壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
Design development process and injection molding mold
Mold is a basic industry of the national economy, is an important foundation for technology and equipment manufacturing industry, with the continuous social society, the economy continues to develop a variety of goods are constantly produced, which produce most of the goods are dependent on diversification of the mold. Machinery, electronics, automotive, petrochemical, construction of the development of the five pillar industries of the national economy also requires the development of mold industry with suitable. Important role in the manufacturing sector has mold, making the mold manufacturing capacity and technical level has become an important indicator to measure the level of national manufacturing and innovation ability. In recent years, with the improvement of mold manufacturing capacity, making the mold with high precision, long life, high productivity, cavity shape and mold complex structure.
Mould technology is a very complex subject, one subject in recent years of rapid development. The pieces of paper in a ring of plastic injection mold, for example, strive to reflect the learning of new knowledge and practicality, combined with the development of mold technology in recent years, reflecting the emphasis on advanced technology. In the mold design, detailing the structure of the mold composition, structural features, working principle, design elements, used in the production of molding equipment, mold material and heat treatment requirements, and the deputy dies molding process. Since the production of plastic molding, injection molding most widely used, but the most complex structure of the mold.
The pieces of paper in a ring of plastic injection mold, for example, the basic structure of the injection molding and injection machines, and gating system design choices parting surface, forming component design, structural component design, the introduction of mechanism design, side parting and Pulling mechanism design and temperature control systems were highlighted. The design uses Auto / CAD software for the major parts and assembly drawings to draw, although the structure of the mold has some rational sensibility and understanding, also had the time and appropriate curriculum design, but due to lack of experience in the graduation the design process encountered many difficulties, but through the guidance of the teacher patience and detailed access to information, as well as students discuss and solve a lot of problems. I believe this design can meet the design requirements, to complete the actual task.
Quality and productivity level of relations with the plastic mold plastic products, technology is very close. Structure of the mold, precision cavity, surface roughness, sub-surface location, stripping the way a great impact on the dimensional accuracy of plastic parts, shape and position accuracy, visual quality. Temperature control of the mold, filling speed, gate location, the size of the exhaust ducts within the molecular orientation of plastic parts, such as crystal morphology and mechanical properties of condensed matter structures determined by their residual stress level, optical, and electrical properties of bubbles, depression and other product defects and important relationship.
Mold release mechanism and pulling mechanism drive mode, the action all models, velocity, cooling forming an efficient and decisive impact on speed. From the manufacturing point of view of the mold, mold parts require durable, it's a good process performance, reasonable selection, easy to manufacture and low cost. Because mold manufacturing costs are very expensive, it costs a great impact on the price of the product.
In summary it can be seen: the requirement for a pair of mold are many, in a variety of manufacturing industries, people on all aspects of these in-depth and comprehensive research, production and the level of the mold to make very rapid, high efficiency automation, large, sophisticated, long-life mold growing proportion of total production in the mold. From mold design and manufacture both in terms of the development trend of the mold can be summarized as the following aspects:
(1) high-speed, efficient automation mold plastic mold basically can now automatically prolapse products, automatic prolapse gating system, automatic fall, large product or products are not automatically fall robot manipulator or remove products, on another side of the draw core or multi-threaded products Pulling or automatically using a threaded screw core structure of the automatic side.
(2) high-precision injection molds can output high-precision plastic parts depends mold, machinery, raw materials, technology, the environment of the five factors, only when high precision molding machinery, process stability, the environment remains unchanged, small fluctuations in raw material shrinkage , especially when high precision molds can produce high-precision plastic parts.
(3) With the growing large plastic mold plastics applications in construction, machinery, automobiles, equipment, instruments, household appliances with a number of large plastic products, such as washing machine drum, large crates, and even automobile body, This requires a corresponding large molds, especially injection mold. Large injection mold logistics processes long, elastic deformation, self-important, and therefore its design, installation and use have special.
(4) computer technology and the perfect combination of mold tooling technology computer-aided design (CAD), aided engineering (CAE) is a 1970s developed rapidly in the 1980s, has entered the practical, allowing designers to improve the quality, design a lot faster times.
(5) The design of the new mold plastic mold manufacturing technology progress than the cavity of the most difficult, especially complex shaped cavity machining. To shorten the molding cycle, improve the precision molds, reducing the amount of manual fitter, etc., using a variety of coordinate machine, copying machine, light control machine tools and CNC machine tools. The other is the recent development of computer-aided manufacturing mold manufacturing technology has made a breakthrough, which uses a computer program to control digital machine tool and workpiece trajectory and processing procedures to complete the processing of the mold cavity.
(6) Research simple molding process in a timely manner in order to update the varieties of products, reduce costs and adapt to the requirements of small batch production, conducted research simple molding processes. Although the accuracy of these die poor, life is not long, but very short molding cycle, low cost, a certain scope.
(7) In recent years, the standardization of mold mold standardization work has been much progress, basically installed for all major types of mold standard parts. There are standard plastic parts in plastic molds, plastic injection molding parts technical conditions, standard plastic injection mold mold, plastic injection mold technology conditions, which include parts of the standard templates, pads, push rod, guide posts, more than ten kinds of parts .
(8) the development of special plastic mold, such as forming gas continuous development of new technology and the emergence of assisted injection mold, injection mold products bow bubble, reaction injection molding mold, multi-multi-cavity injection molds, injection molds and multicolor low foam extrusion head, multi-layer composite nose and so on.
Besides using the mold manufacture special molds for steel, using a special surface treatment technologies such as ion implantation, physical vapor deposition, sputtering, plating, etc. to improve the life of mold. Surface pattern processing of new technology can improve the appearance of quality plastic parts.
The molded piece shape is relatively simple, is an annular cylindrical member, a side wall of the through hole of 8mm diameter, i.e., to be set and the mandrel pulling mechanism, small size, uniform thickness. Sidewall wall thickness 4mm, an intermediate cylindrical wall thickness of 3mm. In addition, the plastic parts of the raw material is ABS, which is a yellowish, odorless, non-toxic polyethylene plastic look like, but lighter and more transparent than polyethylene. Anti density of 1.02 ~ 1.05g / cm3. It does not absorb water, shiny and easy coloring. Yield strength, tensile strength, compressive strength and hardness and elasticity is better than polyethylene. After oriented polypropylene hinges can be made with special high resistance to flexural fatigue strength oblique. ABS melting point of 164 ~ 170 ℃, heat resistance, and can be sterilized at temperatures above 100 ℃. Good high-frequency insulation performance, because they do not absorb water, insulation performance is not affected by temperature, but under the influence of oxygen, heat, light, easily depolymerization, aging, so will shun join anti-aging agent. Mold shrinkage range, prone to shrinkage, dents and deformation, heat capacity, injection mold must be designed to be able to move sufficiently cold loop, forming a suitable mold temperature is about 80 ℃, not lower than 50 ℃, otherwise it will cause molding plastic surface gloss differential or produce seams and other defects. Overheating will warp phenomenon. Plastic good liquidity, should be adopted in the process temperature and high pressure injection method, reduce stress, improve transparency. In mold design and manufacture, to minimize the dawn injection system flow resistance, stripping slope should be appropriate agency force should be balanced smooth launch, the mold cavity surface roughness smaller, attention, exhaust, etc.
The upper side of the plastic member has a through-hole, the lower side of a concave-convex, so that it need to use the upper side of the core with the molding side core slider, with a lower side of the slider cavity side molding. Bevel column given by template forming mold base plate set. When mold, plastic bag on the punch with the left part of the movable mold moves together in the role of side angle pin core slider and side slider with the pusher plate cavity While back in the pusher plate guide chute were moving upward and the lower side, so the side core and cavity side gradually from plastic parts, until the angle pin respectively from the two sliders, side core pulling and typing until the end. To ramp when the mold guide column Bevel accurate insertion hole on the slider, and the slider from the slide out when the angle pin fixed pitch slider to set the limit device in compression Under the action of the spring, side core slider Pulling end while against the stoppers are positioned at the side of the cavity slider side parting end due to its own gravity located on the stopper. movable mold part to continue to Left movement, until the introduction of agency action, putting the push pusher plate plastic parts dragged down from the punch when clamping the slider by angle pin reset, when injected, sliders were locked up by the wedge block, so that it is in the correct position without molding plastic melt due to the effects of stress loose.
注塑模具的開發(fā)過程
模具是國民經(jīng)濟的基礎(chǔ)產(chǎn)業(yè),是技術(shù)和裝備制造業(yè)的重要基礎(chǔ),隨著社會的不斷發(fā)展,經(jīng)濟的不斷發(fā)展,各種商品不斷產(chǎn)生,其中大部分商品都依賴于多樣化。模具的加工。機械、電子、汽車、石油化工、建筑五大支柱產(chǎn)業(yè)的發(fā)展也要求模具產(chǎn)業(yè)的發(fā)展與之相適應(yīng)。在制造業(yè)中有模具的重要作用,使模具制造能力和技術(shù)水平成為衡量國家制造水平和創(chuàng)新能力的重要指標(biāo)。近年來,隨著模具制造能力的提高,使得模具具有精度高、壽命長、生產(chǎn)效率高、型腔形狀和模具結(jié)構(gòu)復(fù)雜等特點。
模具技術(shù)是一門非常復(fù)雜的學(xué)科,近幾年來是一門飛速發(fā)展的學(xué)科。以環(huán)形注塑模中的紙片為例,力求體現(xiàn)學(xué)習(xí)新知識和實用性,結(jié)合近年來模具技術(shù)的發(fā)展,體現(xiàn)對先進技術(shù)的重視。在模具設(shè)計中,詳細介紹了模具的結(jié)構(gòu)組成、結(jié)構(gòu)特點、工作原理、設(shè)計要素,在生產(chǎn)中使用的模具設(shè)備、模具材料和熱處理要求,以及副模具的成型工藝。自生產(chǎn)塑料成型以來,注塑成型應(yīng)用最廣泛,但模具結(jié)構(gòu)最復(fù)雜。
對塑料環(huán)形注塑模具中的紙件,如注塑機的基本結(jié)構(gòu)、澆注系統(tǒng)的設(shè)計、分型面的選擇、成型部件的設(shè)計、結(jié)構(gòu)部件的設(shè)計、機構(gòu)設(shè)計的介紹、側(cè)向分型以及著重介紹了牽引機構(gòu)的設(shè)計和溫度控制系統(tǒng)。本設(shè)計采用Auto/CAD軟件對主要零件和裝配圖紙進行繪制,雖然對模具的結(jié)構(gòu)有一定的理性的感知和理解,也有一定的時間和適當(dāng)?shù)恼n程設(shè)計,但是由于缺乏畢業(yè)設(shè)計過程中的經(jīng)驗,遇到紅色有很多困難,但是通過老師耐心的指導(dǎo)和詳細的信息獲取,以及學(xué)生討論和解決了很多問題。相信本設(shè)計能夠滿足設(shè)計要求,完成實際任務(wù)。
塑料模具質(zhì)量與生產(chǎn)力水平的關(guān)系,與塑料制品、工藝十分密切。模具結(jié)構(gòu)、型腔精度、表面粗糙度、亞表面位置、脫模方式對塑料零件的尺寸精度、形狀位置精度、視覺質(zhì)量有很大影響。模具的溫度控制、填充速度、澆口位置、排氣管在塑料部件分子取向內(nèi)的尺寸,例如由殘余應(yīng)力水平、光學(xué)和電子支柱確定的凝聚物結(jié)構(gòu)的晶體形態(tài)和機械性能泡沫、凹陷等產(chǎn)品缺陷與重要關(guān)系。
脫模機構(gòu)與拉模機構(gòu)驅(qū)動方式,各作用模式、速度、冷卻方式對速度形成有效而決定性的影響。從模具制造的角度來看,模具零件要求耐用,工藝性能好,選擇合理,制造容易,成本低。因為模具制造成本非常昂貴,所以其成本對產(chǎn)品的價格影響很大。
綜上所述,可以看出:對模具的要求是多方面的,在各種制造業(yè)中,人們對這些方面的深入而全面的研究,使模具的生產(chǎn)水平和自動化程度都非常迅速、高效、大型、復(fù)雜、壽命長。模具在模具中的總增長比例。從模具設(shè)計與制造兩方面對模具的發(fā)展趨勢可以概括為以下幾個方面:
(1)高速、高效的自動化模具塑料模具現(xiàn)在基本上可以自動脫模產(chǎn)品,自動脫模澆注系統(tǒng),自動脫模,大型產(chǎn)品或產(chǎn)品不是自動脫模機械手或拆卸產(chǎn)品,另一側(cè)是拉芯或多螺紋p拉出或自動使用自動側(cè)螺紋螺紋芯結(jié)構(gòu)。
(2)高精度注塑模具能否生產(chǎn)出高精度的塑料零件取決于模具、機械、原材料、工藝、環(huán)境這五個因素,只有當(dāng)高精度注塑機械、工藝穩(wěn)定、環(huán)境不變時,原材料sh波動小。尤其是高精度模具時,可生產(chǎn)高精度塑料零件。
(3)隨著大型塑料模具在建筑、機械、汽車、設(shè)備、儀器、家用電器、洗衣機滾筒、大板條箱、甚至汽車車身上的應(yīng)用日益增多,這就需要相應(yīng)的大型模具。特別是注塑模具。大型注塑模具物流過程長、彈性變形、自重,因此其設(shè)計、安裝和使用具有特殊性。
(4)計算機技術(shù)與模具加工技術(shù)的完美結(jié)合——計算機輔助設(shè)計(CAD)、輔助工程(CAE)是20世紀(jì)70年代迅速發(fā)展起來的,在80年代已進入實用階段,使設(shè)計人員能夠提高質(zhì)量,設(shè)計速度大大加快。
(5)新型模具塑料模具的設(shè)計制造技術(shù)進步比型腔加工最困難,尤其是復(fù)雜型腔的加工。為了縮短成型周期,提高模具精度,減少手工裝配機等數(shù)量,采用各種坐標(biāo)機、復(fù)印機、光控機床和數(shù)控機床。二是近年來發(fā)展起來的計算機輔助制造模具制造技術(shù)取得了突破,它利用計算機程序控制數(shù)控機床和工件的軌跡和加工程序,完成模具型腔的加工。
(6)及時研究簡單成型工藝,以便更新產(chǎn)品品種,降低成本,適應(yīng)小批量生產(chǎn)的要求,進行簡單成型工藝的研究。這些模具雖然精度差,壽命不長,但成型周期很短,成本低,有一定的范圍。
(7)近年來,模具標(biāo)準(zhǔn)化工作取得了很大進展,基本安裝了所有主要類型的模具標(biāo)準(zhǔn)件。塑料模具有標(biāo)準(zhǔn)塑料件、塑料注塑件工藝條件、標(biāo)準(zhǔn)塑料注塑模具工藝條件、塑料注塑模具工藝條件,其中包括標(biāo)準(zhǔn)模板、墊片、推桿、導(dǎo)柱等10余種零件。
(8)特種塑料模具的開發(fā),如成型氣連續(xù)開發(fā)新技術(shù)和輔助注塑模具的出現(xiàn)、注塑模具制品弓泡、反應(yīng)注射成型模具、多腔注塑模具、注塑模具和多色低泡模具頂頭、多層復(fù)合鼻等。
除采用模具制造鋼制專用模具外,還采用離子注入、物理氣相沉積、濺射、電鍍等特殊表面處理技術(shù),以提高模具的壽命。新工藝的表面圖案處理可提高塑料零件的外觀質(zhì)量。
成型件形狀比較簡單,為環(huán)形圓柱形構(gòu)件,側(cè)壁通孔直徑為8mm,即要設(shè)置和芯棒拉拔機構(gòu),尺寸小,厚度均勻。側(cè)壁厚度4mm,中間圓柱形壁厚3mm。此外,塑料零件的原材料是ABS,這是一種黃色,無嗅,無毒聚乙烯塑料的外觀,但比聚乙烯更輕,更透明??姑芏葹?.02~1.05g/CM3。它不吸收水,光澤和易著色。屈服強度、拉伸強度、抗壓強度、硬度和彈性均優(yōu)于聚乙烯。經(jīng)取向后的聚丙烯鉸鏈可制成具有特殊高抗彎曲疲勞強度的斜面。ABS熔點164~170℃,耐高溫,可在100℃以上殺菌。良好的高頻絕緣性能,因為它們不吸水,絕緣性能不受溫度的影響,但在氧氣、熱、光的影響下,容易解聚、老化,所以會避開加入抗老化劑。模具的收縮幅度大,容易收縮、凹痕和變形,熱容、注塑模具必須設(shè)計成能夠充分移動的冷圈,形成合適的模具溫度為80℃左右,不低于50℃,否則會造成成型塑料表面光澤差oR產(chǎn)生接縫和其他缺陷。過熱會產(chǎn)生翹曲現(xiàn)象。塑料流動性好,應(yīng)在工藝中采用高溫高壓注塑的方法,減少應(yīng)力,提高透明度。在模具設(shè)計制造中,為了盡量減小黎明注射系統(tǒng)的流動阻力,脫模斜坡應(yīng)適當(dāng)代理力,應(yīng)平衡平穩(wěn)發(fā)射,使模具型腔表面粗糙度較小,注意排氣等。
塑料構(gòu)件的上側(cè)有通孔,下側(cè)有凹凸,因此需要用芯的上側(cè)帶有成型側(cè)的芯滑塊,下側(cè)帶有成型腔側(cè)的滑塊。斜柱由模板成型模具底板給定。當(dāng)模具成型時,塑料袋在沖頭上與活動模具的左側(cè)部分一起移動,在側(cè)角銷芯滑塊和側(cè)滑塊與推板腔的作用下與推板腔一起移動,而在推板導(dǎo)槽的背面向上和下側(cè)移動,所以側(cè)芯和腔側(cè)逐漸移動。ly從塑料零件開始,直到角銷分別從兩個滑塊開始,側(cè)芯拉出和打字直到結(jié)束。當(dāng)模具導(dǎo)柱斜面時滑塊上精確插入孔,而滑塊從滑塊上滑出時角銷固定節(jié)距滑塊將限位裝置置于壓縮彈簧的作用下,側(cè)芯滑塊拉出端同時抵靠止動件位于E側(cè)空腔滑塊側(cè)分離端由于其自身重力位于止動件上?;顒幽>卟糠掷^續(xù)向左移動,直到引入機構(gòu)動作時,將推板塑料件從沖頭上拖下夾緊滑塊時通過角銷復(fù)位,在注射時,滑塊被楔塊鎖住,使其處于正確的位置。由于塑性熔體在應(yīng)力松弛作用下不發(fā)生塑性變形。