50- 氣缸行程; B –緩沖:B=可調(diào)緩沖; LB – 安裝方式:LB=軸向底座 目 錄 - XXV - 3.2.10 升降氣缸設(shè)計計算 手臂升降裝置由轉(zhuǎn)柱、升降缸活塞軸、升降缸體、碰鐵、可調(diào)定位塊、定位拉桿、緩 沖撞鐵、定位塊聯(lián)接盤和導(dǎo)向桿等組成。在轉(zhuǎn)柱上端用管接頭和氣管分別將壓縮空氣引到 手腕回轉(zhuǎn)氣缸手部夾緊氣缸和手臂伸縮氣缸,轉(zhuǎn)柱下端的氣路,將壓縮空氣引到升降缸上 腔,當(dāng)壓縮空氣進入上腔后,推動升降缸體上升,并由兩個導(dǎo)向桿進行導(dǎo)向,同時碰鐵隨 升降缸體一同上移,當(dāng)碰觸上邊的可調(diào)定位塊后,即帶動定位拉桿,緩沖撞鐵向上移動碰 觸升降用液壓緩沖器進行緩沖。上升行程大小通過調(diào)整可調(diào)定位塊來實現(xiàn),手臂下降靠自 重實現(xiàn)。結(jié)構(gòu)簡圖如圖 3-9 所示: 圖3-9 結(jié)構(gòu)分析簡圖 A.驅(qū)動力計算 根據(jù)上圖力的作用方向,可計算活塞的驅(qū)動力F,參照[1]可知摩擦系數(shù)f=0. 17。 a) 根據(jù)結(jié)構(gòu)示意圖,驅(qū)動力公式為: (3-12)總GFf?? b) 質(zhì)量計算:手臂升降部分主要由手臂伸縮氣缸、夾緊氣缸、手臂、手爪及相關(guān)的固 定元件組成。氣缸為標準氣缸,根據(jù)中國煙臺氣動元件廠的《產(chǎn)品樣本》可估其質(zhì)量,同 時測量設(shè)計的有關(guān)尺寸,據(jù)估計 )(40N?總 目 錄 - XXVI - 所以代入公式(3-12): 總GFf?? 總總 4017.0? )( N68? c) 參照 [17]實際驅(qū)動力: ?21KF?實 際 因為傳力機構(gòu)為齒輪齒條傳動,參照[1]故取 ,并取 94.0?5.1? 若被抓取工件的最大加速度取a= g時,根據(jù)[17]則: 212?gaK 所以 )(實 際 NF49.05468??? 所以夾持工件時所需夾緊氣缸的驅(qū)動力為1494N. B.氣缸的直徑 本氣缸屬于單向作用氣缸。以下公式均參照[17]根據(jù)力平衡原理,單向作用氣缸活塞 桿上的輸出推力必須克服彈簧的反作用力和活塞桿工作時的總阻力,其公式為: FzPDFl??421? 式中: —活塞桿上的推力,N1F —彈簧反作用力,Nl —氣缸工作時的總阻力,Nz —氣缸工作壓力,PaP 彈簧反作用按下式計算: ()lfFCS??4138fGdDn 目 錄 - XXVII - 121Dd?? 式中: — 彈簧剛度,N/mfC — 彈簧預(yù)壓縮量,ml 一 活塞行程,mS — 彈簧鋼絲直徑,m1d —彈簧平均直徑,mD — 彈簧外徑,m2 — 彈簧有效圈數(shù)n 一彈簧材料剪切模量,一般取G97.410aGP?? 在設(shè)計中,必須考慮負載率 的影響,則:?214lDF??? 由以上分析得單向作用氣缸的直徑: 1()lP???? 代入有關(guān)數(shù)據(jù),可得 4138fGdCDn???93437.410(.5)8015???????? 3677.46??mNlfFCs?? 3367.401?? 220.6N 所以: 目 錄 - XXVIII - 14()lFDP????????21694.07.6.2035??m. 查有關(guān)手冊圓整,得 35? 由 ,可得活塞桿直徑:.0~2?Dd??mDd5.1~3.?? 圓整后,取活塞桿直徑 d18 校核,按公式 ????214F??? 有: ??? 其中, , aMP0??N351? 則: md 1892.0356?? 所以滿足設(shè)計要求。 C.缸筒壁厚的設(shè)計 缸筒直接承受壓縮空氣壓力,必須有一定厚度。一般氣缸缸筒壁厚與內(nèi)徑之比小于或 等于 1/10,根據(jù)[17]其壁厚可按薄壁筒公式計算: ??2pdP??? 式中: — 缸筒壁厚,mm? D—氣缸內(nèi)徑,mm —實驗壓力,取 , PapPp5.1 材料為:ZL3, ??aMP2?? 代入己知數(shù)據(jù),則壁厚為: ??2pd?????
收藏